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Abstract: This paper presents a comprehensive mathematical model of the ABB IRB 2400 industrial robot, developed to support  
simulation, control design, and digital twin applications. The model includes both kinematic and dynamic descriptions of the manipulator. 
Kinematic modelling is based on a modified Denavit-Hartenberg convention and includes transformation matrices and the Jacobian matrix. 
The dynamic model was derived using both the Euler-Lagrange and Newton-Euler formalisms, enabling validation through independent 
formulations. Physical parameters such as link masses, centres of mass, and moments of inertia, were estimated through CAD analysis. 
Friction coefficients were determined by experimental testing. Model validation was performed by comparing simulated joint torques with 
measurements on the real robot for representative trajectories. The results show agreement: for Joints 2–3 the RMSE relative to the  
average actuator torque is ≈ 3.4–3.7%, while for Joints 4–6 it remains below 10% (Joint 1 reaches 11.6%). Compared with typical  
kinematics-only simulation in offline-programming tools, the proposed model captures dynamic effects. The equation set is computationally 
light and amenable to real-time use within standard control cycles, facilitating integration into digital-twin workflows. The approach is also 
transferable to other six-axis manipulators of comparable architecture by updating link inertias and friction coefficients. Limitations include 
the rigid-body assumption (no link/joint compliance or backlash) and reliance on controller-reported actuator torques whose proprietary  
accuracy is not disclosed; these aspects motivate future extensions with elastic joints, external-force observers and uncertainty tracking. 

       Key words: dynamics modelling, industrial robot, kinematic modelling, Euler-Lagrange formalism, Newton-Euler formalism  

1. INTRODUCTION 

The deployment of industrial robots in manufacturing processes 
has exhibited steady growth in recent years. This trend is largely 
attributable to the inherent advantages of automated production 
systems, including increased efficiency, repeatability, and adapta-
bility. According to the International Federation of Robotics [1], the 
automotive sector remains the predominant consumer of industrial 
robotics. Nevertheless, its relative share has diminished as other 
industries increasingly invest in automation technologies to en-
hance their production capabilities. 

Industrial robots are mainly used for operations such as mate-
rial handling, welding, assembly, and dispensing. Conversely, their 
application in robotic machining remains comparatively limited. This 
limitation stems primarily from the insufficient structural rigidity and 
relatively low precision of robotic manipulators when compared to 
conventional CNC (Computer Numerical Control) machine tools. 
However, robots offer distinct advantages over CNC machines in 
terms of extended workspace, higher degrees of freedom, and op-
erational flexibility [2–5]. Consequently, robotic systems are being 
adopted for machining processes where high structural stiffness is 
not critical – for instance, in milling soft materials such as wood. In 
scenarios that demand greater motion accuracy, various compen-
sation strategies are implemented to correct the robot’s positional 
deviations relative to the workpiece. 

A critical requirement for improving robotic accuracy and inte-
grating industrial robots into more demanding manufacturing 

applications is the development of a high-fidelity dynamic model. 
Such a model facilitates development of simulation environments 
and the implementation of digital twins – virtual representations of 
physical systems – which enable predictive analysis and optimisa-
tion of production workflows [6–8]. Digital twins constitute a con-
temporary paradigm in manufacturing systems engineering, allow-
ing for the virtual planning of machine trajectories, estimation of cy-
cle times, and in-depth experimentation with process parameters 
without physical hardware. Furthermore, digital twins are instru-
mental in simulating control system behaviour and validating inter-
device communication during virtual commissioning. Modern indus-
trial networks support integration with virtual environments [9,10], 
enabling real-time interaction between physical controllers (e.g., 
PLCs, robot controllers) and virtualised machinery. This capability 
allows for pre-deployment software verification, early detection of 
control logic errors, and flexible reconfiguration of existing systems. 

Most industrial robot manufacturers provide proprietary soft-
ware environments for offline programming and simulation of ro-
botic work cells based on their own products. Additionally, third-
party platforms exist that support the integration of equipment from 
multiple vendors [11,12] . Regardless of origin, the majority of these 
tools rely predominantly on the robot’s kinematic model [11,13], 
which only describes geometric relations between joints and links. 
Such a simplified description cannot predict phenomena that dom-
inate robotic machining, including regenerative chatter, tool-tip de-
flections caused by structural compliance, velocity-dependent fric-
tion with pronounced Stribeck hysteresis, or thermally induced drift. 
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In practice these effects translate into trajectory errors of several 
millimetres and torque oscillations, ultimately degrading surface 
quality and tool life. Capturing them requires a comprehensive dy-
namic model that couples inertia, joint friction, link flexibility with 
high-frequency excitation from the cutting process [2,14–16] . Re-
cent research on wire-arc additive manufacturing (WAAM) confirms 
a similar trend: accurate thermo-mechanical models are indispen-
sable for predicting distortion and residual stresses in large-scale 
deposits [17–22].  

Due to intellectual-property constraints, robot manufacturers 
rarely disclose detailed dynamic models or component-level pa-
rameters of their products. Although constructing a custom re-
search platform is possible [23], it is often prohibitively expensive 
and may not yield insights applicable to existing commercial robots. 
A more pragmatic approach is to build transferable, data-driven 
models of widely deployed manipulators. The formulation proposed 
here based on Euler-Lagrange and Newton-Euler formalisms can 
be ported to other six-axis arms of comparable architecture. Only 
link inertias and drive-train friction coefficients need to be updated. 
Parameter identification was therefore carried out in two stages: 
CAD-derived mass and inertia data were refined using torque 
measurements obtained via the External Guided Motion interface 
and a six-axis force/torque sensor, and a constant-velocity proce-
dure was employed to isolate friction hysteresis despite the ab-
sence of direct joint-torque sensors. The resulting parameter set 
was validated against time-series data of measured torques for var-
ious trajectories. The results for single-member movements were 
presented to demonstrate the modelled phenomena. This founda-
tion enables high-fidelity digital twins, supports simulation-driven 
experimentation and paves the way for advanced control algo-
rithms aimed at improving task accuracy in robotic machining ap-
plications.  

This article presents the development of a comprehensive dy-
namic model of the ABB IRB 2400 industrial robot, which serves as 
a research platform for investigating robotic machining processes. 
The IRB 2400 is widely used in academic and industrial research 
centres worldwide [24–27]. However, to the best of the authors' 
knowledge, a complete dynamic model of this manipulator has not 
yet been published. The presented work introduces a full rigid-body 
dynamic model, including the robot's kinematic equations, Jacobian 
matrix, and dynamic equations of motion. The methodology for es-
timating the model parameters and validating the model's accuracy 
is also described. The estimated parameter values are made pub-
licly available, thus contributing to the existing body of knowledge 
and enabling further research. The proposed model facilitates the 
development of high-fidelity digital twins, supports simulation-
driven experimentation, and provides a foundation for advanced 
control algorithm design aimed at improving task accuracy in ro-
botic machining applications. 

2. OBJECT DESCRIPTION 

In order to conduct research on the robotic automation of ma-
chining processes, a dedicated experimental setup was developed, 
as illustrated in Fig. 1 and Fig. 2. The core of the research station 
is the ABB IRB 2400 industrial robot, which is equipped with a six-
axis force/torque sensor and a high-speed spindle unit. The station 
also includes a two-axis positioner for workpiece manipulation. The 
Tool Centre Point (TCP) of the robot is defined relative to the ma-
chining tool mounted in the spindle holder. Its spatial position is de-
termined with respect to a coordinate frame attached to the robot's 

flange surface. The robot has been equipped with the Absolute Ac-
curacy option, which means that it has been additionally calibrated 
to improve the TCP’s absolute positioning accuracy. The manufac-
turer provides a calibration (“Birth”) certificate specifying unit-spe-
cific positioning-accuracy metrics; the values for the robot used in 
this study are listed in Tab. 1. The ABB IRB 2400 used in this study 
is additionally equipped with the External Guided Motion (EGM) in-
terface, which streams the full robot state vector (joint positions, 
velocities and controller-estimated actuator torques) at 250 Hz di-
rectly from the IRC5 controller. While positional accuracy is certified 
by the manufacturer, the actuator torques are not measured; they 
are computed online by the controller’s internal dynamic model and 
the associated uncertainty is not disclosed. Accordingly, torque val-
ues are treated as estimates. 

