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Abstract: The main objective of the work is to present a new formulation of the boundary element method (BEM) for the analysis
of dynamically loaded composites reinforced with straight, thin, and perfectly rigid fibers. The matrix is assumed to be homogeneous,
isotropic, and linear-elastic. A perfect connection between the fibers and the matrix is assumed. The time-dependent problem is solved using
the Laplace transform method. In this original approach, contrary to the finite element method (FEM), only external boundaries of plates and
fibers are divided into boundary elements. Because only the boundaries are discretized, it is very easy to modify the length and distribution
of the fibers. The proposed method was applied to the analysis of displacements of composites reinforced with carbon nanotubes (CNTs)
subjected to impact loads. Three numerical examples of composites with single- and multiple-nanotubes are analyzed. For each plate, two
different boundary conditions are imposed. The displacements computed by the BEM and FEM are compared, demonstrating the high
accuracy of the method. Analysis of the influence of the number of boundary elements on the accuracy of the solution demonstrates a fast
convergence of the method. The examples show the influence of boundary conditions, the influence of load variability in time, the distribution
of nanotubes, and their length on displacements. For the assumed reinforcement, a significant reduction in displacements was obtained.
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1. INTRODUCTION

Nanocomposite materials reinforced with carbon nanotubes
are now widely used in engineering due to their exceptional
physical properties [1-4]. Carbon nanotubes can be divided into
single-walled nanotubes (SWNT), which typically have a diameter
of 0.8 to 2 nm, and multi-walled nanotubes (MWNT), which have
a diameter of 5 to 20 nm. Carbon nanotubes can vary in length
from less than 100 nm to several centimeters, and their ends can
be open or closed. CNTs are characterized by a high stiffness
modulus of approximately 1000 GPa, tensile strength of 100 GPa,
and low density [5]. They are highly resistant to large bending
deformations and return to their original shape without damage.
The high aspect ratio of CNTs and the large interfacial area result
in effective load transfer from the matrix to the nanotubes. The use
of fibers in a composite with a stiffness greater than that of the
matrix increases the stiffness and strength of the material [6-8]. The
interaction between the matrix and the nanotubes increases the
damping of the material. Nanocomposites can absorb mechanical
energy. Inclusion of nanotubes increases fatigue strength and
fracture resistance. In addition to their excellent mechanical
properties, nanocomposites are characterized by good thermal
conductivity, stability, and resistance to heat and environmental
factors. They also have the property of shielding and absorbing
electromagnetic waves.

The exceptional mechanical, thermal, and electrical properties
mentioned above have led to the use of nanotube-reinforced
polymers in the automotive industry for the production of exhaust
system components, catalytic converters, suspension and braking
systems, engines, and body parts. Another area of application

is aviation. Nanocomposites are used as components of wings and
fuselages. A new area of application is sports equipment, e.g.,
badminton and tennis rackets, baseball bats, bicycle frames, etc.
Carbon nanotubes are used to reinforce composites used in - wind
turbine blades and hulls of maritime boats [5][9-11]. In many of the
applications mentioned, nanocomposites are dynamically loaded.
Efficient analysis of displacement, strain, and stress fields
in dynamically loaded composites containing a large number
of fibers requires the use of experimental or computer methods.
Richardson and Wisheart [12] showed a review of the definitions
of low-velocity impact and modes of failure of composites (matrix
and fiber failures, delamination, and penetration). The influence
of the composites constituents on impact response and post-
impact residual strength was analyzed. Liu et al. [13] analyzed
orthotropic birefringent composites subjected to impact loading
using photoelasticity, strain measurement, and the time-domain
boundary element method to calculate dynamic material constants,
stress-fringe values, and to verify the stress-optic law. Different
directions of the material axes with respect to the applied uniaxial
and biaxial loading were considered. Residual stresses were taken
into account. Malekzadeh and Zarei [14] analyzed the natural
frequencies of quadrilateral laminated plates reinforced with carbon
nanotubes. The composite material was homogenized using the
extended rule of mixture. The governing equations based on the
first-order shear deformation theory of plates were transformed
from an arbitrary physical quadrilateral domain to a computational
square domain. The spatial derivatives in the equations were
discretized using the differential quadrature method (DQM). They
studied the convergence of the DQM method, the influence
of the geometry of the plate, the orientation of layers,
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the distribution of nanotubes, and the support conditions
on natural frequencies. Phung-Van et al. [15] applied isogeometric
analysis (IGA) based on non-uniform b-splines (NURBS) and
higher-order shear deformation theory to analyze static and
transient deflections, natural frequencies and mode shapes of
rectangular and circular functionally graded carbon nanotube-
reinforced plates. The plate material was homogenized using the
rule of mixtures. They analyzed the influence of the parameters of
the IGA method, the geometry of the plates, the distribution of the
nanotubes, the support conditions, and the time variation of the
loads on the response of plates. Rasoolpoor et al. [16] presented
the analysis using the finite element method of a hybrid polymer
composite reinforced by carbon fibers and carbon nanotubes
subjected to low velocity impact. The influence of microstructure
and dimension of composite, support and impact conditions,
number of finite elements, on time variations of dynamic contact
forces and deflections of the plates was studied. Tarkashvand et
al. [17] presented an analytical method to analyze a complex
problem of the vibroacoustic response of the CNT-reinforced
composite shell. The structure was resting on an elastic foundation
and was submerged in a moving fluid, thermally loaded, and excited
by an acoustic plane wave. They studied the influence
of parameters such as elastic foundation, temperature gradient,
CNT distribution, and Mach number.

