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Abstract: Defects on highly reflective rotating surfaces can adversely affect the performance, service life, and safety of products, making
surface defect detection a critical process in quality assurance. This study focuses on analysing the roughness and shape accuracy
of precision surfaces, particularly for metal and ceramic components with rotational symmetry. Identifying surface defects, assessing
deviations from ideal roundness and cylindricity, and quantifying these deviations are key objectives in ensuring manufacturing precision.
Various techniques are employed in defect detection, including visual, optical, interferometric, polarization, reflexometric, holographic and
other advanced methods. These approaches involve subjecting the rotating surface to illumination and analysing the reflected signals.
The reflected signal is processed to generate a two-dimensional function based on the rotation angle and spatial coordinates, enabling
precise evaluation of surface quality. Within this framework, statistical parameters are computed in a sliding analysis window to detect
irregularities. For instance, sliding dispersion values are used to differentiate defect-free regions from defective ones, with lower dispersion
indicating smooth, uniform surfaces and higher values pointing to potential defects. By comparing these values against a predefined
threshold, defects are identified systematically. This approach provides a robust and efficient methodology for detecting and quantifying
surface defects on rotationally symmetric components. It ensures improved precision in manufacturing processes and enhances the reliability
and safety of the resulting products. The findings emphasize the importance of integrating advanced defect detection techniques in modern

production lines to maintain high-quality standards.
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1. INTRODUCTION

The quality of finished surfaces plays a crucial role in industries
such as mechanical engineering, automotive, aerospace, and oth-
ers. Surface quality directly impacts the performance, reliability,
and longevity of products. Common surface defects include rough-
ness (micro-irregularities from processing), waviness (periodic var-
iations in surface height), cracks, stains, and inclusions.

This article aims to revisit previously published findings, em-
phasizing the importance of integrating self-learning capabilities
into defect detection systems. Such systems, built on modern arti-
ficial intelligence principles, offer significant potential beyond tradi-
tional supervised learning approaches. However, a review of exist-
ing methodologies reveals that many current defect detection tech-
niques fail to deliver practical, industry-ready results for modern
mechanical engineering applications. Overreliance on artificial in-
telligence methods without adequate integration of classical math-
ematical statistics and engineering principles has led to unrealistic
expectations regarding their scientific and practical outputs. These
classical approaches retain their value and continue to provide ro-
bust solutions.

Bodies of rotation (BR), such as spheres, cylinders, cones, and
torus shapes, are fundamental to many precision applications. Ro-
tational components like aircraft bearing balls, precision steel balls,
and cylinders (Fig. 1) are critical in industries such as aviation, rail-
ways, and precision machinery. The performance and durability of
these parts heavily depend on the surface quality, requiring

manufacturers to adhere to rigorous precision standards.

Advanced quality control systems are indispensable for detect-
ing and addressing surface defects, ensuring that components
meet the high-performance demands of their applications. By com-
bining modern Al-driven techniques with proven statistical and en-
gineering methodologies, defect detection can achieve both inno-
vation and practical relevance, enhancing product quality across
diverse industries.

The earlier results were published in the article [25], presented
at the XXVI International Symposium Research-Education-Tech-
nology, held in Stralsund on September 26th-27th, 2024.

Ball Cylinder Cone
Fig. 1. An examples of metal BR (bodies of rotation)

Different approaches to surface quality analysis are described
in [1]. This research includes a variety of methods that can be ap-
plied in different industrial contexts. The solution of the problem of
modeling quality analysis is not only theoretical [2-3], but also of
great practical importance [4-5]. Practical applications of these
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methods include quality control in manufacturing processes, where
even the smallest deviations in surface quality can lead to defects
that compromise product performance and durability. Probably, one
of the first approaches to the construction of automata for detecting
defects in the surface of bodies of revolution is the simulation of
training and work of a human operator [6-8]. Operators can recog-
nize defects after becoming familiar with a small number of different
objects of the same type. A person has an amazing ability: having
become acquainted with a small number of different objects of the
same class, he subsequently recognizes all the objects of this
class. Within the framework of the work [6], surface defects are con-
sidered as statistical anomalies of roughness parameters. To de-
tect them, the degree of homogeneity of the surface quality is de-
termined and compared with the permissible threshold value [13].
Such a method makes it possible to effectively identify anomalies,
which is key to ensuring high product quality.

