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Abstract: The main objective of the work is to present a new formulation of the boundary element method (BEM) for the analysis 
of  dynamically loaded composites reinforced with straight, thin, and perfectly rigid fibers. The matrix is assumed to be homogeneous, 
isotropic, and linear-elastic. A perfect connection between the fibers and the matrix is assumed. The time-dependent problem is solved using 
the Laplace transform method. In this original approach, contrary to the finite element method (FEM), only external boundaries of  plates and 
fibers are divided into boundary elements. Because only the boundaries are discretized, it is very easy to modify the length and distribution 
of the fibers. The proposed method was applied to the analysis of displacements of composites reinforced with carbon nanotubes (CNTs) 
subjected to impact loads. Three numerical examples of composites with single- and multiple-nanotubes are analyzed. For each plate, two 
different boundary conditions are imposed. The displacements computed by the BEM and FEM are compared, demonstrating the high 
accuracy of the method. Analysis of the influence of the number of boundary elements on the accuracy of  the  solution demonstrates a fast 
convergence of the method. The examples show the influence of boundary conditions, the influence of  load variability in time, the distribution 
of nanotubes, and their length on displacements. For the assumed reinforcement, a significant reduction in displacements was obtained. 
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1. INTRODUCTION 

Nanocomposite materials reinforced with carbon nanotubes 
are now widely used in engineering due to their exceptional 
physical properties [1-4]. Carbon nanotubes can be divided into 
single-walled nanotubes (SWNT), which typically have a diameter 
of 0.8 to 2 nm, and multi-walled nanotubes (MWNT), which have 
a  diameter of 5 to 20 nm. Carbon nanotubes can vary in length 
from less than 100 nm to several centimeters, and their ends can 
be open or closed. CNTs are characterized by a high stiffness 
modulus of approximately 1000 GPa, tensile strength of 100 GPa, 
and low density [5]. They are highly resistant to large bending 
deformations and return to their original shape without damage. 
The high aspect ratio of CNTs and the large interfacial area result 
in effective load transfer from the matrix to the nanotubes. The  use 
of fibers in a composite with a stiffness greater than that of the 
matrix increases the stiffness and strength of the material [6-8]. The 
interaction between the matrix and the nanotubes increases the 
damping of the material. Nanocomposites can absorb mechanical 
energy. Inclusion of nanotubes increases fatigue strength and 
fracture resistance. In addition to their excellent mechanical 
properties, nanocomposites are characterized by good thermal 
conductivity, stability, and  resistance to heat and environmental 
factors. They also have the property of shielding and absorbing 
electromagnetic waves. 

The exceptional mechanical, thermal, and electrical properties 
mentioned above have led to the use of nanotube-reinforced 
polymers in the automotive industry for the production of exhaust 
system components, catalytic converters, suspension and braking 
systems, engines, and body parts. Another area of application 

is  aviation. Nanocomposites are used as components of wings and 
fuselages. A new area of application is sports equipment, e.g., 
badminton and tennis rackets, baseball bats, bicycle frames, etc. 
Carbon nanotubes are used to reinforce composites used in   wind 
turbine blades and hulls of maritime boats [5][9-11]. In  many of the 
applications mentioned, nanocomposites are dynamically loaded. 

Efficient analysis of displacement, strain, and stress fields 
in  dynamically loaded composites containing a large number 
of  fibers requires the use of experimental or computer methods. 
Richardson and Wisheart [12] showed a review of the definitions 
of  low-velocity impact and modes of failure of composites (matrix 
and fiber failures, delamination, and penetration). The influence 
of  the composites constituents on impact response and post-
impact residual strength was analyzed. Liu et al. [13] analyzed 
orthotropic birefringent composites subjected to impact loading 
using photoelasticity, strain measurement, and the time-domain 
boundary element method to calculate dynamic material constants, 
stress-fringe values, and to verify the stress-optic law. Different 
directions of the material axes with respect to the applied uniaxial 
and biaxial loading were considered. Residual stresses were taken 
into account. Malekzadeh and Zarei [14] analyzed the  natural 
frequencies of quadrilateral laminated plates reinforced with carbon 
nanotubes. The composite material was homogenized using the 
extended rule of mixture. The governing equations based on the 
first-order shear deformation theory of  plates were transformed 
from an arbitrary physical quadrilateral domain to a computational 
square domain. The  spatial derivatives in the equations were 
discretized using the differential quadrature method (DQM). They 
studied the  convergence of the DQM method, the influence 
of  the  geometry of the plate, the orientation of layers, 
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the  distribution of nanotubes, and the support conditions 
on  natural frequencies. Phung-Van et al. [15] applied isogeometric 
analysis (IGA) based on non-uniform b-splines (NURBS) and 
higher-order shear deformation theory to analyze static and 
transient deflections, natural frequencies and mode shapes of 
rectangular and circular functionally graded carbon nanotube-
reinforced plates. The plate material was homogenized using the 
rule of mixtures. They analyzed the influence of  the  parameters of 
the IGA method, the geometry of the plates, the distribution of the 
nanotubes, the support conditions, and  the  time variation of the 
loads on the response of plates. Rasoolpoor et al. [16] presented 
the analysis using the finite element method of a hybrid polymer 
composite reinforced by  carbon fibers and carbon nanotubes 
subjected to low velocity impact. The influence of microstructure 
and dimension of  composite, support and impact conditions, 
number of finite elements, on time variations of dynamic contact 
forces and  deflections of the plates was studied. Tarkashvand et 
al. [17] presented an analytical method to analyze a complex 
problem of  the vibroacoustic response of the CNT-reinforced 
composite shell. The structure was resting on an elastic foundation 
and was submerged in a moving fluid, thermally loaded, and excited 
by  an  acoustic plane wave. They studied the influence 
of  parameters such as elastic foundation, temperature gradient, 
CNT distribution, and Mach number. 