An important issue is the accurate modeling and analysis
of single carbon nanotubes. Tserpes and Papanikos [18]
presented a three-dimensional finite element model for single-
walled carbon nanotubes. The parameters of the beams were
determined by comparing the energies calculated using molecular
mechanics and continuum mechanics. The influence of wall
thickness, diameter, and chirality of nanotubes on elastic moduli
was investigated. Li and Chou [19] presented single-walled carbon
nanotubes subjected to harmonic waves. The velocities
of the longitudinal, transverse, and torsional waves were
calculated using the molecular mechanics and mode superposition
method. They analyzed the influence of nanotube diameter,
chirality, and wave frequency on wave propagation. Sakhaee-Pour
et al. [20] modeled single-walled carbon nanotubes using three-
dimensional elastic frames and concentrated masses. The
atomistic finite element method was used to calculate natural
frequencies and mode shapes for zigzag and armchair
configurations, different diameters, lengths of nanotubes,
and boundary conditions. The results were approximated using
a predictive equation. Khalili and Haghbin [21] modeled single-
walled carbon nanotubes embedded in a polymeric matrix
as space frames using FEM. The geometrical and elastic
properties of the beam elements were obtained by comparing
the potential energy in molecular mechanics with the strain energy
in structural mechanics. The influence of the volume fraction,
diameter, and chirality of the nanotubes on axial strains and the
strain energy density of nanocomposites subjected to impact
tensile loads was studied.

Usually, nanocomposites are modeled using computer
methods to calculate the effective mechanical properties
by considering a representative volume element (RVE).
Thostenson and Chou [22] derived the equation for the effective
elastic properties of polystyrene composites reinforced with multi-
walled aligned carbon nanotubes. They experimentally measured
geometric parameters of nanotubes: diameter, length, orientation,
and mechanical properties to calculate effective properties
of nanocomposites. Tsai et al. [23] modeled CNT/polyimide
nanocomposites as cylindrical solids. The elastic properties were
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calculated using molecular dynamics in  conjunction
with the energy equivalence concept. The atomistic interaction
between the CNTs and the polyimide polymer matrix was modeled
as an effective interphase. The micromechanical properties in the
longitudinal and transverse directions of the nanocomposites were
compared with the results obtained by the Mori-Tanaka model and
by the molecular dynamics. Tserpes and Chanteli [24] evaluated
the effective properties of multi-walled carbon nanotube reinforced
polymer composites using a three-dimensional FEM model of RVE.
The influence of the properties of the nanotube material, the aspect
ratio, volume fractions, interface thickness, and stiffness was
analyzed. The results on the microscale were used to predict the
tensile modulus of the composite with randomly aligned nanotubes.

The numerical results were compared with the experimental data
presented in the literature. Chwat and Muc [25] used FEM
and an RVE to investigate the effect of the distribution of parallel
single-walled carbon nanotubes on the equivalent elastic properties
of a polymer matrix composite with nanotubes. The results
obtained for the transversely isotropic model of the composite
were compared with those obtained by micromechanical analytical
methods.

If the stiffness of the fibers is much higher than that
of the matrix, then the modeling of the composite can be simplified
by assuming that the fibers are perfectly stiff. Pingle et al. [26] used
the duality principle to analyze stresses in the vicinity of rigid line
inclusions and the compliance of the composite. Pike and Oskay
[27] presented the application of the extended finite element
method (XFEM) with a new enrichment function for two-
dimensional models of composites with random short and rigid
fibers. The motion of the rigid fiber was modeled by constraining
the displacement field along the fibers. The method was used to
study the influence of the weight fraction of fibers on the effective
Young modulus.

The boundary element method is a general computer method
that has also found application in nanocomposite mechanics. Liu et
al. [28] used the fast multipole boundary element method (FMBEM)
to analyze the effective elastic properties of carbon nanotube
reinforced composites. The composites were modeled as three-
dimensional structures containing a very large number of rigid
fibers. The perfect connection between the rigid fibers and the
elastic matrix was assumed. The stress distributions at the fiber-
matrix interfaces and the influence of the volume fraction of fibers
on effective Young's modulus were studied and compared with the
available results reported in the literature. Wang and Yao [29] used
rigid-fiber-based FMBEM to analyze the interfacial debonding
process and the strength of nanotube-reinforced composites. It was
assumed to fail when the shear stress reached a limiting value. The
solution was obtained using an incremental procedure. The effects
of aspect ratio, volume fraction, and number of nanotubes in the
RVE on the detachment areas, nonlinear stress-strain curve,
and effective Young's modulus were investigated. Yao et al. [30]
used the FMBEM to analyze carbon nanotube composites. They
assumed that fibers are subdomains having identical geometrical
and physical properties. The effects of the aspect ratio
of the fibers, the number of fibers, the volume fraction, and also
the elastic interfacial conditions or the additional interfacial layer
between the deformable fibers and the matrix on the effective
Young modulus were investigated.