Tab. 1. Accuracy parameters from the Robot’s “Birth certificate” 

Parameter Value (mm) 

Average Absolute Error 0.18 

Maximum Absolute Error 0.38 

Standard Deviation 0.07 

 
The mechanical structure of the manipulator comprises six rev-

olute joints forming an open kinematic chain. Notably, the third link 
is actuated by a parallelogram linkage that maintains its spatial ori-
entation constant during the motion of the second joint. This kine-
matic arrangement ensures stable tool orientation, which is advan-
tageous for precision tasks such as machining. 

 
Fig. 1. Schematic diagram of the robotic machining test stand 

 
Fig. 2. Physical implementation of the robotic machining test stand  
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The mathematical model of the robot will be utilised for the syn-
thesis of control algorithms and for performing simulation studies. 
The development of the model was based on the following simpli-
fying assumptions: 

− The manipulator links and the tool are modelled as rigid bodies, 
neglecting structural deformations; 

− The dynamic behaviour of actuators, joint compliance, and 
transmission backlash are disregarded; 

− The parallelogram linkage is not modelled explicitly, its effect is 
absorbed into the link inertias; 

− The centre of mass of each link is assumed to lie within its plane 
of symmetry. 
These simplifications reduce model complexity without unduly 

compromising the fidelity required for control design and dynamic 
simulation. They are dictated primarily by limitations of the meas-
urement chain: with access only to motor-side position signals, the 
effects of link flexibility, joint elasticity and gearbox backlash cannot 
be isolated and are therefore neglected. The resulting model un-
derpins subsequent studies on robotic machining performance, tra-
jectory optimisation and accuracy-enhancement strategies.  

3. KINEMATIC EQUATIONS OF THE ABB IRB 2400 ROBOT 

The kinematic model of the ABB IRB 2400 manipulator was for-
mulated using the Modified Denavit–Hartenberg (MDH) convention, 
which is widely adopted for the systematic modelling of serial ro-
botic chains. The MDH convention was selected because its link 
frames coincide with the physical joint axes, eliminating the half-link 
offset of the classical formulation and thereby simplifying gravity 
compensation and inertia characterisation. Using MDH also guar-
antees direct compatibility with the kinematic data provided by ABB 
for the IRB 2400, keeping the analytical model numerically con-
sistent with the controller during calibration, collision checking and 
offline programming. In addition, the MDH arrangement aligns with 
modern spatial-vector libraries (for example, Pinocchio and RBDL), 
enabling seamless reuse of CAD-derived inertia tensors and effi-
cient evaluation of dynamic terms. Taken together, these aspects 
make MDH a transparent and computationally economical choice 
relative to the classical DH and Product-of-Exponentials descrip-
tions, and it is therefore adopted throughout this study. According 
to the MDH convention, a Cartesian coordinate frame is assigned 
to each 𝑖 link of the manipulator such that: 

− The 𝑧-axis 𝑧𝑖 is aligned with the axis of rotation of joint 𝑖; 
− The axis 𝑥𝑖 intersects 𝑧𝑖−1; 

− The axis 𝑦𝑖 completes the right-handed coordinate system. 
The transformation of coordinate frame 𝑖 with respect to frame 

𝑖 − 1 is described by a homogeneous transformation matrix 𝐓𝑖
𝑖−1. 

In the MDH convention homogeneous transformation is expressed 
as the product of four elementary transformations: 

𝚻𝑖
𝑖−1 = 𝐑𝐨𝐭𝑥,𝛼𝑖−1𝐓𝐫𝐚𝐧𝐬𝑥,𝑎𝑖−1𝐑𝐨𝐭𝑧,𝜃𝑖𝐓𝐫𝐚𝐧𝐬𝑧,𝑑𝑖 ,  (1) 

where: 𝐑𝐨𝐭𝑥,𝛼𝑖−1 – rotation around the 𝑥-axis by the twist angle 

𝛼𝑖−1, 𝐓𝐫𝐚𝐧𝐬𝑥,𝑎𝑖−1 – translation along the 𝑥-axis by the link length 

𝑎𝑖−1, 𝐑𝐨𝐭𝑧,𝜃𝑖  – rotation around the 𝑧-axis by the joint angle 𝜃𝑖, 

𝐓𝐫𝐚𝐧𝐬𝑧,𝑑𝑖  – translation along the 𝑧-axis by the offset 𝑑𝑖. The 

names of the trigonometric functions have been abbreviated using 
the following notation s𝑞𝑖 =sin(𝑞𝑖), c𝑞𝑖 =cos(𝑞𝑖). 

The resulting matrix has the following explicit form: 

𝚻𝑖
𝑖−1 =

[
 
 
 
c𝜃𝑖 −s𝜃𝑖 0 𝑎𝑖−1

s𝜃𝑖c𝛼𝑖−1 c𝜃𝑖c𝛼𝑖−1 −s𝛼𝑖−1 −𝑑𝑖s𝛼𝑖−1
s𝜃𝑖s𝛼𝑖−1 c𝜃𝑖s𝛼𝑖−1 c𝛼𝑖−1 𝑑𝑖c𝛼𝑖−1
0 0 0 1 ]

 
 
 

. (2) 

The parameters 𝛼𝑖−1, 𝑎𝑖−1, 𝜃𝑖, and 𝑑𝑖 represent the geomet-
ric characteristics of each link, as defined by the modified DH con-
vention. 

 
Fig. 3.  Schematic diagram of the ABB IRB 2400 manipulator with coordi-

nate frames assigned in accordance with the modified Denavit–
Hartenberg convention  

The coordinate frames used for the kinematic description of the 
ABB IRB 2400 manipulator, as well as the corresponding distances 
between them, are presented in Fig. 3. The dimensional and struc-
tural data were extracted from the manufacturer’s documentation 
[28]. 

In this study, coordinate frames permanently attached to the 
robot's physical structure are labelled according to the link number 
in the kinematic chain. The links are numbered starting from the 
robot base (Link 1) up to Frame 7, which is attached to the flange 
and corresponds to the tool coordinate system, commonly referred 
to as TCP of tool 0 in industrial robot programming manual [29]. 

Additional coordinate frames, which can be defined arbitrarily 
(e.g., for external tools or mounting), are denoted using alphabetic 
symbols. In Fig. 3, the base frame is labelled B, while the frame 
associated with the tool mounted on the robot flange is denoted as 
T, representing the TCP of the spindle. 

Because the origin of a coordinate frame is a point in three-
dimensional space, the homogeneous transformations described 
above enable the determination of the position and orientation of 
any frame with respect to another. 

An important kinematic characteristic of the ABB IRB 2400 is 
that the third link is driven via a parallelogram linkage mechanically 
aligned with the second link. Joint 3 is actuated via a parallelogram. 
The motor axis is coaxial with Joint 2, while Joint 3’s rotation axis 
is distinct. The rotation of each joint is expressed by a generalised 
joint variable 𝑞𝑖, representing the angular displacement measured 
along the respective actuation axis. 