An important issue is the accurate modeling and analysis 
of  single carbon nanotubes. Tserpes and Papanikos [18] 
presented a three-dimensional finite element model for single-
walled carbon nanotubes. The parameters of the beams were 
determined by comparing the energies calculated using molecular 
mechanics and continuum mechanics. The influence of wall 
thickness, diameter, and chirality of nanotubes on elastic moduli 
was investigated. Li and Chou [19] presented single-walled carbon 
nanotubes subjected to harmonic waves. The velocities 
of  the  longitudinal, transverse, and torsional waves were 
calculated using the molecular mechanics and mode superposition 
method. They analyzed the influence of nanotube diameter, 
chirality, and wave frequency on wave propagation. Sakhaee-Pour 
et al. [20] modeled single-walled carbon nanotubes using three-
dimensional elastic frames and concentrated masses. The 
atomistic finite element method was used to calculate natural 
frequencies and mode shapes for zigzag and armchair 
configurations, different diameters, lengths of nanotubes, 
and  boundary conditions. The results were approximated using 
a  predictive equation. Khalili and Haghbin [21] modeled single-
walled carbon nanotubes embedded in a polymeric matrix 
as  space frames using FEM. The geometrical and elastic 
properties of the beam elements were obtained by comparing 
the  potential energy in molecular mechanics with the strain energy 
in structural mechanics. The influence of the volume fraction, 
diameter, and chirality of the nanotubes on axial strains and the 
strain energy density of nanocomposites subjected to  impact 
tensile loads was studied. 

Usually, nanocomposites are modeled using computer 
methods to calculate the effective mechanical properties 
by  considering a representative volume element (RVE). 
Thostenson and Chou [22] derived the equation for the effective 
elastic properties of polystyrene composites reinforced with multi-
walled aligned carbon nanotubes. They experimentally measured 
geometric parameters of nanotubes: diameter, length, orientation, 
and mechanical properties to calculate effective properties 
of  nanocomposites. Tsai et al. [23] modeled CNT/polyimide 
nanocomposites as cylindrical solids. The elastic properties were 

calculated using molecular dynamics in conjunction 
with  the  energy equivalence concept. The atomistic interaction 
between the CNTs and the polyimide polymer matrix was modeled 
as an effective interphase. The micromechanical properties in the 
longitudinal and transverse directions of  the  nanocomposites were 
compared with the results obtained by the Mori-Tanaka model and 
by the molecular dynamics. Tserpes and Chanteli [24] evaluated 
the effective properties of  multi-walled carbon nanotube reinforced 
polymer composites using a three-dimensional FEM model of RVE. 
The influence of  the properties of the nanotube material, the aspect 
ratio, volume fractions, interface thickness, and stiffness was 
analyzed. The results on the microscale were used to predict the 
tensile modulus of the composite with randomly aligned nanotubes. 

The  numerical results were compared with the experimental data 

presented in the literature. Chwał and Muc [25] used FEM 
and  an  RVE to investigate the effect of the distribution of parallel 
single-walled carbon nanotubes on the equivalent elastic properties 
of a polymer matrix composite with nanotubes. The  results 
obtained for the transversely isotropic model of  the  composite 
were compared with those obtained by  micromechanical analytical 
methods. 

If the stiffness of the fibers is much higher than that 
of  the  matrix, then the modeling of the composite can be simplified 
by assuming that the fibers are perfectly stiff. Pingle et  al. [26] used 
the duality principle to analyze stresses in  the  vicinity of rigid line 
inclusions and the compliance of  the  composite. Pike and Oskay 
[27] presented the application of the extended finite element 
method (XFEM) with a new enrichment function for two-
dimensional models of composites with random short and rigid 
fibers. The motion of the rigid fiber was modeled by constraining 
the displacement field along the  fibers. The method was used to 
study the influence of  the  weight fraction of fibers on the effective 
Young modulus. 

The boundary element method is a general computer method 
that has also found application in nanocomposite mechanics. Liu  et 
al. [28] used the fast multipole boundary element method (FMBEM) 
to analyze the effective elastic properties of carbon nanotube 
reinforced composites. The composites were modeled as  three-
dimensional structures containing a very large number of  rigid 
fibers. The perfect connection between the rigid fibers and  the 
elastic matrix was assumed. The stress distributions at  the fiber-
matrix interfaces and the influence of the volume fraction of fibers 
on effective Young’s modulus were studied and  compared with the 
available results reported in the literature. Wang and Yao [29] used 
rigid-fiber-based FMBEM to analyze the  interfacial debonding 
process and the strength of nanotube-reinforced composites. It was 
assumed to fail when the shear stress reached a limiting value. The 
solution was obtained using an incremental procedure. The effects 
of aspect ratio, volume fraction, and number of nanotubes in the 
RVE on  the  detachment areas, nonlinear stress-strain curve, 
and  effective Young's modulus were investigated. Yao et al. [30] 
used the FMBEM to analyze carbon nanotube composites. They 
assumed that fibers are subdomains having identical geometrical 
and physical properties. The effects of the aspect ratio 
of  the  fibers, the number of fibers, the volume fraction, and also 
the elastic interfacial conditions or the additional interfacial layer 
between the deformable fibers and the matrix on the effective 
Young modulus were investigated. 

Fedeliński and Górski [31] applied the coupled finite element 
and boundary element method to analyze and optimize statically 
and dynamically loaded plates reinforced by deformable stiffeners. 
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The plates were modeled using the dual reciprocity BEM 
and  the  reinforcement by the FEM. The aim of optimization was to 
maximize the stiffness and strength of the composites by  changing 
the lengths and locations of the stiffeners. The  optimal design 
problem was solved using the evolutionary algorithm. The same 
approach was used by Fedeliński and Górski [32] to maximize the 
stiffness of statically loaded nanocomposites with single and two-
layer platelet-like particles by changing the  distribution of 
inclusions. Fedeliński [33] used the BEM to  analyze plates 
containing cracks and reinforced with thin, straight, and rigid fibers. 
The influence of the position of the rigid fibers on the effective 
properties of the composites and  on  the  crack stress intensity 
factors was investigated. The  same approach was used by 
Fedeliński [34] to analyze the  effective elastic properties of 
composites with randomly distributed thin, parallel, and inclined 
rigid fibers. 

The aim of this work is to present the formulation 
and  applications of the BEM in the analysis of carbon nanotube-
reinforced composites modeled as linear-elastic plates with rigid, 
thin, and straight nanotubes under impact loads. The perfect 
connection between the nanotubes and a deformable matrix 
is  assumed. This work is an extension of the previous research 
by  the author on statically loaded composites [33-34]. 
The  boundary integral equations formulated in the domain 
of  Laplace transforms are used to determine the relationship 
between the time-dependent tractions acting on the matrix 
and  nanotubes and their displacements. In order to analyze 
the  problem using the BEM, the boundaries of the plate 
and  nanotubes are divided into boundary elements. Boundary 
integral equations are used for the nodes on the boundaries 
of  the  plate and nanotubes. The standard system of boundary 
integral equations is extended by equations of motion 
of  nanotubes. The solution in the time domain is obtained 
using  the numerical inversion Durbin method [35], which has 
recently been used in several works. Zhang et al. [36] analyzed 
a  beam loaded with a moving load. The effect of load velocity 

and  beam damping on its displacement was investigated. Bakhtiari 

et al. [37] analyzed wave propagation caused by  an  impulsive load 
in two coaxial cylinders made of different materials filled with fluid 
between them. They studied the  influence of material properties 
and inner cylinder dimensions on stresses in the outer cylinder. 