In recent years, the integration of artificial intelligence (Al) and
machine learning (ML) has revolutionized surface defect detection.
Advanced algorithms [15] can now analyze complex patterns in sur-
face data, enabling the identification of defects that were previously
undetectable using traditional methods. For instance, convolutional
neural networks (CNNs) [16] have been employed to classify sur-
face imperfections with high accuracy, reducing reliance on manual
inspection and increasing efficiency in production lines.

Moreover, the application of deep learning techniques has fa-
cilitated the development of automated inspection systems capable
of real-time defect detection. These systems utilize large datasets
to train models that can discern subtle variations in surface tex-
tures, leading to more reliable quality control processes [17]. Addi-
tionally, the use of transfer learning [18] has shown promise in sit-
uations where limited defect data is available, allowing models to
leverage knowledge from related domains to improve detection per-
formance.

The adoption of non-contact measurement techniques, such as
laser-based methods, has further enhanced surface quality analy-
sis. These approaches offer high precision and are less prone to
damaging delicate surfaces compared to traditional contact meth-
ods [19]. Furthermore, the implementation of 3D scanning technol-
ogies combined with ML algorithms [20] has enabled comprehen-
sive assessments of complex geometries, providing detailed in-
sights into surface integrity. Recent advancements also include the
use of digital holographic microscopy for surface topography meas-
urements. This technique allows for high-resolution, three-dimen-
sional imaging of surfaces, facilitating the detection of micro-scale
defects that may impact product performance [21]. Additionally, the
development of hybrid models that combine statistical methods with
machine learning approaches has improved the robustness of de-
fect detection systems [22], making them more adaptable to varying
manufacturing conditions.

The integration of Internet of Things (loT) devices with surface
inspection systems has opened new avenues for real-time monitor-
ing and predictive maintenance. By collecting and analyzing data
from connected sensors, manufacturers can proactively address
potential quality issues before they escalate, thereby reducing
downtime and associated costs [23].

Furthermore, the standardization of surface measurement
techniques, as outlined in ISO 25178, has provided a unified frame-
work for assessing surface texture, ensuring consistency and com-
parability across different industries and applications [24]. This
standard encompasses both contact and non-contact measure-
ment methods, reflecting the diverse approaches employed in mod-
ern surface analysis.
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In conclusion, the convergence of advanced technologies such
as Al, machine learning, and non-contact measurement techniques
has significantly enhanced the field of surface quality analysis.
These innovations have led to more accurate, efficient, and reliable
defect detection methods, ultimately contributing to improved prod-
uct quality and manufacturing efficiency.BR roughness parameters
are statistically homogeneous along the angular coordinate, so de-
fects are identified as statistical anomalies of these parameters de-
pending on the BR rotation angle for each point on the symmetry
axis. This means that any anomalies in roughness can be detected
by analyzing deviations from the norm at different angles of rota-
tion. The surface equation (1) of some defect-free BR in a cylindri-
cal coordinate system (p, ¢, z) (Fig. 2) is a one-dimensional non-
negative function S independent of ¢. This means that the BR sur-
face is symmetric about the z-axis and does not vary with the angle
¢. With this symmetry, the analysis of the BR surface becomes
simpler, as it is sufficient to study changes in one dimension.

p =S5 (1)

where: z — axis of symmetry BR; p — radius BR; S — defined
function.

Surface defects can be represented as a two-dimensional var-
iable function, i.e., as noise (2): This approach allows for more pre-
cise defect modeling and analysis, since the noise can represent a
variety of surface inhomogeneities. By analyzing the characteristics
of this noise, different types of defects can be more accurately iden-
tified and classified.

d = Noise (¢, 2) (2)

where: @ - rotation BR.