Fedelinski and Gorski [31] applied the coupled finite element
and boundary element method to analyze and optimize statically
and dynamically loaded plates reinforced by deformable stiffeners.
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The plates were modeled using the dual reciprocity BEM
and the reinforcement by the FEM. The aim of optimization was to
maximize the stiffness and strength of the composites by changing
the lengths and locations of the stiffeners. The optimal design
problem was solved using the evolutionary algorithm. The same
approach was used by Fedelinski and Gérski [32] to maximize the
stiffness of statically loaded nanocomposites with single and two-
layer platelet-like particles by changing the distribution of
inclusions. Fedelinski [33] used the BEM to analyze plates
containing cracks and reinforced with thin, straight, and rigid fibers.
The influence of the position of the rigid fibers on the effective
properties of the composites and on the crack stress intensity
factors was investigated. The same approach was used by
Fedelinski [34] to analyze the effective elastic properties of
composites with randomly distributed thin, parallel, and inclined
rigid fibers.

The aim of this work is to present the formulation
and applications of the BEM in the analysis of carbon nanotube-
reinforced composites modeled as linear-elastic plates with rigid,
thin, and straight nanotubes under impact loads. The perfect
connection between the nanotubes and a deformable matrix
is assumed. This work is an extension of the previous research
by the author on statically loaded composites [33-34].
The boundary integral equations formulated in the domain
of Laplace transforms are used to determine the relationship
between the time-dependent tractions acting on the matrix
and nanotubes and their displacements. In order to analyze
the problem using the BEM, the boundaries of the plate
and nanotubes are divided into boundary elements. Boundary
integral equations are used for the nodes on the boundaries
of the plate and nanotubes. The standard system of boundary
integral equations is extended by equations of motion
of nanotubes. The solution in the time domain is obtained
using the numerical inversion Durbin method [35], which has
recently been used in several works. Zhang et al. [36] analyzed
a beam loaded with a moving load. The effect of load velocity

and beam damping on its displacement was investigated. Bakhtiari
et al. [37] analyzed wave propagation caused by an impulsive load
in two coaxial cylinders made of different materials filled with fluid
between them. They studied the influence of material properties
and inner cylinder dimensions on stresses in the outer cylinder.
The literature review shows that carbon nanotube-reinforced
composites have been analyzed using various computational
methods, including the finite element method [16], extended finite
element method [27], differential quadrature method [14],
isogeometric analysis [15], and others. These methods require
discretization and interpolation of mechanical quantities
over the whole composite domain. The boundary element method
allows for the analysis of carbon nanotube-reinforced composites
by dividing only the external surfaces and nanotubes into boundary
elements and interpolating mechanical quantities only along these
surfaces. This makes it very easy to change the position,
dimensions, and discretization of nanotubes and external
surfaces. Since mechanical quantities are interpolated only along
the boundaries, BEM can give accurate results, especially in the
case of large stress variations that occur in composites. In the DQM
[14] and IGA [15] methods, the composite material is replaced by
an equivalent homogeneous material. In the presented formulation
of BEM, each nanotube is modeled, which allows for a detailed
analysis of the displacements of the nanocomposite. To the
author's knowledge, BEM has only been used to model
nanocomposites with rigid fibers that were statically loaded. The
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overview of modern applications of nanocomposites at the
beginning of the chapter shows that many of these materials are
dynamically loaded. The original achievement of this work is
the presentation of the BEM formulation for dynamically loaded
nanocomposites and the investigation of the accuracy
of the method. Computer software has been developed
by the author that uses the method formulated for dynamically
loaded nanocomposites.

The present work shows boundary integral equations
in the Laplace domain for a composite with nanotubes, equations
of motion of a nanotube, and numerical implementation
of the method. The displacements computed by the BEM
are compared with the FEM solutions, showing very good
agreement. The influence of the number of carbon nanotubes, their
configuration, and length on displacements is studied.

2. BOUNDARY INTEGRAL FORMULATION FOR CARBON
NANOTUBE-REINFORCED COMPOSITES SUBJECTED
TO DYNAMIC LOADS

In the present chapter, boundary integral equations
for dynamically loaded carbon nanotube-reinforced composites
are presented. |Initially, only a matrix without nanotubes
is considered. The matrix is assumed to be homogeneous,
isotropic, and linear elastic. The external boundary T" of the matrix
is loaded by time-dependent tractions &, and the domain Q
by body forces £. The initial conditions at time =0 are: the initial
displacements u; = 0 and the initial velocities i; = 0 The dot
over the variable denotes the derivative with respect to time.
The relationship between displacements w;, boundary tractions ;
and body forces £ can be expressed by the boundary integral
equation formulated in the time-domain [38]:

cij(xui(x't) + j [j T (x, x, t — Duj(x, t)dr] dll =

rJo

f[j Uij(x', x, t — D)tj(x,7)dt] I’

rJo ¢

+fn[f0 Uij(x'x, t — D) fj(x,7)dt] dA2, (1)

where x’is the point of collocation, for which the equation
is applied, x is the point of integration, tis the current time and ¢
is the integration time, ¢y is a constant, which depends
on the position of the point x; Uy and Tj are the fundamental
solutions of elastodynamics [38]. Contrary to static problems,
the equation requires integration not only along the boundary T"
and the domain Q, but also over time from the initial time =0
to the current time ¢ For two-dimensional problems, the indices
have values j /=1, 2.