The Denavit–Hartenberg parameters of the ABB IRB 2400 ma-
nipulator, based on the modified convention, are summarized in 
Tab. 2. 
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Tab. 2. Geometric parameters of ABB IRB 2400 manipulator according to 
modified Denavit-Hartenberg notation 

 𝑎𝑖  (m) 𝛼𝑖  (rad) 𝑑𝑖  (m) 𝜃𝑖 (rad) 

Link 1 0 0 𝑑1 = 0.615 𝑞1 

Link 2 𝑎1 = 0.1 −
𝜋

2
 0  𝑞2 −

𝜋

2
 

Link 3 𝑎2 = 0.705 0 0 𝑞3 − 𝑞2 

Link 4 𝑎3 = 0.135 −
𝜋

2
 𝑑4 = 0.755 𝑞4 

Link 5 0 
𝜋

2
 0 𝑞5 + 𝜋 

Link 6 0 
𝜋

2
 0 𝑞6 

Tool 0 0 0 𝑑7 = 0.085 0 

 
Based on the general transformation formulation introduced in 

Section 3, the individual homogeneous transformation matrices 
were derived using the Denavit–Hartenberg parameters listed in 
Tab. 2. The transformations from one link frame to the next are 
given by the following matrices: 

𝐓1
𝐵 = [

cq1 −sq1 0 0

sq1 cq1 0 0

0 0 1 𝑑1
0 0 0 1

],  (3) 

𝐓2
1 = [

sq2 cq2 0 𝑎1
0 0 1 0
cq2 −sq2 0 0

0 0 0 1

],  (4) 

𝐓3
2 = [

c𝑞2−𝑞3  s𝑞2−𝑞3  0 𝑎2
−s𝑞2−𝑞3  c𝑞2−𝑞3  0 0

0 0 1 0
0 0 0 1

],  (5) 

𝐓4
3 = [

cq4 sq4 0 𝑎3
0 0 1 𝑑4

−sq4 −cq4 0 0

0 0 0 1

],  (6) 

𝐓5
4 = [

−c𝑞5 s𝑞5 0 0

0 0 −1 0
−s𝑞5 −c𝑞5 0 0

0 0 0 1

],  (7) 

𝐓6
5 = [

c𝑞6 −s𝑞6 0 0

0 0 −1 0
s𝑞6 c𝑞6 0 0

0 0 0 1

],  (8) 

𝐓7
6 = [

1 0 0 0
0 1 0 0
0 0 1 𝑑7
0 0 0 1

].  (9) 

In this work, vector and matrix notations adopt a convention 
where the lower index indicates the frame in which the vector or 
transformation is expressed, while the upper index refers to the ref-
erence frame. For example, 𝐨𝑇

7  represents the position vector of 

point T with respect to frame 7, while 𝐨7
𝑇 denotes the position of 

frame 7's origin expressed in the TCP frame. 
To account for the tool mounted on the robot's flange, an addi-

tional coordinate frame associated with the TCP of the spindle was 
defined. Its position and orientation with respect to frame 7 (flange) 

are defined by the translation vector 𝐨𝑇
7  and the rotation matrix 𝐑𝑇

7

, resulting in the homogeneous transformation: 

𝚻𝑇
7 = [

𝐑𝑇
7 𝐨𝑇

7

0 0 0 1
]  (10) 

The rotation matrix 𝐑𝑇
7  corresponds to a rotation of 𝜋 2⁄  

around the y-axis: 

𝐑𝑇
7 = 𝐑𝐨𝐭𝑦,𝜋

2
= [

c𝜋
2

0 s𝜋
2

0 1 0
−s𝜋

2
0 c𝜋

2

] = [
0 0 1
0 1 0
−1 0 0

]. (11) 

Hence, the complete homogeneous transformation matrix be-
comes: 

𝚻𝑇
7 = [

0 0 1 𝑥𝑇
0 1 0 𝑦𝑇
−1 0 0 𝑧𝑇
0 0 0 1

]. (12) 

Using the defined transformation matrices, the complete trans-
formation from any intermediate frame 𝑗 to the base frame B deter-
mined via successive matrix multiplication: 

𝐓𝑗
𝐵 = ∏ 𝐓𝑘

𝑘−1𝑗

𝑘=1
.  (13) 

Accordingly, the position and orientation of the TCP with re-
spect to the base frame is expressed by the overall homogeneous 
transformation matrix: 

𝐓𝑇
𝐵 =

[
 
 
 
𝑅11 𝑅12 𝑅13 𝑜𝑇𝑥
𝑅21 𝑅22 𝑅23 𝑜𝑇𝑦
𝑅31 𝑅32 𝑅33 𝑜𝑇𝑧
0 0 0 1 ]

 
 
 

. (14) 

Where the terms 𝑅𝑖𝑗 and 𝑜𝑇𝑖 represent the elements of rotation 

submatrix and translation vector, respectively. The analytical ex-
pressions for these components are detailed in equations (15) 
through (26): 

𝑅11  = s𝑞1s𝑞4s𝑞5 − c𝑞1c𝑞3c𝑞5 + c𝑞1c𝑞4s𝑞3s𝑞5 , (15) 

 𝑅12  = c𝑞1c𝑞6s𝑞3s𝑞4 − c𝑞4c𝑞6s𝑞1 + c𝑞1c𝑞3s𝑞5s𝑞6 + 

 c𝑞5s𝑞1s𝑞4s𝑞6 + c𝑞1c𝑞4c𝑞5s𝑞3s𝑞6 , (16) 

𝑅13  = c𝑞1s𝑞3s𝑞4s𝑞6 − c𝑞1c𝑞3c𝑞6s𝑞5 − c𝑞5c𝑞6s𝑞1s𝑞4 − 

 c𝑞4s𝑞1s𝑞6 − c𝑞1c𝑞4c𝑞5c𝑞6s𝑞3 , (17) 

𝑅21  = c𝑞4s𝑞1s𝑞3s𝑞5 − c𝑞3c𝑞5s𝑞1 − c𝑞1s𝑞4s𝑞5 , (18) 

𝑅22  = c𝑞1c𝑞4c𝑞6 − c𝑞1c𝑞5s𝑞4s𝑞6 + c𝑞6s𝑞1s𝑞3s𝑞1 + 

 c𝑞3s𝑞1s𝑞5s𝑞6 + c𝑞4c𝑞5s𝑞1s𝑞3s𝑞6 ,

 (19)   

𝑅23  = c𝑞1c𝑞4s𝑞6 + c𝑞1c𝑞5c𝑞6s𝑞4 − c𝑞3c𝑞6s𝑞1s𝑞5 + 

 s𝑞1s𝑞3s𝑞4s𝑞6 − c𝑞4c𝑞5c𝑞6s𝑞1s𝑞3 , (20) 

𝑅31 = c𝑞5s𝑞3 + c𝑞3c𝑞4𝑠𝑞5 , (21) 

𝑅32  = c𝑞3c𝑞6s𝑞6 − 𝑠𝑞3s𝑞5s𝑞6 + c𝑞3c𝑞4c𝑞5s𝑞6, (22)  

𝑅33  = c𝑞3s𝑞4s𝑞6 + c𝑞6s𝑞3s𝑞5 − c𝑞3c𝑞4c𝑞5c𝑞6, (23) 