Fig. 2. Typical surface defects BR

With this approach, the BR surface equation (3) forms that de-
scribes its physical structure and properties in the context of the
application under study. This is a key element of the analysis that
enables accurate modeling and simulation of BR surfaces under
various operating conditions.

p = S(z) + Noise (¢,2) (3)

Assume that a parallel beam of light falls on the BR surface at
an angle whose aperture is larger than the allowable size of the
defects. In this case, defects on the BR surface will be easier to
detect because they will cause light scattering. By analysing the
pattern of this scattering, the size and location of defects can be
precisely identified and measured. The intensity of the reflected
beam at a certain point in space for a BR without defects can be
described by a one-dimensional non-negative function f;, which
does not depend on the angle ¢ (4). This means that the distribu-
tion of reflected light intensity on the BR surface is uniform along
the angular coordinate ¢, which simplifies the analysis and inter-
pretation of the measurement results.
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Intensity = f.(z) (4)

In contrast, for BRs with defects, the intensity of the reflected
beam is a two-dimensional non-negative function (5). In this case,
the analysis must consider the rotation of the BR depending on both
the angle ¢ and the variation of the reflected intensity along the
entire z-symmetry axis of the BR to accurately identify and charac-
terize defects. This reflects the complexity and irregularity of the
surface due to the presence of defects.

Intensity = f;(p,2) (5)
which after discretization takes the form (6):

Ap = ZTH, Az = Z";ﬂ

forj=1,]

for i=1,1

D;; = fa(iAg, jAz) (6)
end; end;

where: I —number of counts per one rotation turn BR, / — number
of counts by length BR, z,,,,, —BR length.
Let us estimate the moving average of intensity D; ; as (7):

1
m;; = ;Z§=1D|i+k|1,j (7)

where: K — the size of the sliding window (the period of the moving
average), |i + k|; —modulo I addition operation.
To reduce calculation time, recurring formulas are used (8):

1 1
myj=m_yj+2Dij =Dk, (8)

Equation (8) introduces a recursive method for computing the mov-
ing average of intensity m; ; significantly reducing the number of
operations required for data analysis. Instead of summing the in-
tensity values within the window K at each step, the new average
is computed based on the previously calculated value m;_, ;, by
adding the newly acquired sample D; ; and removing the oldest
sample Dj;_g,, ;- This approach reduces the computational com-
plexity from O(K) to O(1), which is particularly advantageous for
large datasets. As a result, it enables a faster and more efficient
analysis of reflected light intensity, making it especially beneficial
for real-time processing or extensive measurement datasets. Ulti-
mately, this method optimizes computational performance while
maintaining the same level of accuracy as the traditional moving
average calculation.

2. ESTIMATING THE DISPERSION OF THE MOVING
AVERAGE

Let us determine the RMS! measurements of D; ; according to
the expression (9) [14-15]:

1
0ij = (=3 Zie=1 ikt j — Mij)? 9)

The coefficient of variation (CV) is a commonly used quantity
that is equal to the ratio of the standard deviation of a random var-
iable to its mathematical expectation. It is used to compare the

! The root mean square (RMS) is the square root of the mean square, which is the
arithmetic average of the squares of a set of values.
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variation of the same attribute across several aggregates using dif-
ferent arithmetic means (10).

CVi,j = (O'i'j/mi_j) -100 (10)

Let us define the average value of the moving dispersion vola-
tility? vav, ; as (11)

vav;; = max;; — min; ;
K
—
max;; = MaX{CViii, ;)
pay (11)

K
| i = min{CVix, ;)
k=1
For a deep understanding of the statistical properties of the BR
flow, itis desirable to construct a distribution function vav; ;, which,
as a rule, takes the form (12).
Ifvav;; = Vi, thengoto

Defect {formation of Dgff}. (12)
vavy;
i i
| a
i i
| 1
i {
i i
i {
i i
i i
| 1
I |
0 Vmin Vmax |4
| . |
MV oma

Fig. 3. Distribution function of the variability vav ;: Vin, — minimum
acceptable value of sliding dispersion variability; Ve —
maximum acceptable value; Alj,., — uncertainty range
introduced for borderline classification cases; vav; ; - difference
between local maximum and minimum coefficien{ of variation
within the sliding window

Figure 3 illustrates the discriminant function for deciding
whether there is a surface defect in the body of revolution based on
the difference value of the max; ; — min, ;.