Eqg. (1) can be solved using the time-stepping technique
or the integral transform method. In the present work Eq. (1)
is transformed using the Laplace integral transform, defined as:

LIf(x, D] = f(x,5) = J, f(x,1)e"dx, 2)

where £(x,7) is a function, f(x, s) is its transform and s is the
Laplace transform parameter.
After the transformation, Eq. (1) has the form [39]:

(T (5) + [ T2, 9 ) dr =
J 00 % 98 (o) T + [, Uy (e, O ) da (@)
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where i (x, s), t;(x, s), and f,-(x, s) are the Laplace transform
of displacements, tractions, and body forces, U;;(x’x,s) and
T;j(x' x, s) are the Laplace transform of fundamental solutions of
elastodynamics.

Fig. 1. Matrix reinforced by thin, straight, and rigid nanotubes

Let us now consider the matrix reinforced by carbon nanotubes,
shown in Fig. 1. The mechanical properties of nanocomposite
components have been presented in many papers. For example,
Thostenson and Chou [22] reported that the most commonly
recorded diameter of carbon nanotubes is 18 and 30 nm, their
length ranges from 500 to 2000 nm, their average density is 1900
kg/m?, and their Young's modulus is 1000 GPa. In contrast,
polystyrene, which is the matrix, has a Young modulus of 2.4 GPa
and a density of 1000 kg/m®. In the work of Rasoolpoor et al. [16],
it is stated that Young's modulus of carbon nanotubes is 1382.5
GPa, their density is 1300 kg/m3, and the length-to-diameter ratio
is 100. In contrast, polyamide, which is the matrix, has a Young's
modulus of 4.2 GPa and a density of 1310 kg/m3. Because the
stiffness of the carbon nanotubes is much greater than that of the
matrix, it is assumed that they are perfectly stiff. The aspect ratio of
the nanotube dimensions is usually high. In the present approach,
they are treated as thin, straight, and perfectly connected to the
matrix. The interaction forces occur between the matrix
and the nanotubes because the matrix deforms
and the nanotubes are subjected to inertial forces. The interaction
forces can be regarded as internal forces £, shown in Eg. (1), acting
on the matrix and distributed only along the nanotubes. Eq. (3) for
the matrix loaded by external boundary tractions and the interaction
forces have the following form:

cij (N (x)s) + fT'ij(x',x, s)u;(x,s)dl =
- _ r - -
fr Ui (x, x,8)E;(x, s)dI + X34 frn U;j(x' x, )t (x, 5)dI,
(4)

where Nis the number of nanotubes, I is the nanotube line and
¢ are the tractions that act on the matrix along the nanotube.

The proposed method will be applied to simple cases
of external load variability over time, e.g. impact load, rectangular
impulse, ramp load, triangular impulse, etc. For this type of load,
Laplace transforms can be calculated analytically.

3. DISPLACEMENTS AND EQUATIONS OF MOTION
FOR THIN, STRAIGHT, AND RIGID NANOTUBES

The nanotubes change their position and direction
in a dynamically loaded nanocomposite, as shown in Fig. 2. It is
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assumed that the nanotube is thin, straight, and rigid,
and the angle of rotation is small. In this case, the components
of displacements u;of the an arbitrary point x of the nanotube are:

u (%, 1) = uy(x, t) — (Or(x) sina, (%)
Uy (x,t) = uy(x.,t) + (t)r(x) cos a, (6)

where xc is the center of the nanotube, ris the distance between
the points x and x., «is the initial angle between the nanotube and
the axis x; of the global coordinate system, ¢ is the rotation angle.

Fig. 2. Displacements of the nanotube (dashed line — initial orientation
of the nanotube)

The equations of the motion of the center of the nanotube n
have the following forms:

iy (x, )My, = fpn t1 (x, )dly, (7)
Uy (X, t)My, = fpn t7 (x, 0)dly, ()
P(xe, I, = an[—tf(x, t) sina + th(x, t) cos alr(x)dl;,,

)

where mnand 7, are the nanotube mass and the moment of inertia
with respect to the nanotube center, respectively, ¢ are the traction
acting on the nanotube, as shown in Fig. 3.