𝑜𝑇𝑥 = 𝑎1c𝑞1 + 𝑑4c𝑞1c𝑞3 + 𝑎2c𝑞1s𝑞2 + 𝑎3c𝑞1s𝑞3 + 

 (𝑑7 + 𝑧𝑇)(c𝑞1c𝑞3c𝑞5 − s𝑞1s𝑞4s𝑞5 − 
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 c𝑞1c𝑞4s𝑞3s𝑞5) + 𝑥𝑇(c𝑞1s𝑞3s𝑞4s𝑞6 − 

 c𝑞1c𝑞3c𝑞6s𝑞5 − c𝑞5c𝑞6s𝑞1s𝑞4 − c𝑞4s𝑞1s𝑞6 −  

 c𝑞1c𝑞4c𝑞5c𝑞6s𝑞3) + 𝑦𝑇(c𝑞1c𝑞6s𝑞3s𝑞4 − 

 c𝑞4c𝑞6s𝑞1 + c𝑞1c𝑞3s𝑞5s𝑞6 + c𝑞5s𝑞1s𝑞4s𝑞6 + 

 c𝑞1c𝑞4c𝑞5𝑠𝑞3s𝑞6),  (24) 

𝑜𝑇𝑦 = 𝑎1s𝑞1 + 𝑑4c𝑞3s𝑞1 + 𝑎2s𝑞1s𝑞2 + 𝑎3s𝑞1s𝑞3 + 

 (𝑑7 + 𝑧𝑇)(c𝑞3c𝑞5s𝑞1 + c𝑞1s𝑞4s𝑞5 − 

 c𝑞4s𝑞1s𝑞3s𝑞5) + 𝑥𝑇(c𝑞1c𝑞4s𝑞6 + c𝑞1c𝑞5c𝑞6s𝑞4 − 

 c𝑞3c𝑞6s𝑞1s𝑞5 + s𝑞1s𝑞3s𝑞4s𝑞6 − c𝑞4c𝑞5c𝑞6s𝑞1s𝑞3) + 

 𝑦𝑇(c𝑞1c𝑞4c𝑞6 − c𝑞1c𝑞5s𝑞4s𝑞6 + c𝑞6s𝑞1s𝑞3s𝑞4 + 

 c𝑞3s𝑞1s𝑞5s𝑞6 + c𝑞4c𝑞5c𝑞1𝑠𝑞3s𝑞6),  (25) 

𝑜𝑇𝑧 = 𝑑1 + 𝑎2c𝑞2 + 𝑎3c𝑞3 − (𝑑7 + 𝑧𝑇)(c𝑞5s𝑞3 + 

 c𝑞3c𝑞4s𝑞5) + 𝑥𝑇(c𝑞3s𝑞4s𝑞6 + c𝑞6s𝑞3s𝑞5 − 

 c𝑞3c𝑞4c𝑞5c𝑞6) + 𝑦𝑇(c𝑞3c𝑞6s𝑞4 − s𝑞3s𝑞5s𝑞6 + 

 c𝑞3c𝑞4c𝑞5s𝑞6). (26) 

The resulting expressions account for the full kinematic chain, 
including the tool offset, and can be used in further analysis for sim-
ulation, path planning, or control algorithm development. 

4. JACOBIAN OF THE MANIPULATOR 

The Jacobian matrix is a key analytical tool in modelling robotic 
manipulators. It enables the analysis of how different phenomena 
translate between the configuration space and the task space. It is 
commonly used for: 

− mapping joint velocities to task space velocities in forward and 
inverse kinematics,  

− analysing the impact of external forces acting on the end-effec-
tor on the joint torques,  

− detecting and avoiding singularities,  

− planning robotic motion, 

− and designing control systems. 
The transformation of angular joint velocities 𝐪̇ ∈ ℝ𝑛 into the 

spatial velocity 𝛎𝑖
𝐵 of 𝑖𝑡ℎ link using the Jacobian can be expressed 

as: 

𝛎𝑖
𝐵 = [

𝐯𝑖
𝐵

𝛚𝑖
𝐵] = 𝐉𝐪̇, (27) 

where: 𝐯𝑖
𝐵 ∈ ℝ3 – linear velocity of the origin of the coordinate 

frame attached to the 𝑖𝑡ℎ link with respect to the base frame, 𝛚𝑖
𝐵 ∈

ℝ3 – angular velocity of the 𝑖𝑡ℎ frame with respect to the base 

frame, 𝐉 ∈ ℝ6×𝑛 – the manipulator Jacobian, 𝐪̇ ∈ ℝ𝑛 – joint ve-

locity vector, 𝛎𝑖
𝐵 ∈ ℝ6 – spatial velocity of the 𝑖𝑡ℎ link with respect 

to the base frame. 
Separating the Jacobian into translational and rotational com-

ponents gives the following relations: 

𝐉 = [
𝐉𝑣
𝐉𝜔
], (28) 

𝐯𝑖
𝐵 = 𝐉𝑣𝐪̇, (29) 

𝛚𝑖
𝐵 = 𝐉𝜔𝐪̇. (30) 

The dimension of the Jacobian matrix depends on the number 
of generalised coordinates describing the configuration and the 
number of task-space variables. In this study, a Cartesian task 
space is assumed, characterized by six variables (three transla-
tions and three rotations). For a manipulator with 𝑛 degrees of free-
dom, the Jacobian has the form: 

𝐉 = [𝐉1 𝐉2 … 𝐉𝑛] ∈ ℝ
6×𝑛,  (31) 

According to [30], the Jacobian for a manipulator composed of 
revolute joints can be constructed based on the geometry of the 
kinematic chain using: 

𝐉𝑖 = [
𝐉𝑣𝑖
𝐉𝜔𝑖
] = [

𝐳𝑖
𝐵 × (𝐨𝑛

𝐵 − 𝐨𝑖
𝐵)

𝐳𝑖
𝐵 ], (32) 

where 𝒛𝑖
𝐵denotes the third column of the rotation matrix of the 𝑖𝑡ℎ 

link with respect to the base frame. 
The ABB IRB 2400 robot consists of six revolute joints, with the 

second joint forming a parallelogram mechanism that preserves the 
orientation of subsequent links. Taking this into account, the Jaco-
bian is determined as follows: 

𝐉 = [
𝐳1
𝐵 × (𝐨T

𝐵 − 𝐨1
𝐵)

𝐳1
𝐵

𝐳2
𝐵 × (𝐨3

𝐵 − 𝐨2
𝐵)

[0 0 0]T
… 

 … 
𝐳3
𝐵 × (𝐨𝑇

𝐵 − 𝐨3
𝐵)

𝐳3
𝐵

𝐳4
𝐵 × (𝐨𝑇

𝐵 − 𝐨4
𝐵)

𝐳4
𝐵  … 

  … 
𝐳5
𝐵 × (𝐨𝑇

𝐵 − 𝐨5
𝐵)

𝐳5
𝐵

𝐳6
𝐵 × (𝐨𝑇

𝐵 − 𝐨6
𝐵)

𝐳6
𝐵 ]. (33) 

This Jacobian enables transformation of velocities and forces 
from the joint space to the task space. Additionally, the Jacobian 
allows to determine singular positions, which is useful information 
when generating trajectories. The full manipulator Jacobian (33) 
enables a purely algebraic search for poses in which controllability 
is lost. A configuration is singular when 

𝐝𝐞𝐭(𝐉(𝐪)) = 0. (34) 

For the ABB IRB 2400 condition (34) yields exactly two inde-
pendent singular configurations. The first results from the equation: 

sin(q5) = 0 ⇒ 𝑞5 = 0 (35) 

because the axes 𝑧4, 𝑧5, 𝑧6 become collinear and the orientation 
sub-Jacobian loses rank. Since the range of movement of joint 5 is 
from -120 to 120, 𝑞5 = 0 is the only solution. The second singular-
ity occurs when the centre point of the robot's wrist intersects the 
𝑧𝐵 axis, which results from the equation:  