3. THE DECISIVE RULE OF DEFECT DETECTION

This rule (13) is based on the coefficient of variation (CV), a sta-
tistical measure that quantifies fluctuations in signal intensity across
multiple sampling points. By leveraging this approach, the system
effectively classifies surface conditions into three categories: defec-
tive, acceptable, or requiring further training.

The decision-making process relies on a threshold-based
framework, where the maximum permissible variability, denoted
as V. acts as a critical limit for defect detection. This threshold
is determined experimentally to ensure optimal sensitivity in identi-
fying structural anomalies. Additionally, an uncertainty
zone, AV,,4. , is introduced to account for borderline cases where
classification remains inconclusive. In such scenarios, the system
requires further adaptation to refine its diagnostic accuracy, reduc-
ing false positives and false negatives.

The algorithm operates iteratively, processing samples along

2 VAV - Variability Average
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both the axis of symmetry and the rotation angle of the examined
surface. The variability index, vav; ; , is computed as the differ-
ence between the maximum and minimum CV values within a pre-
defined analysis window. If vav; ; exceeds V4, , the system clas-
sifies the corresponding region as defective, assigning it to the de-
fect class Ddef If the variability remains below V4 = AVipax
the surface is deemed acceptable and labeled as D . For cases

where the variability falls within the uncertainty range, the sample
is assigned to a pre-training category ij , signaling the need for
additional model refinement.

This structured approach significantly enhances classification
accuracy by integrating an adaptive learning mechanism that con-
tinuously evolves based on new defect patterns. Unlike traditional
methods that rely on fixed thresholds, this system dynamically im-
proves over time, ensuring greater reliability in detecting even sub-
tle irregularities. By employing statistical analysis and machine
learning-based adaptation, the model optimizes its diagnostic pre-
cision, reducing the reliance on manual inspection and increasing
automation efficiency.

The implementation of this decision rule holds substantial im-
plications for industrial applications, particularly in sectors where
precision and defect detection are paramount, such as aerospace,
automotive, and high-precision manufacturing. By minimizing hu-
man intervention and optimizing defectoscopy workflows, this
methodology paves the way for a more robust, scalable, and intel-
ligent quality control system.

forn =1, N {N - total number of BR}

forj = 1,] {J - number of samples along the axis of symmetry
BR}

fori = 1,1 {I- number of samples by rotation angle of BR}

K K
—_—— —~
vavy; = Max{CViiyi,,;} = min{CVii i}
k=1 k=1

if vav;; = Vipax

then goto Defect {formation of Dgff}

elseif vav;; < (Vnax — AVnax)

then go to OK {formation of DZf*

else go to Pre-training {formation of D’

end; end; end. (13)

where: V., — minimum acceptable value of sliding dispersion
variability, V., — maximum acceptable value of sliding dispersion
variability; AV, — uncertainty zone in the decision-making
process, introduced to handle borderline cases where classification
remains inconclusive; vav; ; — the variability index; all threshold
values (Venin » Vinax » AVinax) are determined experimentally;

Thatis, the BR input stream is divided into three groups of prod-
ucts (Fig. 4), while the "Undetermined (Pre-training)” group is used
to retrain the flaw detector with a teacher (human operator).
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100% suitable Flaw detection
(OK) with a teacher

_ (Pre-training)
100% defective A
(Defekt)

100% suitable

Undetermined (OK)

(Pre-training) 100% defective

(Defekt)

Bodies of rotation

T
Regular flaw
detection mode

Fig. 4. Theinput stream of bodies of revolution (BR) is classified into three
categories: suitable (OK), defective (Defect), and undetermined
(Pre-training). The undetermined group serves as an
experimental base for additional supervised training. This
classification allows the system to iteratively refine the decision
boundary between suitable and defective BR through feedback-
based adaptation

The result of the work (13) is the division of the input flow from
N BRinto three groups of products: 100% suitable (OK) - D?f*,
100% defective (Defekt) ~ D{" and undetermined (Pre —
training) - D{}.