X4

Fig. 3. Distribution of tractions along the nanotube

The Laplace transforms of Egs. (7), (8) and (9) are:

sy (x., s)m, = frn th(x,s)dl,, (10)
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$%U, (xe, S)My = [, T3 (x,5)d I, (11)
s p(xe, )y = [ [-T7(x,5) sina +

t2(x,s) cos a]r(x)dI, (12)

4. BOUNDARY ELEMENT FORMULATION FOR
A COMPOSITE REINFORCED BY CARBON NANOTUBES

Q
o - midside node

o - end node
Fig. 4. Division of the external boundary and nanotubes into boundary
elements

In the present boundary element formulation, only external
boundaries and each nanotube are divided into boundary elements,
as shown in Fig. 4. As in the standard BEM formulation, the
coordinates of points, displacements, and ftractions along
the external boundaries are interpolated using nodal values
and shape functions. The same interpolation is used
for interaction tractions along the nanotubes. Because
the nanotubes are thin, straight, and rigid, the coordinates of their
points can be calculated exactly, and the displacements can be
calculated using Eq. (5) and (6). The boundary elements have three
nodes, and quadratic shape functions are applied for interpolation.

The interpolated quantities are substituted into the boundary
integral Eq. (4). The collocation points x” are all nodes. After
the discretization, Eq. (4) expresses the relationship between
nodal tractions and displacements. The boundary elements are
transformed from the global coordinate system to the local
coordinate system, and the integrals are calculated numerically
using the Gaussian quadrature. The system of equations for all
nodes can be written in matrix form as in the standard BEM
formulation:

Hee 0 Ue _ Gee Gei te

[Hie Iii] [ui] - [Gie Gii] [ti]’ (13)
where index e denotes the nodes on the external boundaries and
index i denotes the internal nodes. The submatrices H and G are
standard BEM matrices, which depend on the boundary integrals
of fundamental solutions, shape functions, and Jacobians [38]. The

submatrix lii is the unit matrix.
The dimensions of the submatrices are as follows:

Uy = [Ueqp], a=12,....M X4, b=1,

te =[tean), a=12,....M X6, b=1,

Hee = [Heeap), a=12,....M x4, b=12,...,M x 4,
Hjo =[Hjo 2p), @a=12,.,NxLx2, b=12,.,Mx4,
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e = [Gooan], @ =1,2,...,M x4 b=12,...,MX6,
e =[Giear], a=12,...NXLX2, b=12,...,Mx

G

G

6

Geoi = [Geiap], a=12,...,M x4, b=12,...,N XL X
2

G [Giiap), a=12,..., NXLx2 b=12,...,N X
L

Iii = [Iiiab]' a= 1,2,...,NXLX2, b= 1,2,...,NX
Lx?2,

where a and b are the numbers of rows and columns, M is the
number of elements on the external boundaries, L is the number
of nodes along the single nanotube (it is assumed that the number
of nodes along each nanotube is the same), as shown in Fig. 4.
The tractions on the external boundaries can be discontinuous and
the interaction forces between the nanotubes and the matrix are
continuous.

The displacements of the internal nodes, which belong
to nanotubes, are expressed by the displacements of their centers
using Egs. (5 and (6). The equations for transformed
displacements of all nanotube nodes can be written in matrix form:

u=A;cUc, (14)

where the matrix u; contains the transformed displacement
components of the nanotube nodes, the matrix u. contains
the transformed displacement components of the nanotube
centers, and the matrix A; depends on the coordinates
of the nodes. The dimensions of the matrices are as follows:

U = [Uigpl, a=12,....NXLXx2, b=1,
uC:[ucab]f a=12,....Nx3, b=1,

Aic =[Aic )], a=12,..,NxLx2, b=12,..,
N X 3.

The equations of motions (Egs. (10), (11) and (12))
for nanotube centers can be expressed in the matrix form:

Mccu, = -Bgt;, (15)

where the matrix M depends on the masses and moments of the
inertia of the nanotubes and the Laplace parameter, the matrix B
depends on the coordinates of nanotube nodes, and the matrix t;
contains the nodal values of the nanotube transformed traction
components acting on the matrix. The components of the tractions
that act on the nanotube have the opposite sign. Because the
nanotubes are straight, the matrix B.can be calculated analytically
by integration of expressions in Egs. (10), (11) and (12).
The dimensions of the matrices are as follows:

ti=[tig], a=12,.... NXLx2, b=1,
McCZ[Mccab]; a=1,2,...,N><3, b=1,2,-..,NX3,

B, =B a=12.,Nx3, b=12.,NXx

Lx?2.

ci ab]’

The displacements of the internal nodes in Eq. (13) are
expressed by Eq. (14). The matrix Eq. (13) is additionally extended
by the equation of motion of nanotubes (15) giving:

Hee Gee
] - |6
¢ 0

Gei
Hie Gi;
0

] ««»

0
Aic
Mcc _Bci
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To solve the equation, the submatrices are rearranged.
After the modification, the unknown variables are on the left-hand
side and the known boundary conditions on the right-hand side
of the equation. The unknown transformed internal tractions t;and
the corresponding column are rearranged as follows:

Hee Gel 0 Ue Gee
Hie —Gy A ||ti| =G |[te] (17)
0 By M.Jluc 0

The matrix equation can be solved if the ftractions
on the external boundary are known. Usually on one part
of the external boundary the ftractions are known,
and on the remaining part, the displacements are given. In this
case, the matrices ue, te and the corresponding columns
of the matrices H and G are rearranged, as in the standard BEM
[38]. The direct solutions of the matrix equation are unknown
Laplace transforms of external and internal nodal displacements
and tractions. The solution in the time-domain is obtained
using the Durbin method [35] of the inverse Laplace transform. For
a complete description of the method, Appendix A provides basic
information on the Durbin method and the parameters
recommended for the method.