(c𝑞2  s𝑞3) 𝑎1 𝑎3 + (c𝑞2  c𝑞3 + s𝑞2  s𝑞3) 𝑎1 𝑑4 + (c𝑞3  c𝑞2
2 +

s𝑞2  s𝑞3  c𝑞2) 𝑎2 𝑎3 + (s𝑞3 + c𝑞2  c𝑞3  s𝑞2) 𝑎2 𝑑4 + c𝑞2  𝑎3
2 +

(s𝑞2 + 2 c𝑞2c𝑞3  s𝑞3) 𝑎3 𝑑4 + (c𝑞2  c𝑞3
2 + s𝑞2s𝑞3  c𝑞3) (𝑑4

2 −

 𝑎3
2) − (c𝑞3  s𝑞2) 𝑎1 𝑎3 − c𝑞3  𝑎2 𝑎3 − (c𝑞2

2 s𝑞3) 𝑎2 𝑑4 −

(2c𝑞3
2 s𝑞2) 𝑎3 𝑑4  = 0, (36) 

satisfying condition (34). In singular positions, kinematic and dy-
namic equations using Jacobians degenerate, giving infinite or un-
predictably large results. The simplest method of dealing with this 
problem is to avoid singularities. There are also more advanced 
methods such as Damped-Least-Squares, singular posture-
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passing algorithm or the inverse Jacobian cofactor matrix optimisa-
tion method [31]. Singularities do not affect the robot dynamics 
modelling process, but they should be kept in mind when designing 
a control system. 

5. ROBOT DYNAMIC EQUATIONS – EULER–LAGRANGE 
FORMALISM 

Two widely used methods for modelling manipulator dynamics 
are the Euler–Lagrange and Newton–Euler formalisms, as de-
scribed in [30,32,33]. The former is based on variational calculus, 
while the latter uses recursive formulation of Newton’s laws for each 
link in the chain. 

In both methods, a simplified mass distribution model was 
adopted for the IRB 2400 manipulator, as illustrated in Fig. 4. The 
mass of the parallelogram linkage driving the third link is signifi-
cantly smaller than the combined mass of links 3 through 6, making 
its effect on overall dynamics negligible. 

 
Fig. 4. Centre of mass distribution of the robot’s links 

The position of the centre of mass of each link relative to its 
local frame is defined as: 

𝐫𝑆1
1 = [

0
0
𝑧𝑆1

]’  (37) 

𝐫𝑆2
2 = [

𝑥𝑆2
𝑦𝑆2
0
]’ (38) 

𝐫𝑆3
3 = [

𝑥𝑆3
𝑦𝑆3
0
]’ (39) 

𝐫𝑆4
4 = [

0
0
𝑧𝑆4

]’ (40) 

𝐫𝑆5
5 = [

0
0
0
]’ (41) 

𝐫𝑆6
6 = [

0
0
𝑧𝑆6

]’ (42) 

𝐫𝑆𝑇
7 = [

𝑥𝑆𝑇
𝑦𝑆𝑇
𝑧𝑆𝑇

]. (43) 

This section describes the dynamics using the Euler–Lagrange 
formulation, given by: 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑞̇𝑖
) −

𝜕𝐿

𝜕𝑞𝑖
= 𝛺𝑖, (44) 

where 𝛺𝑖 is the generalised force corresponding to the 𝑖𝑡ℎ gener-
alised coordinate, and 𝐿 is the Lagrangian: 

𝐿 = 𝐾 − 𝑃, (45) 

with 𝐾 representing kinetic energy and 𝑃 potential energy. The ki-
netic energy of a multi-body manipulator is defined as: 

𝐾 =
1

2
𝑚𝑖𝐨̇𝑆𝑖

𝑇  𝐨̇𝑆𝑖 +𝛚𝑖
𝑇  𝐑𝑖𝐈𝑖𝐑𝑖

𝑇𝛚𝑖 =
1

2
𝐪̇T𝐌𝐪̇, (46) 

where 𝐌(𝐪) ∈ ℝ𝑛×𝑛  is the inertia matrix, 𝑚𝑖 is the mass of the 

𝑖𝑡ℎ link, 𝐈𝑖 is the inertia tensor of the 𝑖𝑡ℎ link in its local frame and 

𝐑𝑖  is the rotation matrix from the 𝑖𝑡ℎ link frame to the base frame. 
The linear and angular velocities are obtained from the centre-of-
mass Jacobians: 

𝐨̇𝑆𝑖 = 𝐉𝑣𝑠𝑖(𝐪)𝐪̇,𝛚𝑖 = 𝐉𝜔𝑖(𝐪)𝐪̇, (47) 

where 𝐉𝑣𝑠𝑖(𝒒) and 𝐉𝜔𝑖(𝒒) are the Jacobians for the centre of mass 

velocity and angular velocity respectively.  
The potential energy arises solely from gravity, assuming rigid 

body links without elastic deformation: 

𝑃 = ∑ 𝑚𝑖𝐠
T𝑛

𝑖=1 𝐨𝑆𝑖
𝐵 , (48) 

Substituting (46) and (48) into (44) yields: 

𝐌(𝐪)𝐪̈ + 𝐂(𝐪, 𝐪̇)𝐪̇ + 𝐆(𝐪) = 𝛀, (49) 

with 𝐂(𝐪, 𝐪̇)𝐪̇ ∈ ℝ𝑛 the Coriolis and centrifugal terms,  𝐆(𝐪) ∈
ℝ𝑛 the gravity vector, and 𝛀 ∈ ℝ𝑛 the generalised forces. 
The inertia matrix is calculated as: 

𝐌(𝐪) = ∑ (𝑚𝑖𝐉𝑣𝑠𝑖
T (𝐪)𝐉𝑣𝑠𝑖(𝐪) +

𝑛
𝑖=1  𝐉𝜔𝑖

T (𝐪)𝐑𝑖𝐈𝑖𝐑𝑖
T𝐉𝜔𝑖(𝐪)) 

 (50) 

The matrix 𝐂(𝐪, 𝐪̇)  is computed using: 

𝐂(𝐪, 𝐪̇) = ∑ 𝑐𝑖𝑗𝑘
𝑛
𝑖=1 (𝐪)𝑞̇𝑖 =  

∑
1

2
(
𝜕𝐌𝑘𝑗(𝐪)

𝜕𝑞𝑖
+

𝜕𝐌𝑘𝑖(𝐪)

𝜕𝑞𝑗
−

𝜕𝐌𝑖𝑗(𝐪)

𝜕𝑞𝑘
) 𝑞̇𝑖

𝑛
𝑖=1 . (51) 

The gravity vector is derived from the gradient of the potential 
energy: 

𝐆(𝐪) =
𝜕𝑃(𝐪)

𝜕𝒒
. (52) 

The generalised force vector includes actuation torques 𝐮 and 

friction forces 𝐅(𝐪̇) 

𝛀 = 𝐮 − 𝐅(𝐪̇). (53) 

Friction forces are modelled using the expression from [34]: 

𝜏𝑓 = (𝐹𝐶 + (𝐹𝑆 − 𝐹𝐶)𝑒
−|

𝑞̇

𝜔𝑆𝑡
|
2

) sgn(𝑞̇) + 𝐹𝑣𝑞̇. (54) 

This equation combines static (𝐹𝑆), Coulomb (𝐹𝐶), and vis-
cous (𝐹𝑣) components with a Gaussian-type Stribeck term (𝜔𝑆𝑡). 
The friction function versus speed is shown in Fig. 5. 
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Fig. 5. Graph illustrating the friction model 

The friction vector 𝐅(𝐪̇) = [𝜏𝑓1 … 𝜏𝑓𝑛]T takes the form: 

𝐅(𝐪̇) =

[
 
 
 
 
 
 
 
(𝐹𝐶1 + (𝐹𝑆1 − 𝐹𝐶1)𝑒

−|
𝑞̇1
𝜔𝑆𝑡1

|

2

)sgn(𝑞̇1) + 𝐹𝑣1𝑞̇1

⋮

(𝐹𝐶𝑛 + (𝐹𝑆𝑛 − 𝐹𝐶𝑛)𝑒
−|

𝑞̇𝑛
𝜔𝑆𝑡𝑛

|

2

)sgn(𝑞̇𝑛) + 𝐹𝑣𝑛𝑞̇𝑛
]
 
 
 
 
 
 
 

.