Let us adjust the average value of the moving volatility disper-
sion vav; ; and V.4, (14-15):

(vavis" = max;y” —mini7"
K 100 1 def 2
new — K e
max = max —def Tzk=1 (D|i+k| . — ml])
Z K-1 1)
ey le=1Dyisre j

K
—~ 100 def
new _ —m. )2
Lmlnu mln{ E def K 1 1(D|L+k|1,j ml..]) }
k=1 k=1Plirkiyj
(14)

Based on (14), itis necessary to adjust the value of 1, (15):

Vinax = %Zk 1vavY (15)

Let's adjust the average value of the moving volatility dispersion
AV, based on 100% suitable (OK) (16):

new
L]

(vav"ew = max”e‘” — min

ne

w o_ 100 2
max(¥" = max {—K P 1(D|L+k|” mi.j)

{ k I Ske1 D2Er, g
100 1
new — K OK 2
min;;" = min k=1 D)k, ; — Mij) }
l { Sk D2 VK el

(16)
Based on (16), itis necessary to adjust the value of AV, (17):

AVnax = Vinax — k 1vav; v (17)

L

That is, in this way, the range of additional values is deter-
mined AV, qx-
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4. DISCUSSIONS

The training of the machine in the process of its operation (Pre-
training) is carried out by the operator, who selects defect-free BR
from among the undefined BR and feeds them to the input of the
machine in the training mode. Automatically, the system corrects
Vinax and AV, ... Ensuring high accuracy in determining these pa-
rameters is a top priority. The probability of convergence to optimal
values can be close to one with unlimited additional training time.
However, the number of iterations required for convergence in-
creases over time almost linearly, while accuracy increases loga-
rithmically with the number of iterations.

External correction is carried out by the "teacher". Both a hu-
man operator and an automaton can act as a "teacher". In our case,
the teacher is a human operator. It is based on the processing of
control (a posteriori) information that the missing initial information
is filled. While training, the automatic system accumulates experi-
ence, based on which the necessary reaction of the system to ex-
ternal influences is gradually developed. A learning automatic sys-
tem is an asymptotically optimal system, since its optimal response
to external disturbances is not achieved immediately, but over time,
as a result of training.

In the self-learning mode, each BR assigned by the automaton
to the class (OK) generates a parameter refinement 1., and
AV, .- The operation of the machine in self-learning mode is peri-
odically monitored by the operator, who selectively checks small
batches of BR from classes (OK) and (Defect) and decides whether
additional training of the machine is necessary. A self-learning sys-
tem is a self-adjusting system, the algorithm of which develops and
improves in the process of self-learning. This process comes down
to trial and error. The system makes tentative changes to the algo-
rithm and simultaneously monitors the results of these changes.
If the results are favorable from the point of view of management
goals, then changes continue in the same direction until the best
results are achieved or until the management process begins to de-
teriorate.

Machine vision-based methods overcome the low accuracy and
low throughput of manual (visual) detection and are widely used in
a variety of industrial applications, including the inspection of steel
strips, aluminum profiles, and optical components. Images of steel
surfaces contain a lot of noise caused by lighting problems, pseudo-
defects (artifacts), etc. Surface defects, their types, and character-
istics vary greatly. A wide range of methods are used to detect de-
fects, both in the spatial and frequency domains. Often, a combina-
tion of several methods produces useful results. Recently, neural
networks or neural network-based methods have been used to
classify defects.