In summary, the BEM analysis can be presented in the form
of the following flowchart:

— Division of the external boundary and nanotubes into elements
(Fig. 4).

— Loop over the Laplace parameters.

— Calculation of the Hee, Hie, Gee, Gei, Gie, and G submatrices
(Eq. 13) for collocation points, which are nodes belonging
to the external boundary and nanotubes.

— Calculation of the Ai matrix (Eq. 14) that defines
the relationship between the displacements of the nanotube
centers and the nodes belonging to the nanotubes.

— Calculation of the M. and B matrices (Eq. 15) that define
the movement of the nanotubes.

— Formation of the matrix equation of motion of the whole
nanocomposite (Eq. 16).

— Rearrangement of the matrix system of equations taking
into account the boundary conditions (Eq. 17).

— Determination of unknown transformed displacements
and tractions.

— If the Laplace parameter number is less than the given final
value, return to step 2.

— Calculation of unknown displacements and tractions
as functions of time using the Durbin method.

5. NUMERICAL EXAMPLES

In this chapter, three numerical examples are considered.
The first example, a single nanotube in a rectangular plate, is used
to verify the convergence of the method and to investigate the
influence of the time variability of loading. The second example,
a rectangular plate containing 15 parallel nanotubes, shows
the influence of the distance between the nanotubes
on the displacements. The third example, a rectangular plate
containing 13 parallel nanotubes, demonstrates the influence
of nanotube length on displacements. The chapter is completed by
an analysis of the influence of reinforcement on displacements and
a physical interpretation of the behaviour of nanocomposites.

The matrix is epoxy resin, which is treated as a linear elastic,
homogeneous, and isotropic material. The Young modulus
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of epoxy resin is £=3 GPa, the Poisson ratio is v=0.3, the density
£=1200 kg/m? and the plates are under plane stress conditions.
Because the nanotubes are very thin and the density of carbon
nanotubes is similar to that of the matrix, the inertia of nanotubes
is neglected in the present examples.

The plates are subjected to two types of boundary conditions,
which are shown in Fig. 5. In the first case, the plate is supported
on the roller supports along the lines of symmetry and two edges
are loaded by the uniformly distributed tractions p in opposite
directions. In the second case, the left edge of the plate
is constrained using roller supports, and the right edge of the plate
is loaded. The load is an impact load with Heaviside time
dependence (it is suddenly applied at time =0 and sustained). The
displacements of three selected points A, B, and C shown in Fig. 5
are analyzed. The displacements are normalized with respect to uo,
which is the displacement of point C of the statically loaded matrix
without nanotubes. The number of Laplace parameters used in the
Durbin method for the numerical inverse Laplace transform is 50.
The displacements computed by the BEM are compared
with the FEM solutions [40]. In the FEM analyses, the nanotubes
were modeled as straight, thin and rigid. This modeling method was
implemented by imposing appropriate constraints on the relative
displacements of the nodes, resulting in a rigid connection between
the nodes lying along the nanotube.
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Fig. 5. Boundary conditions for the plates:
a) two-edge loading, b) one-edge loading
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5.1. Rectangular plate with a single nanotube - influence
of time variability of loading

A rectangular plate of length 25=1.4 um and height
of 2¢=0.4 um contains a nanotube of length 2a=1.0 ym, as shown
in Fig. 6a. To verify the accuracy, the displacements of the whole
plate and the half of the plate are compared. The half of the plate
is supported on roller supports along the horizontal line of
symmetry and is additionally fixed along the nanotube, as shown
in Fig. 6b. The half of the plate is analyzed using the standard BEM
code. The whole plate is divided into 46 boundary elements, and
half of the plate into 32 boundary elements, including 10 elements
for the nanotube. In the FEM, the whole plate is divided into 224
four-node quadrilateral elements.
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The components of normalized displacements of selected
points for two-edge loading are shown in Fig. 7. The solutions are
compared with the displacement of half of the plate and FEM
displacements. Very good agreement of the results can be seen
in Fig. 7.
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Fig. 6. Rectangular plate with a single nanotube —
dimensions of the plate: a) whole plate, b) half of the plate

12— === == m o —— -~ —-———
S R s

& | PR RS i i il s u(B)-
f- E | A’/r\\\ | —— uy(B) |
§ 08 F -~~~ o5& g M- —oeo w0
@ . | A Bl half
8 0-6:"———l—//:’/—/'[-——-lj“s\v""FEM'|
2 // r LR\ |
S0-4_———/,1————x————|———\\ﬁ\\———ﬂ
@ C /,’ [ | [ 13y [
T 02 ———K—l———z—/ﬂt—?t\-“%—‘———l—\\i\— -
E E A o S, Xy
5 F Bt e o
Z 0 BESCebarseommtnl S 00 e e e R,
: ! l | | |

02 ! fts g | v ey |
0 0.2 04 0.6 0.8 1

Time ¢ [ns]

Fig. 7. Rectangular plate with a single nanotube —
normalized displacements of selected points for two-edge loading

The components of normalized displacements of selected
points for one-edge loading are shown in Fig. 8. In this case,
the half plate cannot be used for the comparison because
the nanotube moves in the horizontal direction. Very good
agreement of the BEM and FEM results can be seen in Fig. 8.