 (55) 

This leads to the complete dynamic equation of the ABB IRB 
2400 manipulator: 

𝐌(𝐪)𝐪̈ + 𝐂(𝐪, 𝐪̇)𝐪̇ + 𝐆(𝐪) + 𝐅(𝐪̇) = 𝐮,  (56) 

Due to their complexity, the explicit elements of matrices 𝐌, 𝐂 

and 𝐆 are provided in the appendix [35]. The torque vector is de-

noted: 𝐮 = [𝑢1 … 𝑢6]T. In summary, the Euler–Lagrange 
method provides a matrix form suitable for dynamic simulation and 
controller design. 

6. DYNAMIC EQUATIONS OF ROBOT MOTION – NEWTON–
EULER FORMALISM 

The second widely used approach for modelling the dynamics 
of robotic manipulators is the Newton–Euler formalism. In contrast 
to the Lagrangian approach, this method analyses the motion of 
each individual link separately. The computations are performed 
using a recursive algorithm known as the forward-backward proce-
dure. 

 

Fig. 6. Diagram of forces and torques acting on the 𝒊𝒕𝒉 link of the robot 

In the forward recursion, spatial velocities and accelerations of 
the centre of mass of each link are computed starting from the base, 

with the motion of each link depending on the preceding one. In the 
backward recursion, forces and torques acting on the joints are de-
termined by iterating from the end-effector back to the base. Fig. 6 
illustrates the force and torque interactions acting on a single ma-
nipulator link, represented in the coordinate frame fixed to the cor-
responding link. 

In the diagram, vector 𝐟𝑖 represents the force exerted by link 

𝑖 − 1 on link 𝑖, while 𝐟𝑖+1 denotes the force exerted by link 𝑖 + 1 
on link 𝑖. In accordance with Newton’s third law, this force is equal 
in magnitude and opposite in direction to the reaction force acting 
on link 𝑖 + 1, and must be rotated into the local coordinate frame 

of link 𝑖 using the rotation matrix 𝐑𝑖+1
𝑖 . A similar notation applies to 

the torques 𝛕𝑖 and −𝐑𝑖+1
𝑖 𝛕𝑖+1. The torque vector can be ex-

pressed as: 

𝝉𝑖 = [𝜏𝑥𝑖 𝜏𝑦𝑖 𝑢𝑖]𝑇. (57) 

The actuator torque 𝑢𝑖 is the projection of the torque vector 

onto the 𝑧-axis of the 𝑖𝑡ℎ link. The gravitational force 𝑚𝑖𝐠𝑖 is de-
fined in the local coordinate frame using the gravity vector function 
𝐠𝑖. 

The dynamics analysis is based on the force and torque equi-

librium equations for the 𝑖𝑡ℎ link, written as: 

𝑚𝑖𝒂𝑆𝑖 = 𝐟𝑖 − 𝐑𝑖+1
𝑖 𝐟𝑖+1 +𝑚𝑖𝐠𝑖 (58)  

𝐈𝑖𝛆𝑖 +𝛚𝑖 × (𝐈𝑖𝛚𝑖) = 𝛕𝑖 − 𝐑𝑖+1
𝑖 𝝉𝑖+1 + 𝐟𝑖 × 𝐫𝑐𝑖

𝑖 − 

(𝐑𝑖+1
𝑖 𝐟𝑖+1) × 𝐫𝑆𝑖

𝑖+1 − 𝛕𝑓𝑖  (59) 

where: 𝐚𝑆𝑖  – acceleration of the centre of mass of the 𝑖𝑡ℎ link in its 

local frame, 𝛆𝑖 – angular acceleration in the local frame,  

𝐈𝑖 – inertia tensor of the 𝑖𝑡ℎ link with respect to its centre of mass, 

𝐫𝑆𝑖
𝑖  – position vector from the joint to the centre of mass of link 𝑖, 

𝐫𝑆𝑖
𝑖+1 – position vector from joint 𝑖 + 1 to the centre of mass of link 

𝑖, 𝛕𝑓𝑖  – torque due to joint friction.  

After rearranging equations (58) and (59), the following recur-
sive relations are obtained: 

𝐟𝑖 = 𝑚𝑖𝐚𝑆𝑖 + 𝐑𝑖+1
𝑖 𝐟𝑖+1 −𝑚𝑖𝐠𝑖, (60) 

𝛕𝑖 = 𝐈𝑖𝛆𝑖 +𝛚𝑖 × (𝐈𝑖𝛚𝑖) + 𝐑𝑖+1
𝑖 𝛕𝑖+1 − 𝐟𝑖 × 𝐫𝑆𝑖

𝑖 + 

(𝐑𝑖+1
𝑖 𝐟𝑖+1) × 𝐫𝑆𝑖

𝑖+1 + 𝛕𝑓𝑖 , (61) 

By applying these equations iteratively from 𝑖 = 𝑛 to 𝑖 = 1, it 
is possible to compute the forces and torques acting on each joint 
of the robot. The recursion begins by considering the force and 
torque exerted by the tool mounted on the robot flange: 

𝐟𝑛+1 = 𝐟𝑇 = 𝑚𝑇𝐚𝑐𝑇 −𝑚𝑇𝐠6 (62) 

𝛕𝑛+1 = 𝛕𝑇 = 𝐈𝑇𝛆6 +𝛚6 × (𝐈𝑇𝛚6) − 𝐟𝑇 × 𝐫𝑆𝑇
7  (63) 

The gravitational acceleration vector for each link, with the base 
of the manipulator attached to a horizontal surface, is defined as: 

𝐠𝑖 = −𝐑𝑖
𝐵𝑔[0 0 1]𝑇 (64) 

To obtain a complete dynamic solution, it is necessary to ex-
press the Cartesian-space variables 𝐚𝑆𝑖 , 𝛚𝑖 and 𝛆𝑖 in terms of the 

configuration variables 𝐪, 𝐪̇, 𝐪̈. The angular velocity of each link is 
computed from the angular velocity in the base frame: 

𝛚𝑖 = (𝐑𝑖
𝐵)T𝛚𝑖

𝐵. (65) 

Angular acceleration is computed as: 
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𝛆𝑖 = (𝐑𝑖
𝐵)T𝛚̇𝑖

𝐵. (66) 

Due to the complexity of the results, detailed expressions are 
provided in the part A of the appendix [35]. 

The centre of mass positions of the links relative to their local 
frames were defined previously using equations  (37)-(43). The 
vector from the end of link iii to its centre of mass is given by: 

𝐫𝑆𝑖
𝑖+1 = 𝐫𝑆𝑖

𝑖 − 𝐨𝑖+1
𝑖 . (67) 

The acceleration of the centre of mass of the 𝑖𝑡ℎ link is calcu-
lated using forward recursion as: 

𝐚𝑆𝑖 = 𝐚𝑖 + 𝛆𝑖 × 𝐫𝑆𝑖
𝑖 +𝛚𝑖 × (𝛚𝑖 × 𝐫𝑆𝑖

𝑖 ). (68) 

To verify the correctness of the dynamic equations derived us-
ing the Euler–Lagrange formalism, the resulting equations were re-
formulated to match the structure of equation (56). The derived ma-
trices from both methods were found to be equivalent, confirming 
that the dynamic model has been correctly formulated. 