The literature review shows that carbon nanotube-reinforced 
composites have been analyzed using various computational 
methods, including the finite element method [16], extended finite 
element method [27], differential quadrature method [14], 
isogeometric analysis [15], and others. These methods require 
discretization and interpolation of mechanical quantities 
over  the  whole composite domain. The boundary element method 
allows for the analysis of carbon nanotube-reinforced composites 
by dividing only the external surfaces and nanotubes into boundary 
elements and interpolating mechanical quantities only along these 
surfaces. This makes it very easy to change the  position, 
dimensions, and discretization  of nanotubes and  external 
surfaces. Since mechanical quantities are interpolated only along 
the boundaries, BEM can give accurate results, especially in the 
case of large stress variations that occur in composites. In the DQM 
[14] and IGA [15] methods, the  composite material is replaced by 
an equivalent homogeneous material. In the presented formulation 
of BEM, each nanotube is modeled, which allows for a detailed 
analysis of  the displacements of the nanocomposite. To the 
author's knowledge, BEM has only been used to model 
nanocomposites with rigid fibers that were statically loaded. The 

overview of  modern applications of nanocomposites at the 
beginning of  the  chapter shows that many of these materials are 
dynamically loaded. The original achievement of this work is 
the  presentation of the BEM formulation for dynamically loaded 
nanocomposites and the investigation of the accuracy 
of  the  method. Computer software has been developed 
by  the  author that uses the method formulated for dynamically 
loaded nanocomposites. 

The present work shows boundary integral equations 
in  the  Laplace domain for a composite with nanotubes, equations 
of motion of a nanotube, and numerical implementation 
of  the  method. The displacements computed by the BEM 
are  compared with the FEM solutions, showing very good 
agreement. The influence of the number of carbon nanotubes, their 
configuration, and length on displacements is studied. 

2. BOUNDARY INTEGRAL FORMULATION FOR CARBON 
NANOTUBE-REINFORCED COMPOSITES SUBJECTED  
TO DYNAMIC LOADS 

In the present chapter, boundary integral equations 
for  dynamically loaded carbon nanotube-reinforced composites 
are presented. Initially, only a matrix without nanotubes 
is  considered. The matrix is assumed to be homogeneous, 

isotropic, and linear elastic. The external boundary  of the matrix 

is  loaded by time-dependent tractions tj, and the domain  
by  body forces fj. The initial conditions at time t=0 are: the initial 

displacements 𝒖𝒋 = 𝟎 and the initial velocities 𝒖̇𝒋 = 𝟎 The dot 

over  the variable denotes the derivative with respect to time. 
The  relationship between displacements uj, boundary tractions tj, 
and body forces fj can be expressed by the boundary integral 
equation formulated in the time-domain [38]: 

𝑐𝑖𝑗(𝑥′)𝑢𝑗(𝑥′, 𝑡) + ∫[∫ 𝑇𝑖𝑗(𝑥′, 𝑥, 𝑡 − 𝜏)𝑢𝑗(𝑥, 𝜏)𝑑𝜏]
𝑡

0𝛤

𝑑𝛤 = 

∫[∫ 𝑈𝑖𝑗(𝑥′, 𝑥, 𝑡 − 𝜏)𝑡𝑗(𝑥, 𝜏)𝑑𝜏]
𝑡

0𝛤

𝑑𝛤 

+ ∫ [∫ 𝑈𝑖𝑗(𝑥′, 𝑥, 𝑡 − 𝜏)𝑓𝑗(𝑥, 𝜏)𝑑𝜏]
𝑡

0𝛺
𝑑𝛺 ,                                    (1) 

where x’ is the point of collocation, for which the equation 

is  applied, x is the point of integration, t is the current time and  
is the integration time, cij is a constant, which depends 

on  the  position of the point x’, Uij and Tij are the fundamental 
solutions of elastodynamics [38]. Contrary to static problems, 

the  equation requires integration not only along the boundary  

and the domain , but also over time from the initial time t=0 
to  the current time t. For two-dimensional problems, the indices 

have values i, j=1, 2. 
Eq. (1) can be solved using the time-stepping technique 

or  the  integral transform method. In the present work Eq. (1) 
is  transformed using the Laplace integral transform, defined as: 

𝐿[𝑓(𝑥, 𝜏)] = 𝑓̄(𝑥, 𝑠) = ∫ 𝑓(𝑥, 𝜏)𝑒−𝑠𝜏𝑑𝜏
∞

0
,                            (2) 

where f(x,) is a function, 𝒇̄(𝒙, 𝒔) is its transform and  s  is  the 
Laplace transform parameter. 

After the transformation, Eq. (1) has the form [39]: 

𝑐𝑖𝑗(𝑥′)𝑢̄𝑗(𝑥′, 𝑠) + ∫𝑇̄𝑖𝑗(𝑥′, 𝑥, 𝑠)𝑢̄𝑗(𝑥, 𝑠)
𝛤

𝑑𝛤 = 

∫ 𝑈̄𝑖𝑗(𝑥′, 𝑥, 𝑠)𝑡̄𝑗(𝑥, 𝑠)
𝛤

𝑑𝛤 + ∫ 𝑈̄𝑖𝑗(𝑥′, 𝑥, 𝑠)𝑓̄𝑗(𝑥, 𝑠)
𝛺

𝑑𝛺        (3) 
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where 𝑢̄𝑗(𝑥, 𝑠), 𝑡̄𝑗(𝑥, 𝑠), and 𝑓̄𝑗(𝑥, 𝑠) are the Laplace transform 

of displacements, tractions, and body forces, 𝑈̄𝑖𝑗(𝑥′, 𝑥, 𝑠) and 

𝑇̄𝑖𝑗(𝑥′, 𝑥, 𝑠) are the Laplace transform of  fundamental solutions of 

elastodynamics. 