The displacements of points on the dynamically loaded edge
of reinforced plate in both cases of boundary conditions are smaller
than the displacements of a statically loaded matrix without a
nanotube.
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Fig. 8. Rectangular plate with a single nanotube — normalized
displacements of selected points for one-edge loading

For a plate loaded along one edge, the influence
of the number of boundary elements on the accuracy
of the displacements of point C uzin the horizontal direction was
investigated. The method of division into boundary elements is
presented in Table 1. The results are presented in Fig. 9.
On the basis of the calculations, it can be concluded
that the method converges quickly. Since very good results were
obtained for the third discretization method, and further increasing
the number of boundary elements has little effect on the accuracy
of displacements, the same division of the nanotube into elements
and a similar length of elements for the external boundary will be
used in subsequent examples.

Tab. 1. Division of the rectangular plate with a single nanotube
into boundary elements

Number of boundary elements
Discretization external
nanotube total
boundary
1 2 10 12
2 5 18 23
3 10 36 46
4 20 72 92
1____I____I____I____l____l
—— 12 elements o | |
& —— 23 elements /\\Q | |
208 —— 46elements™ ~ e/ ﬁ\—§v o
= - —— 92 elements / [ - \\
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Fig. 9. Rectangular plate with a single nanotube — normalized
displacements of point C for different number of boundary
elements
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Fig. 10. Load variability over time: a) impact load,
b) rectangular impulse, c) ramp load, d) triangular impulse
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Fig. 11. Rectangular plate with a single nanotube - normalized
displacements of point C for different variability of load over time

For the same example, the influence of load variability
over time on the horizontal displacement of point C was examined.
Four load cases were considered, as shown in Fig. 10: impact load,
rectangular impulse, ramp load, and triangular impulse. The value
Do denotes the maximum load, and & denotes the characteristic
time, which was assumed to be =1 ns. The displacements are
shown in Fig. 11. The plot presents the same displacements for
the impact load and rectangular impulse, as well as for the ramp
load and the triangular impulse, up to a time of £=1 ns, because
the initial load variation up to this time is the same. The largest
displacements are caused by the impact load, and this load will be
considered in subsequent examples.

5.2. Rectangular plate with 15 nanotubes - influence
of distance between nanotubes

Arectangular plate of length 2=4.2 ym and height 24=2.0 pm
contains 15 parallel nanotubes of length 2a=1.0 ym, as shown in
Fig. 12. The horizontal distance between the centers
of the nanotubes is d;=1.4 um and the vertical distance is dz=0.4
pm. The area marked in grey denotes the part of the composite
considered in the first example. The plate is divided into 270
boundary elements — 120 elements are used for the external
boundary and 10 elements for each nanotube. In the FEM the
whole plate is divided into 3360 four-node quadrilateral elements.
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Fig. 12. Rectangular plate with 15 nanotubes - dimensions of the plate

A comparison of normalized displacements of three selected
points obtained by the BEM and FEM for two-edge and one-edge
loadings is shown in Figs. 13 and 14, respectively. Very good
agreement of the results obtained by the two methods can be seen.
The initial and deformed shape of the plate, for one-edge loading,
at time =4 ns, when the displacements have large values (see Fig.
14) are shown in Fig. 15. Small deformations can be seen in the
surroundings of nanotubes and large between them.
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Fig. 13. Rectangular plate with 15 nanotubes — normalized displacements
of selected points for two-edge loading
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Fig. 14. Rectangular plate with 15 nanotubes — normalized displacements
of selected points for one-edge loading
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Fig. 15. Rectangular plate with 15 nanotubes - initial and deformed
shape of the plate at time =4 ns for one-edge loading

The influence of vertical distance between nanotubes
on the displacement u; of point C in the horizontal direction
for a one-edge loading is studied. Three different relative
distances are considered dz/a=0.8, 1.2 and 1.6. The case
dz/a=0.8 is the main case, which was analyzed in Fig. 14.
The height of the plate is proportional to the distance between
the nanotubes 24=2.0, 3.0 and 4.0 um and the length is constant
2w=4.2 um. It can be seen in Fig. 16 that increasing the distance
between the nanotubes by 100% from the value dz/a=0.8
to the value 1.6 results in a 34% increase in the maximum
displacement. The maximum displacement values for larger
nanotube distances occur later.
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Fig. 16. Rectangular plate with 15 nanotubes - influence of the vertical
distance between nanotubes on displacements

The influence of the horizontal distance between
the nanotubes on the displacement us of point C in the horizontal
direction for one-edge loading is studied. Three different relative
distances are considered dv/a=2.8, 3.6 and 4.4. The case d+/a=2.8
is the main case, which was analyzed in Fig. 14. The length
of the plate is proportional to the distance between the nanotubes
2w=4.2,5.4 and 6.6 ym and the height is constant 2h=2.0 pm.