7. PHYSICAL PARAMETERS OF THE MODEL 

One of the most challenging aspects of modelling a robotic sys-
tem is determining its physical parameters, such as masses, mass 
moments of inertia, and friction coefficients (Fig. 7). The masses of 
individual links of the IRB 2400 manipulator were estimated based 
on technical documentation of the experimental setup components.  

 
Fig. 7.   Diagram of the procedure for determining the physical parameters 

of the model 

The positions of centres of mass and the values of mass mo-
ments of inertia were determined through analysis of the robot's 
CAD model [14,36,37]. The estimated values are presented in Tab. 

3. Any tool can be mounted on the robot, as long as it does not 
exceed the payload limits defined by the manufacturer. In this work, 
an electric spindle was used as the end-effector, and its physical 
parameters are shown in Tab. 4. The values were obtained using 
the robot’s internal measurement procedure, which analyses force 
sensor data for various tool positions to estimate the tool’s mass, 
centre of mass, and inertia. 

Tab. 3. Physical parameters of the robot 

Parameter Sym. Link 1 Link 2 Link 3 

Mass (𝒌𝒈) 𝑚𝑖 192 26.5 25.7 

Centre of 
mass 
(𝒎𝒎) 

𝑆𝑖𝑥 21 253.4 139.5 

𝑆𝑖𝑦 22 47.7 -99.5 

𝑆𝑖𝑧 -188.5 7 -9.7 

Moments 
of inertia 

(𝒌𝒈𝒎𝟐) 

𝐼𝑖𝑥𝑥 9.82183 0.23517 0.0143 

𝐼𝑖𝑦𝑦 6.16127 1.22338 0.01412 

𝐼𝑖𝑧𝑧 8.30224 1.16539 0.00892 

𝐼𝑖𝑥𝑦 0.50571 0.58498 -0.0259 

𝐼𝑖𝑥𝑧 -1.0596 0.22733 0.01089 

𝐼𝑖𝑦𝑧 0.10946 0.56479 -0.0003 

 Link 4 Link 5 Link 6 

Mass (𝒌𝒈) 𝑚𝑖 29.7 2.8 0.8 

Centre of 
mass 
(𝒎𝒎) 

𝑆𝑖𝑥 0.131 -0.587 0.208 

𝑆𝑖𝑦 -1.81 -0.245 0.035 

𝑆𝑖𝑧 -296.7 0.540 72.270 

Moments 
of inertia 

(𝒌𝒈𝒎𝟐)  

𝐼𝑖𝑥𝑥 0.74128 0.0034 0.00002 

𝐼𝑖𝑦𝑦 0.71936 0.00332 0 

𝐼𝑖𝑧𝑧 0.09626 0.00419 0 

𝐼𝑖𝑥𝑦 0.208 0.00023 0 

𝐼𝑖𝑥𝑧 0.035 0.00023 0 

𝐼𝑖𝑦𝑧 0.000711 0.0003 0 

Tab. 4. Physical parameters of the spindle 

Parameter Sym. Spindle 

Mass (𝒌𝒈) 𝑚𝑇 12.7 

Centre of 
mass 
(𝒎𝒎) 

𝑆𝑇𝑥 -38.3 

𝑆𝑇𝑦 0 

𝑆𝑇𝑧 129.3 

Moments 
of inertia 

(𝒌𝒈𝒎𝟐) 

𝐼𝑇𝑥𝑥 0.269 

𝐼𝑇𝑦𝑦 0.274 

𝐼𝑇𝑧𝑧 0.193 

𝐼𝑇𝑥𝑦 0 

𝐼𝑇𝑥𝑧 0 

𝐼𝑇𝑦𝑧 0 

The TCP was defined as the furthest point on the tool mounted 
in the spindle chuck. The coordinates of this point, as recorded in 
transformation matrix (12), are: 

{

𝑥𝑇 = 240 𝑚𝑚
𝑦𝑇 = 0
𝑧𝑇 = 162 𝑚𝑚

. (69) 

Friction coefficients for the joint friction model described in 
equation (54) were determined experimentally, following the meth-
odology described in [38]. The IRC5 controller used to operate the 
IRB 2400 manipulator enables real-time access to motion and 
torque data through the External Guided Motion interface [39] or via 
test signals managed through the Tune Master application [40] on 
a PC. To estimate friction parameters, a series of experiments was 
conducted where each joint was moved individually at a specified 
angular velocity near a reference position. During these tests, the 
remaining joints were positioned to minimize gravitational effects. 
While this was not feasible for joints 2 and 3 due to the robot’s 
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mounting constraints, suitable configurations were found for the re-
maining joints. The gravitational torque was compensated by com-
paring actuator torques measured during motion in both positive 
and negative directions in the same joint position [41]. 

When a manipulator joint moves at constant velocity, inertial 
effects its effect is absorbed into the link inertias, and the motion 
equation simplifies to: 

𝜏𝑓𝑖(𝑞̇𝑖 , 𝑞𝑖) + 𝜏𝑔𝑖(𝑞𝑖) = 𝑢𝑖. (70) 

where: 𝑢𝑖 – actuator torque for joint 𝑖, 𝜏𝑓𝑖  – friction torque, 𝜏𝑔𝑖  – 

gravitational torque. Assuming friction torque is symmetric around 
zero velocity, the torques recorded for constant positive and nega-

tive velocities 𝑞̇𝑖
† give the result: 

{
𝜏𝑓𝑖(𝑞̇𝑖

†) + 𝜏𝑔𝑖(𝑞𝑖
†) = 𝑢𝑖

+,

𝜏𝑓𝑖(−𝑞̇𝑖
†) + 𝜏𝑔𝑖(𝑞𝑖

†) = 𝑢𝑖
−.

 (71) 

Subtracting both equations gives: 

𝜏𝑓𝑖(𝑞̇𝑖
†) − 𝜏𝑓𝑖(−𝑞̇𝑖

†) = 𝑢𝑖
+ − 𝑢𝑖

−, (72) 

Assuming 𝜏𝑓𝑖(−𝑞̇𝑖
†) ≅ −𝜏𝑓𝑖(𝑞̇𝑖

†), the friction torque can be 

estimated as: 

𝜏𝑓𝑖(𝑞̇𝑖
†) =

𝑢𝑖
+−𝑢𝑖

−

2
. (73) 

Fig. 8 presents the measured angular position, velocity, and ac-
tuator torque for joint 2, moving in both positive and negative direc-

tions at a velocity of 𝑞̇2
† = 9,3 rad 𝑠⁄  near the position 𝑞2

† = 0. 

   
Fig. 8.  a) Angular position and velocity of joint 2 at a constant velocity,  

b) recorded actuator torque 

Since most of the friction phenomena described by equation 
(54) occur at low velocities, step sizes for increasing velocity during 
the tests were defined as: 

Δ𝑞̇𝑖
† =

{
 
 

 
 0,00001

𝑟𝑎𝑑

𝑠
, for 𝑞̇𝑖

† = ⟨0,00001; 0,015)
𝑟𝑎𝑑

𝑠

0,0002
𝑟𝑎𝑑

𝑠
, for 𝑞̇𝑖

† = ⟨0,015; 0,2)
𝑟𝑎𝑑

𝑠

0,001
𝑟𝑎𝑑

𝑠
, for 𝑞̇𝑖

† = ⟨0,2; 0,5⟩
𝑟𝑎𝑑

𝑠

 (74) 

Using the recorded data, values of 𝑞̇𝑖
† and 𝑢𝑖 at reference po-

sitions were extracted. For joint 2, the point 𝑞2
† = 0 was chosen. 