One of the main directions of development of modern
mechanical engineering is the creation of the so-called "intelligent
engineering" based on computerized integrated production,
modern computer equipment, software control and special-purpose
software, the main goals of which are:

— Optimization of production processes using machine learning
algorithms.

— Improveement of BR quality with computer vision and deep
learning.

— Design and development automation that reduces the
development time of new BR and allows engineers to focus on
more creative tasks.

All of this is significantly transforming the process, providing
new opportunities to optimize BR design, manufacturing, and
quality management.

acta mechanica et automatica, vol.19 no.4 (2025)

We would like to pay special attention to the problem of end-to-
end simulation of defect control of bodies of rotation based on
CAD/CAM/CAE systems. The key link in such production is
numerical control machines, which provide not only automatic
processing of workpieces but also the creation of control programs,
the generation of design documentation based on geometric two-
dimensional and three-dimensional modeling using CAD modules
of integrated systems, and the development of the technological
process by means of SAM.

To solve these problems, finite element control of surface
defects of the rotation body type was simulated using DEFORM 3D
and ANSYS. Simulation of the numerous physical properties of the
reflection of electromagnetic waves from the surface of the rotation
body leads to the solution of linear or nonlinear equations, or partial
differential systems of equations. In some cases (Fourier analysis,
series decomposition, etc.), solving problems in a general way,
is impossible without the use of numerical methods. With the
growth of computer performance, numerical simulation is of
particular importance, as it allows for the replacement of direct
physical experiments.

The DEFORM 3D Finite Element Method (FEA) software
package is based on the simulation process of a system designed
to analyze a variety of forming processes used in metal processing,
such as extrusion, broaching, upsetting, pressing, rolling, drawing,
and allows for a comprehensive analysis of metalworking—from the
operation of sectioning rolled products into billets to the operations
of final machining, control of geometry, and surface defects of
bodies of rotation.

It should be noted that both convolutional neural networks
(CNN) and holographic methods represent promising directions in
the development of surface defect detection systems for rotational
bodies. CNNs are capable of high-accuracy classification based on
visual data, while holography offers detailed, high-resolution
surface profiling. However, both approaches remain under active
research and development and may require extensive data,
complex setups, or specialized conditions for reliable industrial
deployment.

5. CONCLUSIONS

This study presents a statistical approach to the automated
detection of surface defects on highly reflective, rotationally
symmetric bodies. The proposed method is based on the analysis
of reflected light intensity and its statistical variability across the
surface, using a sliding dispersion window. Defect detection is
achieved through a threshold-based classification rule that
leverages the coefficient of variation (CV) to distinguish between
defective, acceptable, and uncertain surface regions.

A key feature of the system is its self-learning capability. In the
“Pre-training” mode, samples with uncertain classification are
reintroduced into the training process under human supervision.
This allows the system to refine its classification parameters (V;,, ..
and AV,,,..) based on verified defect-free bodies. Over time, the
system asymptotically approaches optimal performance through
repeated iterations and feedback.

Although the methodology is well-formulated and supported by
statistical reasoning, practical experimental results—such as real-
world surface images, classification accuracy, or defect detection
rates—are not included in the current study. These will be
addressed in a follow-up publication, which is expected to cover the
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full implementation and empirical validation of the system.

In summary:

The method integrates classical statistical techniques with
adaptive learning to create an effective defect detection system.
The decision-making rule based on sliding dispersion variability
enhances the robustness and interpretability of the
classification.

Human-assisted self-learning ensures that the system
continuously improves its performance with minimal manual
intervention.

The described solution has promising applications in industries
requiring high-precision surface control.

A relatively detailed description of the end-to-end modeling

system for monitoring surface defects of bodies of rotation is
beyond the scope of this article and is expected to be published in

the

third part of the author's trilogy on this topic. Future work will

also focus on the experimental validation of the proposed
approach, including performance benchmarking, integration with
machine vision hardware, and comparison with existing Al-based
defect detection systems.
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