 

Fig. 1. Matrix reinforced by thin, straight, and rigid nanotubes 

Let us now consider the matrix reinforced by carbon nanotubes, 
shown in Fig. 1. The mechanical properties of  nanocomposite 
components have been presented in many papers. For example, 
Thostenson and Chou [22] reported that  the  most commonly 
recorded diameter of carbon nanotubes is 18 and 30 nm, their 
length ranges from 500 to 2000 nm, their average density is 1900 
kg/m³, and their Young's modulus is 1000 GPa. In contrast, 
polystyrene, which is the matrix, has a Young modulus of 2.4 GPa 
and a density of 1000 kg/m³. In the work of  Rasoolpoor et al. [16], 
it is stated that Young's modulus of  carbon nanotubes is 1382.5 
GPa, their density is 1300 kg/m3, and the length-to-diameter ratio 
is 100. In contrast, polyamide, which is the matrix, has a Young's 
modulus of 4.2 GPa and  a  density of 1310 kg/m3. Because the 
stiffness of the carbon nanotubes is much greater than that of the 
matrix, it is assumed that they are perfectly stiff. The aspect ratio of 
the nanotube dimensions is usually high. In the present approach, 
they are treated as thin, straight, and perfectly connected to the 
matrix. The interaction forces occur between the matrix 
and  the  nanotubes because the matrix deforms 

and  the  nanotubes are subjected to inertial forces. The  interaction 

forces can be regarded as internal forces fj, shown in Eq. (1), acting 
on the matrix and distributed only along the nanotubes. Eq. (3) for 
the matrix loaded by external boundary tractions and the interaction 
forces have the following form: 

 𝑐𝑖𝑗(𝑥′)𝑢̄𝑗(𝑥′, 𝑠) + ∫𝑇̄𝑖𝑗(𝑥′, 𝑥, 𝑠)𝑢̄𝑗(𝑥, 𝑠)𝑑𝛤
𝛤

= 

∫ 𝑈̄𝑖𝑗(𝑥′, 𝑥, 𝑠)𝑡̄𝑗(𝑥, 𝑠)𝑑𝛤
𝛤

+ ∑ ∫ 𝑈̄𝑖𝑗(𝑥′, 𝑥, 𝑠)𝑡̄𝑗
𝑛(𝑥, 𝑠)𝑑𝛤𝑛𝛤𝑛

𝑁
𝑛=1             

(4) 

where N is the number of nanotubes, n is the nanotube line and 
tjn are the tractions that act on the matrix along the nanotube. 

The proposed method will be applied to simple cases 
of  external load variability over time, e.g. impact load, rectangular 
impulse, ramp load, triangular impulse, etc. For this type of load, 
Laplace transforms can be calculated analytically. 

3. DISPLACEMENTS AND EQUATIONS OF MOTION  
FOR THIN, STRAIGHT, AND RIGID NANOTUBES 

The nanotubes change their position and direction 
in  a  dynamically loaded nanocomposite, as shown in Fig. 2. It is 

assumed that the nanotube is thin, straight, and rigid, 
and  the  angle of rotation is small. In this case, the components 
of  displacements ui of the an arbitrary point x of the nanotube are: 

𝑢1(𝑥, 𝑡) = 𝑢1(𝑥𝑐 , 𝑡) − 𝜑(𝑡)𝑟(𝑥) 𝑠𝑖𝑛 𝛼,                                (5) 

𝑢2(𝑥, 𝑡) = 𝑢2(𝑥𝑐 , 𝑡) + 𝜑(𝑡)𝑟(𝑥) 𝑐𝑜𝑠 𝛼,                                (6) 

where xc is the center of the nanotube, r is the distance between 

the points x and xc,  is the initial angle between the  nanotube and 

the axis x1 of the global coordinate system,   is the rotation angle. 

 
Fig. 2. Displacements of the nanotube (dashed line – initial orientation  

 of the nanotube) 

The equations of the motion of the center of the nanotube n 
have the following forms: 

𝑢̈1(𝑥𝑐 , 𝑡)𝑚𝑛 = ∫ 𝑡1
𝑛(𝑥, 𝑡)𝑑𝛤𝑛𝛤𝑛

,                                              (7) 

𝑢̈2(𝑥𝑐 , 𝑡)𝑚𝑛 = ∫ 𝑡2
𝑛(𝑥, 𝑡)𝑑𝛤𝑛𝛤𝑛

,                                              (8) 

𝜑̈(𝑥𝑐 , 𝑡)𝐼𝑛 = ∫ [−𝑡1
𝑛(𝑥, 𝑡) 𝑠𝑖𝑛 𝛼 + 𝑡2

𝑛(𝑥, 𝑡) 𝑐𝑜𝑠 𝛼]𝑟(𝑥)𝑑𝛤𝑛𝛤𝑛
,              

(9) 

where mn and In are the nanotube mass and the moment of  inertia 
with respect to the nanotube center, respectively, tjn are the traction 
acting on the nanotube, as shown in Fig. 3. 

 
Fig. 3. Distribution of tractions along the nanotube 

The Laplace transforms of Eqs. (7), (8) and (9) are: 

𝑠2𝑢̄1(𝑥𝑐 , 𝑠)𝑚𝑛 = ∫ 𝑡̄1
𝑛(𝑥, 𝑠)𝑑𝛤𝑛𝛤𝑛

,                              (10) 
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𝑠2𝑢̄2(𝑥𝑐 , 𝑠)𝑚𝑛 = ∫ 𝑡̄2
𝑛(𝑥, 𝑠)𝑑𝛤𝑛𝛤𝑛

,                              (11) 

𝑠2𝜑̄(𝑥𝑐 , 𝑠)𝐼𝑛 = ∫ [−𝑡̄1
𝑛(𝑥, 𝑠) 𝑠𝑖𝑛 𝛼 +

𝛤𝑛

𝑡̄2
𝑛(𝑥, 𝑠) 𝑐𝑜𝑠 𝛼]𝑟(𝑥)𝑑𝛤𝑛                                                         (12) 

4. BOUNDARY ELEMENT FORMULATION FOR  
A COMPOSITE REINFORCED BY CARBON NANOTUBES 

 
Fig. 4. Division of the external boundary and nanotubes into boundary   

elements 

 

In the present boundary element formulation, only external 
boundaries and each nanotube are divided into boundary elements, 
as shown in Fig. 4. As in the standard BEM formulation, the 
coordinates of points, displacements, and tractions along 
the  external boundaries are interpolated using nodal values 
and  shape functions. The same interpolation is used 
for  interaction tractions along the nanotubes. Because 
the  nanotubes are thin, straight, and rigid, the coordinates of their 
points can be calculated exactly, and the displacements can be 
calculated using Eq. (5) and (6). The boundary elements have three 
nodes, and quadratic shape functions are applied for  interpolation. 