It can be seen in Fig. 17 that increasing the distance between
the nanotubes by 57% from the value dv/a=2.8 to the value 4.4
results in a 218% increase in maximum displacement. The
maximum displacement values for larger nanotube distances occur
later.

An increase in the distance between the nanotubes
in the nanotube direction has a greater effect
on the displacement of the loaded edge than in the direction
perpendicular to the nanotubes.
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Fig. 17. Rectangular plate with 15 nanotubes - influence of the horizontal
distance between nanotubes on displacements

5.3. Rectangular plate with 13 nanotubes - influence of length
of nanotubes

A rectangular plate contains 13 parallel nanotubes uniformly
distributed, as shown in Fig. 18. The dimensions of the plate
and distances between nanotubes are the same
as in the previous main example 5.2. The plate is divided into 250
boundary elements — 120 elements are used for the external
boundary and 10 elements for each nanotube. In the FEM the
whole plate is divided into 3360 four-node quadrilateral elements.

2a d,

d2¢

Fig. 18. Rectangular plate with 13 nanotubes — dimensions of the plate

A comparison of normalized displacements of three selected
points obtained by the BEM and FEM for two-edge and one-edge
loading is shown in Figs. 19 and 20 respectively. Very good
agreement of the results obtained by the two methods can be seen.

The initial and deformed shape of the plate, for the one-edge
loading, at time =4 ns, when the displacements have large values
(see Fig. 20) are shown in Fig. 21.

The influence of the length of the nanotubes
on the displacement u: of point C in the horizontal direction
for the one-edge loading is studied. Three different lengths
of nanotubes are considered 22=1.0, 0.8, and 0.6 um. The case
2a=1.0 ym is the main case, which was analyzed in Fig. 20.
The dimensions of the plate and the distances between
the nanotubes are fixed and are the same as in the previous main
example 5.3. It can be seen in Fig. 22 that decreasing the length of
the nanotubes by 40% from the value 22=1.0 ym to the value 0.6
pm results in a 58% increase in maximum displacement.
The maximum displacement values for smaller nanotubes occur
later.
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L e e 5.4. Analysis of the influence of reinforcement
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Fig. 20. Rectangular plate with 13 nanotubes — normalized displacements
of selected points for one-edge loading
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Fig. 21. Rectangular plate with 13 nanotubes - initial and deformed
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to the edge. The displacements increase when the longitudinal
wave propagates from the loaded edge to the vertical axis of
symmetry for a two-edge loading or to the fixed edge in the case
of a one-edge loading and returns back to the loaded edge.
Therefore, the maximum displacements for a one-edge loading
occur twice as late as for a two-edge loading. Because the
reinforced composite has a higher stiffness than the matrix, the
waves propagate faster in it, and the displacement changes occur
more frequently than in the matrix alone.

5. CONCLUSIONS

The boundary element method is presented for analysis
of dynamically loaded composites reinforced by carbon nanotubes.
The nanotubes are treated as thin and perfectly rigid. Contrary to
domain methods, the BEM allows analysis by discretization of
external boundaries and nanotubes. Because only boundaries are
discretized it is very easy to change the length of nanotubes and
their distribution in nanocomposites. The present method can be
used efficiently to study the influence of reinforcement on the
displacements of nanocomposites. The accuracy of the computer
code was investigated by comparing the displacements of the
selected points with the FEM solutions.

The following conclusions can be deduced from the numerical
calculations:

— very good agreement between displacements determined
by BEM and FEM,

— fast convergence of the method to the exact solution
with increasing number of boundary elements,

— among the various cases of load variability over time analyzed,
the largest displacements were obtained for a rapidly applied
load that subsequently had a constant value,

— a change in the distance between the nanotubes
in the direction of the applied load has a greater effect
on the displacements than a change in the perpendicular
direction,

— for the reinforcement cases considered, the nanocomposite is
approximately twice as stiff as the matrix alone,

— in the case of two-sided loading of the composite, there is
greater variability in displacements over time than for one-sided
loading.

The following directions for further research can be considered:
— analysis of composites with rigid inclusions of different shapes,

e.g., rectangular, circular, elliptical, etc.,

— consideration of an interface layer between the fibers
and the matrix with different mechanical properties,

— separation of fibers from the matrix,

— analysis of the stress state in the composite,

— use of special boundary elements at the ends of the fibers,
where there is a strong concentration of stresses,

— increasing the calculation speed for composites with a large
number of fibers by using fast multipole BEM and parallel
computations,

— analysis of three-dimensional problems, etc.

Appendix A

The inverse Laplace transform was determined using
the Durbin numerical method [35].

The values of the transformed function £ (s) are calculated for
a series of Laplace parameterss;,, = b + ik2m/T, where bis a

acta mechanica et automatica, vol.19 no.4 (2025)

constant, i = v—1and 7 is the analyzed time interval.
The values of the original function f(t) are determined
from the following equation:

2ebt

f(O) =% (—IRe[f®)] + 5oy {Re[f(b+
ik 2] cos(kt =) — Im[ f (b + ik )] sin(kt =9}  (18)

where Redenotes the real part and /m denotes the imaginary part.
Usually, the range of parameters b7 is assumed to be from
510 10 and A" from 50 to 5000.
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