These values were substituted into equation (73) to estimate the 
friction torque as a function of speed. To determine the coefficients, 
MATLAB’s Curve Fitter toolbox was used to fit the analytical model 
to the experimental data. Fig. 9 shows the comparison between 

measured and estimated friction torques for joint 2 at 𝑞2
† = 0, lim-

ited to the 0 − 0.15 𝑟𝑎𝑑/𝑠 range to emphasize the Stribeck ef-
fect. 

 
Fig. 9. Experimental and estimated friction torque values for joint 2 

The experiment was repeated for all six joints of the IRB 2400 
robot. The resulting friction parameters are summarized in Tab. 5. 

Tab. 5. Friction model parameters for each joint 

Joint FS [Nm] FC [Nm] Fv [Nms/rad] ωSt [rad/s] 

1 36.3 24.2 11.85 0.0085 

2 39.2 31.2 8.323 0.0031 

3 25.3 16.9 9.3613 0.0094 

4 19.2 7.9 7.1228 0.0175 

5 39.7 13.7 7.2654 0.0176 

6 17.5 8.8 2.323 0.0162 

To validate the agreement between the robot model and the 
real system, the inverse dynamics problem was solved using mo-
tion data recorded from the physical robot. The computed actuator 
torques were then compared with measured values. Fig. 10 and 
Fig. 11 present the angular positions and velocities for all six joints 
used as simulation inputs. Fig. 12 shows the comparison of mod-
elled and measured torques. 
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Fig. 10. Inputs for simulation – joint angles and velocities  
(joints 1-3) 

  

  

  

Fig. 11. Inputs for simulation – joint angles and velocities  
(joints 4-6) 

 

   

  

Fig. 12. Modelled vs. real actuator torques for joints 1–6 

To evaluate model accuracy, three metrics were used: 

− Mean Absolute Error (MAE): 

MAE =
1

𝑁
∑ |𝑢𝑚𝑜𝑑𝑒𝑙,𝑖 − 𝑢𝑟𝑒𝑎𝑙,𝑖|
𝑁
𝑖=1   (75) 

− Root Mean Square Error (RMSE): 

RMSE = √
1

𝑁
∑ (𝑢𝑚𝑜𝑑𝑒𝑙,𝑖 − 𝑢𝑟𝑒𝑎𝑙,𝑖)

2𝑁
𝑖=1   (76) 

− Percentage RMSE relative to average torque: 

RMSE AVG⁄ [%] =
𝑅𝑀𝑆𝐸

1

𝑁
∑ |𝑢𝑟𝑒𝑎𝑙,𝑖|
𝑁
𝑖=1

∙ 100%  (77) 

where 𝑢𝑟𝑒𝑎𝑙,𝑖 is the real actuator torque, and 𝑢𝑚𝑜𝑑𝑒𝑙,𝑖 is the simu-

lated torque. 

Tab. 6. Accuracy indicators for each joint 

Joint 𝑴𝑨𝑬  

(𝑵𝒎) 

𝑹𝑴𝑺𝑬  

(𝑵𝒎) 

𝑨𝑽𝑮(𝒖𝒓𝒆𝒂𝒍) 

 (𝑵𝒎) 

𝑹𝑴𝑺𝑬/𝑨𝑽𝑮 [%] 

1 3.16 4.08 35.13 11.61 

2 8.52 10.89 319.60 3.41 

3 2.9 3.79 102.91 3.69 

4 0.73 1.17 13.69 8.56 

5 0.58 0.78 10.03 7.80 

6 0.64 0.81 8.96 9.06 

The analysis of the obtained results confirms a good agreement 
between the model predictions and the measurements recorded on 
the real system. Notably, the Mean Absolute Error (MAE) and Root 
Mean Square Error (RMSE) indicators for joints 2 and 3 represent 
approximately 3.5% of the average driving torque (Tab. 6). This 
suggests that the model provides a very accurate representation of 
the driving torque dynamics for these joints. In the case of joints 4, 
5, and 6, although the absolute values of MAE and RMSE are rel-
atively low, the RMSE/AVG index ranges between 7.8% and 
9.06%, indicating a slightly less accurate, yet still satisfactory, 
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model performance. This is confirmed by the comparative plots pre-
sented in Fig. 12b and Fig. 12c. The highest modelling error is ob-
served for joint 1, where the RMSE/AVG index reaches 11.61%. As 
shown in Fig. 12a, the driving torque response for this joint exhibits 
oscillations and a slower stabilization compared to the model pre-
diction. For the remaining joints, the RMSE/AVG index does not 
exceed 10%, and the plotted responses indicate that the model 
captures the torque dynamics with satisfactory accuracy. 

8. CONCLUSIONS 

This paper presents a comprehensive approach to modelling 
an industrial robot, using the ABB IRB 2400 as an example. The 
developed kinematic model, based on the Denavit-Hartenberg 
method, enabled precise determination of transformations between 
consecutive links of the robot and facilitated the computation of the 
Jacobian matrix, which is essential for analysing the end-effector’s 
velocity and task-space forces. While the classical and modified 
Denavit-Hartenberg formulations are kinematically equivalent, the 
MDH parametrisation adopted here aligns with the controller’s na-
tive frame conventions, avoids artificial zero link lengths and ad hoc 
offsets, and yields better-conditioned Jacobians around the spher-
ical wrist, which in our toolchain translates into faster evaluation of 
forward kinematics and Jacobians. More importantly, the presented 
framework goes beyond motion-only simulation by explicitly model-
ling gravity, Coriolis/centrifugal effects and an identified Stribeck-
enhanced friction law. As a result, it predicts joint torques and end-
effector wrenches with accuracy sufficient for real-time use, ex-
poses the impact of singular configurations through the Jacobian 
and its conditioning, and enables assessments that kinematics-only 
tools cannot provide. 

In the dynamic modelling process, two methodologies were em-
ployed: the Euler-Lagrange method and the Newton-Euler method. 
This dual approach allowed for the derivation of two equivalent 
equations of motion, effectively reducing the risk of modelling er-
rors. Subsequently, the physical parameters of the model (masses, 
moments of inertia, and friction coefficients) were identified, and the 
model was validated in a simulation environment. The verification 
relied on controller-reported actuator torques streamed via EGM at 
250 Hz; these values are computed by the internal model of the 
IRC5 controller and their absolute accuracy is not disclosed by the 
manufacturer. This limitation was mitigated by cross-checking 
trends against CAD-consistent gravity loads and by using two inde-
pendent dynamic derivations (Euler–Lagrange and Newton–Euler), 
which reduced the risk of algebraic inconsistencies and improved 
numerical robustness. The resulting model already enables feed-
forward torque compensation and singularity-aware path planning 
for robotic machining, feasibility checks and peak-load prediction in 
digital-twin workflows, including large-scale additive processes, 
and rapid what-if studies on process parameters without hardware 
modification. 

The comparison of simulation results with reference data 
showed sufficient agreement, confirming the correctness of the de-
veloped dynamic model. The obtained model can be confidently 
used for further studies. It serves as a foundation for developing a 
digital twin of the robot, which can be employed in simulation-based 
testing of advanced control algorithms. In the future, the model can 
also be extended to incorporate phenomena related to joint compli-
ance, enabling more accurate analysis of the robot’s interaction 
with its environment.  
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