The interpolated quantities are substituted into the boundary 
integral Eq. (4). The collocation points x’ are all nodes. After 
the  discretization, Eq. (4) expresses the relationship between 
nodal tractions and displacements. The boundary elements are 
transformed from the global coordinate system to the local 
coordinate system, and the integrals are calculated numerically 
using the Gaussian quadrature. The system of equations for all 
nodes can be written in matrix form as in the standard BEM 
formulation: 

[
𝐻𝑒𝑒 0
𝐻𝑖𝑒 𝐼𝑖𝑖

] [
𝑢𝑒

𝑢𝑖
] = [

𝐺𝑒𝑒 𝐺𝑒𝑖

𝐺𝑖𝑒 𝐺𝑖𝑖
] [

𝑡𝑒

𝑡𝑖
],                                       (13) 

where index e denotes the nodes on the external boundaries and 
index i denotes the internal nodes. The submatrices H and G are 
standard BEM matrices, which depend on the boundary integrals 
of fundamental solutions, shape functions, and  Jacobians [38]. The 
submatrix Iii is the unit matrix. 

The dimensions of the submatrices are as follows: 

𝑢𝑒 = [𝑢𝑒 𝑎𝑏],   𝑎 = 1,2, . . . , 𝑀 × 4,   𝑏 = 1, 

𝑡𝑒 = [𝑡𝑒 𝑎𝑏],   𝑎 = 1,2, . . . , 𝑀 × 6,   𝑏 = 1, 

𝐻𝑒𝑒 = [𝐻𝑒𝑒 𝑎𝑏],   𝑎 = 1,2, . . . , 𝑀 × 4,   𝑏 = 1,2, . . . , 𝑀 × 4, 

,
 

𝐺𝑒𝑒 = [𝐺𝑒𝑒 𝑎𝑏],   𝑎 = 1,2, . . . , 𝑀 × 4,   𝑏 = 1,2, . . . , 𝑀 × 6, 

𝐺𝑖𝑒 = [𝐺𝑖𝑒 𝑎𝑏],   𝑎 = 1,2, . . . , 𝑁 × 𝐿 × 2,   𝑏 = 1,2, . . . , 𝑀 ×
6, 

𝐺𝑒𝑖 = [𝐺𝑒𝑖 𝑎𝑏],   𝑎 = 1,2, . . . , 𝑀 × 4,   𝑏 = 1,2, . . . , 𝑁 × 𝐿 ×
2, 

𝐺𝑖𝑖 = [𝐺𝑖𝑖 𝑎𝑏],   𝑎 = 1,2, . . . , 𝑁 × 𝐿 × 2,   𝑏 = 1,2, . . . , 𝑁 ×
𝐿 × 2, 

𝐼𝑖𝑖 = [𝐼𝑖𝑖 𝑎𝑏],   𝑎 = 1,2, . . . , 𝑁 × 𝐿 × 2,   𝑏 = 1,2, . . . , 𝑁 ×
𝐿 × 2, 

where a and b are the numbers of rows and columns, M  is  the 
number of elements on the external boundaries, L is  the  number 
of nodes along the single nanotube (it is assumed that the number 
of nodes along each nanotube is the same), as  shown in Fig. 4. 
The tractions on the external boundaries can be discontinuous and 
the interaction forces between the  nanotubes and the matrix are 
continuous. 

The displacements of the internal nodes, which belong 
to  nanotubes, are expressed by the displacements of their centers 
using Eqs. (5) and (6). The equations for transformed 
displacements of all nanotube nodes can be written in matrix form: 

𝑢𝑖=A𝑖𝑐𝑢𝑐,                                                                                 (14) 

where the matrix ui contains the transformed displacement 
components of the nanotube nodes, the matrix uc contains 
the  transformed displacement components of the nanotube 
centers, and the matrix Aic depends on the coordinates 
of  the  nodes. The dimensions of the matrices are as follows: 

𝑢𝑖 = [𝑢𝑖 𝑎𝑏],   𝑎 = 1,2, . . . , 𝑁 × 𝐿 × 2,   𝑏 = 1, 

𝑢𝑐 = [𝑢𝑐 𝑎𝑏],   𝑎 = 1,2, . . . , 𝑁 × 3,   𝑏 = 1, 

𝐴𝑖𝑐 = [𝐴𝑖𝑐 𝑎𝑏
],   𝑎 = 1,2, … , 𝑁 × 𝐿 × 2,   𝑏 = 1,2, … , 

𝑁 × 3. 

The equations of motions (Eqs. (10), (11) and (12)) 
for  nanotube centers can be expressed in the matrix form: 

𝑀𝑐𝑐𝑢𝑐 = -B𝑐𝑖𝑡𝑖,                                                                       (15) 

where the matrix Mcc depends on the masses and moments of the 
inertia of the nanotubes and the Laplace parameter, the  matrix Bci 

depends on the coordinates of nanotube nodes, and the matrix ti 
contains the nodal values of the nanotube transformed traction 
components acting on the matrix. The  components of the tractions 
that act on the nanotube have the  opposite sign. Because the 
nanotubes are straight, the matrix Bci can be calculated analytically 
by integration of expressions in  Eqs. (10), (11) and (12). 

The dimensions of the matrices are as follows: 

𝑡𝑖 = [𝑡𝑖 𝑎𝑏],   𝑎 = 1,2, . . . , 𝑁 × 𝐿 × 2,   𝑏 = 1, 

𝑀𝑐𝑐 = [𝑀𝑐𝑐 𝑎𝑏
],   𝑎 = 1,2, . . . , 𝑁 × 3,   𝑏 = 1,2, . . . , 𝑁 × 3, 

𝐵𝑐𝑖 = [𝐵𝑐𝑖 𝑎𝑏
],   𝑎 = 1,2, … , 𝑁 × 3,   𝑏 = 1,2, … , 𝑁 × 

𝐿 × 2. 

The displacements of the internal nodes in Eq. (13) are 
expressed by Eq. (14). The matrix Eq. (13) is additionally extended 
by the equation of motion of nanotubes (15) giving: 

[

𝐻𝑒𝑒 0
𝐻𝑖𝑒 𝐴𝑖𝑐

0 𝑀𝑐𝑐

] [
𝑢𝑒

𝑢𝑐
] = [

𝐺𝑒𝑒 𝐺𝑒𝑖

𝐺𝑖𝑒 𝐺𝑖𝑖

0 −𝐵𝑐𝑖

] [
𝑡𝑒

𝑡𝑖
],                                  (16) [ ], 1,2,..., 2, 1,2,..., 4= =   =  H       ie ie abH a N L b M
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To solve the equation, the submatrices are rearranged. 
After  the modification, the unknown variables are on the left-hand 
side and the known boundary conditions on the right-hand side 
of  the equation. The unknown transformed internal tractions ti and 
the corresponding column are rearranged as follows: 

[

𝐻𝑒𝑒 −𝐺𝑒𝑖 0
𝐻𝑖𝑒 −𝐺𝑖𝑖 𝐴𝑖𝑐

0 𝐵𝑐𝑖 𝑀𝑐𝑐

] [

𝑢𝑒

𝑡𝑖

𝑢𝑐

] = [
𝐺𝑒𝑒

𝐺𝑖𝑒

0

] [𝑡𝑒].                                (17) 

The matrix equation can be solved if the tractions 
on  the  external boundary are known. Usually on one part 
of  the  external boundary the tractions are known, 
and  on  the  remaining part, the displacements are given. In this 
case, the matrices ue, te and the corresponding columns 

of  the  matrices H and G are rearranged, as in the standard BEM 
[38]. The direct solutions of the matrix equation are unknown 
Laplace transforms of external and internal nodal displacements 
and  tractions. The solution in the time-domain is obtained 
using  the Durbin method [35] of the inverse Laplace transform. For 
a complete description of the method, Appendix A provides basic 
information on the Durbin method and the parameters 
recommended for the method.  

In summary, the BEM analysis can be presented in the form 
of  the following flowchart: 

− Division of the external boundary and nanotubes into elements 
(Fig. 4). 

− Loop over the Laplace parameters. 

− Calculation of the Hee, Hie, Gee, Gei, Gie, and Gii submatrices 
(Eq. 13) for collocation points, which are nodes belonging 
to  the external boundary and nanotubes. 

− Calculation of the Aic matrix (Eq. 14) that defines 
the  relationship between the displacements of the nanotube 
centers and the nodes belonging to the nanotubes. 

− Calculation of the Mcc and Bci matrices (Eq. 15) that define 
the  movement of the nanotubes. 

− Formation of the matrix equation of motion of the whole 
nanocomposite (Eq. 16). 

− Rearrangement of the matrix system of equations taking 
into  account the boundary conditions (Eq. 17). 

− Determination of unknown transformed displacements 
and  tractions. 

− If the Laplace parameter number is less than the given final 
value, return to step 2. 

− Calculation of unknown displacements and tractions 
as  functions of time using the Durbin method. 

5. NUMERICAL EXAMPLES 

In this chapter, three numerical examples are considered. 
The  first example, a single nanotube in a rectangular plate, is used 
to verify the convergence of the method and to investigate the 
influence of  the time variability of loading. The second example, 
a  rectangular plate containing 15 parallel nanotubes, shows 
the  influence of the distance between the nanotubes 
on  the  displacements. The third example, a rectangular plate 
containing 13 parallel nanotubes, demonstrates the influence 

of  nanotube length on displacements. The chapter is completed by 

an analysis of the influence of reinforcement on displacements and 
a physical interpretation of the behaviour of nanocomposites. 

The matrix is epoxy resin, which is treated as a linear elastic, 
homogeneous, and isotropic material. The Young modulus 

of  epoxy resin is E=3 GPa, the Poisson ratio is v=0.3, the  density 
ρ=1200 kg/m3 and the plates are under plane stress conditions. 
Because the nanotubes are very thin and the density of carbon 
nanotubes is similar to that of the matrix, the inertia of  nanotubes 
is neglected in the present examples. 

The plates are subjected to two types of boundary conditions, 
which are shown in Fig. 5. In the first case, the plate is supported 
on the roller supports along the lines of symmetry and two edges 
are loaded by the uniformly distributed tractions p in opposite 
directions. In the second case, the left edge of the plate 
is  constrained using roller supports, and the right edge of  the  plate 
is loaded. The load is an impact load with Heaviside time 
dependence (it is suddenly applied at time t=0 and  sustained). The 
displacements of three selected points A, B, and C shown in Fig. 5 
are analyzed. The displacements are normalized with respect to uo, 
which is the displacement of point C of the statically loaded matrix 
without nanotubes. The number of  Laplace parameters used in the 
Durbin method for  the  numerical inverse Laplace transform is 50. 
The  displacements computed by the BEM are compared 
with  the  FEM solutions [40]. In the FEM analyses, the nanotubes 
were modeled as straight, thin and rigid. This modeling method was 
implemented by imposing appropriate constraints on  the  relative 
displacements of the nodes, resulting in a rigid connection between 
the nodes lying along the nanotube. 

 

 
Fig. 5.  Boundary conditions for the plates:  

  a) two-edge loading, b) one-edge loading 

5.1.  Rectangular plate with a single nanotube – influence  
of time variability of loading 

A rectangular plate of length 2b=1.4 μm and height 
of  2c=0.4  μm contains a nanotube of length 2a=1.0 μm, as  shown 
in Fig. 6a. To verify the accuracy, the displacements of  the whole 
plate and the half of the plate are compared. The  half of the plate 
is supported on roller supports along the  horizontal line of 
symmetry and is additionally fixed along the  nanotube, as shown 
in Fig. 6b. The half of the plate is analyzed using the standard BEM 
code. The whole plate is divided into 46 boundary elements, and 
half of the plate into 32 boundary elements, including 10 elements 
for the nanotube. In the FEM, the whole plate is divided into 224 
four-node quadrilateral elements. 
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The components of normalized displacements of selected 
points for two-edge loading are shown in Fig. 7. The solutions are 
compared with the displacement of half of the plate and FEM 
displacements. Very good agreement of the results can be seen 
in  Fig. 7. 

 

 
Fig. 6.  Rectangular plate with a single nanotube –  
            dimensions of the plate: a) whole plate, b) half of the plate 

 
Fig. 7. Rectangular plate with a single nanotube –  

normalized displacements of selected points for two-edge loading 

The components of normalized displacements of selected 
points for one-edge loading are shown in Fig. 8. In this case, 
the  half plate cannot be used for the comparison because 
the  nanotube moves in the horizontal direction. Very good 
agreement of the BEM and FEM results can be seen in Fig. 8. 

The displacements of points on the dynamically loaded edge 
of  reinforced plate in both cases of boundary conditions are smaller 
than the displacements of a statically loaded matrix without a 
nanotube. 

 
Fig. 8.   Rectangular plate with a single nanotube – normalized  

displacements of selected points for one-edge loading 

For a plate loaded along one edge, the influence 
of  the  number of boundary elements on the accuracy 
of  the  displacements of point C u1 in the horizontal direction was 
investigated. The method of division into boundary elements is 
presented in Table 1. The results are presented in Fig. 9. 
On  the  basis of the calculations, it can be concluded 
that  the  method converges quickly. Since very good results were 
obtained for the third discretization method, and further increasing 
the number of boundary elements has little effect on the accuracy 
of displacements, the same division of the nanotube into elements 
and a similar length of elements for the external boundary will be 
used in subsequent examples. 

Tab. 1.  Division of the rectangular  plate with a single nanotube  
into boundary elements 

Discretization 

Number of boundary elements 

nanotube 
external  

boundary 
total 

1 2 10 12 

2 5 18 23 

3 10 36 46 

4 20 72 92 

 
Fig. 9.   Rectangular plate with a single nanotube – normalized  

displacements of point C for different number of  boundary  
elements 
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Fig. 10. Load variability over time: a) impact load,  

b) rectangular impulse, c) ramp load, d) triangular impulse 

 
Fig. 11.  Rectangular plate with a single nanotube - normalized      

displacements of point C for different variability of load over time 

For the same example, the influence of load variability 
over  time on the horizontal displacement of point C was examined. 
Four load cases were considered, as shown in Fig. 10: impact load, 
rectangular impulse, ramp load, and triangular impulse. The value 
po denotes the maximum load, and to denotes the characteristic 
time, which was assumed to be to=1 ns. The  displacements are 
shown in Fig. 11. The plot presents the  same displacements for 
the impact load and rectangular impulse, as well as for the ramp 

load and the triangular impulse, up  to  a time of to=1 ns, because 

the initial load variation up  to  this time is the same. The largest 
displacements are caused by the impact load, and this load will be 
considered in  subsequent examples. 

5.2. Rectangular plate with 15 nanotubes – influence  
of distance between nanotubes 

A rectangular plate of length 2w=4.2 μm and height 2h=2.0  μm 

contains 15 parallel nanotubes of length 2a=1.0 μm, as shown in 
Fig. 12. The horizontal distance between the centers 
of  the  nanotubes is d1=1.4 μm and the vertical distance is  d2=0.4 
μm. The area marked in grey denotes the part of  the  composite 
considered in the first example. The plate is  divided into 270 
boundary elements – 120 elements are used for the external 
boundary and 10 elements for each nanotube. In  the FEM the 
whole plate is divided into 3360 four-node quadrilateral elements. 

 
Fig. 12. Rectangular plate with 15 nanotubes – dimensions of the plate 

A comparison of normalized displacements of three selected 
points obtained by the BEM and FEM for two-edge and one-edge 
loadings is shown in Figs. 13 and 14, respectively. Very good 
agreement of the results obtained by the two methods can be seen. 
The initial and deformed shape of the plate, for one-edge loading, 
at time t=4 ns, when the displacements have large values (see Fig. 
14) are shown in Fig. 15. Small deformations can be seen in the 
surroundings of nanotubes and large between them. 

 
Fig. 13. Rectangular plate with 15 nanotubes – normalized displacements 

of selected points for two-edge loading 

 
Fig. 14. Rectangular plate with 15 nanotubes – normalized displacements 

of selected points for one-edge loading 
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Fig. 15. Rectangular plate with 15 nanotubes – initial and deformed 

shape of the plate at time t=4 ns for one-edge loading 

The influence of vertical distance between nanotubes 
on  the  displacement u1 of point C in the horizontal direction 
for  a  one-edge loading is studied. Three different relative 
distances are considered d2/a=0.8, 1.2 and 1.6. The case 

d2/a=0.8 is the main case, which was analyzed in Fig. 14. 
The  height of the plate is proportional to the distance between 
the  nanotubes 2h=2.0, 3.0 and 4.0 μm and the length is constant 
2w=4.2 μm. It can be seen in Fig. 16 that increasing the distance 
between the nanotubes by 100% from the value d2/a=0.8 
to  the  value 1.6 results in a 34% increase in the maximum 
displacement. The maximum displacement values for larger 
nanotube distances occur later. 

 
Fig. 16. Rectangular plate with 15 nanotubes – influence of the vertical 

distance between nanotubes on displacements 

The influence of the horizontal distance between 
the  nanotubes on the displacement u1 of point C in the horizontal 
direction for one-edge loading is studied. Three different relative 
distances are considered d1/a=2.8, 3.6 and 4.4. The case d1/a=2.8 
is the main case, which was analyzed in Fig. 14. The length 
of  the  plate is proportional to the distance between the  nanotubes 
2w=4.2, 5.4 and 6.6 μm and the height is constant 2h=2.0 μm.  

It can be seen in Fig. 17 that increasing the distance between 
the nanotubes by 57% from the value d1/a=2.8 to  the  value 4.4 
results in a 218% increase in maximum displacement. The 
maximum displacement values for larger nanotube distances occur 
later. 

An increase in the distance between the nanotubes 
in  the  nanotube direction has a greater effect 
on  the  displacement of the loaded edge than in the direction 
perpendicular to the nanotubes. 

 
Fig. 17. Rectangular plate with 15 nanotubes – influence of the horizontal 

distance between nanotubes on displacements 

5.3.   Rectangular plate with 13 nanotubes – influence of  length 
of nanotubes 

 
A rectangular plate contains 13 parallel nanotubes uniformly 

distributed, as shown in Fig. 18. The dimensions of the plate 
and  distances between nanotubes are the same 
as  in  the  previous main example 5.2. The plate is divided into  250 
boundary elements – 120 elements are used for  the  external 
boundary and 10 elements for each nanotube. In  the FEM the 
whole plate is divided into 3360 four-node quadrilateral elements. 

 
Fig. 18. Rectangular plate with 13 nanotubes – dimensions of the plate 

A comparison of normalized displacements of three selected 
points obtained by the BEM and FEM for two-edge and one-edge 
loading is shown in Figs. 19 and 20 respectively. Very good 
agreement of the results obtained by the two methods can be seen. 

The initial and deformed shape of the plate, for the one-edge 
loading, at time t=4 ns, when the displacements have large values 
(see Fig. 20) are shown in Fig. 21. 

The influence of the length of the nanotubes 
on  the  displacement u1 of point C in the horizontal direction 
for  the one-edge loading is studied. Three different lengths 
of  nanotubes are considered 2a=1.0, 0.8, and 0.6 μm. The case 
2a=1.0 μm is the main case, which was analyzed in Fig. 20. 
The  dimensions of the plate and the distances between 
the  nanotubes are fixed and are the same as in the previous main 
example 5.3. It can be seen in Fig. 22 that decreasing the length of 
the nanotubes by 40% from the value 2a=1.0 μm to the value 0.6 
μm results in a 58% increase in maximum displacement. 
The  maximum displacement values for smaller nanotubes occur 
later. 
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Fig. 19. Rectangular plate with 13 nanotubes – normalized displacements 

of selected points for two-edge loading 

 
Fig. 20. Rectangular plate with 13 nanotubes – normalized displacements 

of selected points for one-edge loading 

 
Fig. 21. Rectangular plate with 13 nanotubes – initial and deformed 

shape of the plate at time t=4 ns for one-edge loading 

 
Fig. 22.   Rectangular plate with 13 nanotubes – influence of the length 

of  nanotubes on displacements 

5.4.   Analysis of the influence of reinforcement  
on the stiffness of nanocomposites 

In order to investigate the effect of reinforcement 
on  the  stiffness of the nanocomposite, the displacements of point 
C were analyzed for the matrix alone and for the matrix 
with  nanotubes. The longitudinal wave propagation velocity 
in  the  matrix is c1=1834 m/s, and the shear wave velocity is 

c2=981 m/s. Fig. 23 shows the displacements for the first example 
– a rectangular plate with a single nanotube, and Fig. 24 shows the 
displacements for the second example – a rectangular plate with 
15 nanotubes. The conclusions from the calculations for both 
examples are similar. 

 
Fig. 23. Rectangular plate with a single nanotube – influence of 

reinforcement: a) with nanotube, two-edge loading, b)  without 
nanotube, two-edge loading, c) with nanotube, one-edge loading, 
d) without nanotube, one-edge loading 

 

Fig. 24. Rectangular plate with 15 nanotubes – influence of 
reinforcement: a) with nanotubes, two-edge loading, b)  without 
nanotubes, two-edge loading, c) with nanotubes, one-edge 
loading, d) without nanotubes, one-edge loading 

 

The maximum displacements of the dynamically loaded matrix 
alone are almost twice as large as the displacements for static 
loading. The use of reinforcement reduces the maximal 
displacements by more than twice. The displacements of the plate 
without reinforcement and with reinforcement are the same until 
approximately 0.3 ns, when the longitudinal wave propagates from 
the loaded edge to the nearest nanotube and returns after reflection 
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to the edge. The displacements increase when the  longitudinal 

wave propagates from the loaded edge to  the  vertical axis of 

symmetry for a two-edge loading or  to  the  fixed edge in the case 
of a one-edge loading and  returns back to the loaded edge. 
Therefore, the maximum displacements for a one-edge loading 
occur twice as late as  for  a  two-edge loading. Because the 
reinforced composite has a higher stiffness than the matrix, the 
waves propagate faster in it, and the displacement changes occur 
more frequently than in  the matrix alone. 

5. CONCLUSIONS 

The boundary element method is presented for analysis 
of  dynamically loaded composites reinforced by carbon nanotubes. 
The nanotubes are treated as thin and perfectly rigid. Contrary to 
domain methods, the BEM allows analysis by  discretization of 
external boundaries and nanotubes. Because only boundaries are 
discretized it is very easy to change the  length of nanotubes and 
their distribution in nanocomposites. The present method can be 
used efficiently to study the influence of reinforcement on the 
displacements of nanocomposites. The  accuracy of the computer 
code was investigated by  comparing the displacements of the 
selected points with  the  FEM solutions. 

The following conclusions can be deduced from the numerical 
calculations: 

− very good agreement between displacements determined 
by  BEM and FEM, 

− fast convergence of the method to the exact solution 
with  increasing number of boundary elements, 

− among the various cases of load variability over time analyzed, 
the largest displacements were obtained for  a  rapidly applied 
load that subsequently had a constant value, 

− a change in the distance between the nanotubes 
in  the  direction of the applied load has a greater effect 
on  the  displacements than a change in the perpendicular 
direction, 

− for the reinforcement cases considered, the nanocomposite is 
approximately twice as stiff as the matrix alone, 

− in the case of two-sided loading of the composite, there is 
greater variability in displacements over time than for one-sided 
loading. 
The following directions for further research can be considered: 

− analysis of composites with rigid inclusions of different shapes, 
e.g., rectangular, circular, elliptical, etc., 

− consideration of an interface layer between the fibers 
and  the  matrix with different mechanical properties, 

− separation of fibers from the matrix, 

− analysis of the stress state in the composite, 

− use of special boundary elements at the ends of the fibers, 
where there is a strong concentration of stresses, 

− increasing the calculation speed for composites with a large 
number of fibers by using fast multipole BEM and parallel 
computations, 

− analysis of three-dimensional problems, etc. 

Appendix A 

The inverse Laplace transform was determined using 
the  Durbin numerical method [35]. 

The values of the transformed function 𝑓̄(𝑠) are calculated for 
a series of Laplace parameters𝑠𝑘 = 𝑏 + 𝑖𝑘2𝜋/𝑇, where b is  a 

constant, 𝑖 = √−1 and T  is the analyzed time interval. 

The values of the original function 𝑓(𝑡) are determined 

from  the following equation: 

𝑓(𝑡) =
2𝑒𝑏𝑡

𝑇
(−

1

2
𝑅𝑒[ 𝑓̄(𝑏)] + ∑𝐾

𝑘=0 {𝑅𝑒[ 𝑓̄(𝑏 +

𝑖𝑘
2𝜋

𝑇
)] 𝑐𝑜𝑠( 𝑘𝑡

2𝜋

𝑇
) − 𝐼𝑚[ 𝑓̄(𝑏 + 𝑖𝑘

2𝜋

𝑇
)] 𝑠𝑖𝑛( 𝑘𝑡

2𝜋

𝑇
)})      (18) 

where Re denotes the real part and Im denotes the imaginary part. 
Usually, the range of parameters bT is assumed to be from  

5 to 10 and K  from 50 to 5000. 
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