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Abstract: Defects on highly reflective rotating surfaces can adversely affect the performance, service life, and safety of products, making 
surface defect detection a critical process in quality assurance. This study focuses on analysing the roughness and shape accuracy  
of precision surfaces, particularly for metal and ceramic components with rotational symmetry. Identifying surface defects, assessing  
deviations from ideal roundness and cylindricity, and quantifying these deviations are key objectives in ensuring manufacturing precision. 
Various techniques are employed in defect detection, including visual, optical, interferometric, polarization, reflexometric, holographic and 
other advanced methods. These approaches involve subjecting the rotating surface to illumination and analysing the reflected signals.  
The reflected signal is processed to generate a two-dimensional function based on the rotation angle and spatial coordinates, enabling 
precise evaluation of surface quality. Within this framework, statistical parameters are computed in a sliding analysis window to detect 
irregularities. For instance, sliding dispersion values are used to differentiate defect-free regions from defective ones, with lower dispersion 
indicating smooth, uniform surfaces and higher values pointing to potential defects. By comparing these values against a predefined  
threshold, defects are identified systematically. This approach provides a robust and efficient methodology for detecting and quantifying 
surface defects on rotationally symmetric components. It ensures improved precision in manufacturing processes and enhances the reliability 
and safety of the resulting products. The findings emphasize the importance of integrating advanced defect detection techniques in modern 
production lines to maintain high-quality standards. 
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1. INTRODUCTION 

The quality of finished surfaces plays a crucial role in industries 
such as mechanical engineering, automotive, aerospace, and oth-
ers. Surface quality directly impacts the performance, reliability, 
and longevity of products. Common surface defects include rough-
ness (micro-irregularities from processing), waviness (periodic var-
iations in surface height), cracks, stains, and inclusions. 

This article aims to revisit previously published findings, em-
phasizing the importance of integrating self-learning capabilities 
into defect detection systems. Such systems, built on modern arti-
ficial intelligence principles, offer significant potential beyond tradi-
tional supervised learning approaches. However, a review of exist-
ing methodologies reveals that many current defect detection tech-
niques fail to deliver practical, industry-ready results for modern 
mechanical engineering applications. Overreliance on artificial in-
telligence methods without adequate integration of classical math-
ematical statistics and engineering principles has led to unrealistic 
expectations regarding their scientific and practical outputs. These 
classical approaches retain their value and continue to provide ro-
bust solutions. 

Bodies of rotation (BR), such as spheres, cylinders, cones, and 
torus shapes, are fundamental to many precision applications. Ro-
tational components like aircraft bearing balls, precision steel balls, 
and cylinders (Fig. 1) are critical in industries such as aviation, rail-
ways, and precision machinery. The performance and durability of 
these parts heavily depend on the surface quality, requiring 

manufacturers to adhere to rigorous precision standards. 
Advanced quality control systems are indispensable for detect-

ing and addressing surface defects, ensuring that components 
meet the high-performance demands of their applications. By com-
bining modern AI-driven techniques with proven statistical and en-
gineering methodologies, defect detection can achieve both inno-
vation and practical relevance, enhancing product quality across 
diverse industries. 

The earlier results were published in the article [25], presented 
at the XXVI International Symposium Research-Education-Tech-
nology, held in Stralsund on September 26th–27th, 2024. 

 
Fig. 1. An examples of metal BR (bodies of rotation) 

Different approaches to surface quality analysis are described 
in [1]. This research includes a variety of methods that can be ap-
plied in different industrial contexts. The solution of the problem of 
modeling quality analysis is not only theoretical [2-3], but also of 
great practical importance [4-5]. Practical applications of these 
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methods include quality control in manufacturing processes, where 
even the smallest deviations in surface quality can lead to defects 
that compromise product performance and durability. Probably, one 
of the first approaches to the construction of automata for detecting 
defects in the surface of bodies of revolution is the simulation of 
training and work of a human operator [6-8]. Operators can recog-
nize defects after becoming familiar with a small number of different 
objects of the same type. A person has an amazing ability: having 
become acquainted with a small number of different objects of the 
same class, he subsequently recognizes all the objects of this 
class. Within the framework of the work [6], surface defects are con-
sidered as statistical anomalies of roughness parameters. To de-
tect them, the degree of homogeneity of the surface quality is de-
termined and compared with the permissible threshold value [13]. 
Such a method makes it possible to effectively identify anomalies, 
which is key to ensuring high product quality. 

In recent years, the integration of artificial intelligence (AI) and 
machine learning (ML) has revolutionized surface defect detection. 
Advanced algorithms [15] can now analyze complex patterns in sur-
face data, enabling the identification of defects that were previously 
undetectable using traditional methods. For instance, convolutional 
neural networks (CNNs) [16] have been employed to classify sur-
face imperfections with high accuracy, reducing reliance on manual 
inspection and increasing efficiency in production lines. 

Moreover, the application of deep learning techniques has fa-
cilitated the development of automated inspection systems capable 
of real-time defect detection. These systems utilize large datasets 
to train models that can discern subtle variations in surface tex-
tures, leading to more reliable quality control processes [17]. Addi-
tionally, the use of transfer learning [18] has shown promise in sit-
uations where limited defect data is available, allowing models to 
leverage knowledge from related domains to improve detection per-
formance. 

The adoption of non-contact measurement techniques, such as 
laser-based methods, has further enhanced surface quality analy-
sis. These approaches offer high precision and are less prone to 
damaging delicate surfaces compared to traditional contact meth-
ods [19]. Furthermore, the implementation of 3D scanning technol-
ogies combined with ML algorithms [20] has enabled comprehen-
sive assessments of complex geometries, providing detailed in-
sights into surface integrity. Recent advancements also include the 
use of digital holographic microscopy for surface topography meas-
urements. This technique allows for high-resolution, three-dimen-
sional imaging of surfaces, facilitating the detection of micro-scale 
defects that may impact product performance [21]. Additionally, the 
development of hybrid models that combine statistical methods with 
machine learning approaches has improved the robustness of de-
fect detection systems [22], making them more adaptable to varying 
manufacturing conditions. 

The integration of Internet of Things (IoT) devices with surface 
inspection systems has opened new avenues for real-time monitor-
ing and predictive maintenance. By collecting and analyzing data 
from connected sensors, manufacturers can proactively address 
potential quality issues before they escalate, thereby reducing 
downtime and associated costs [23]. 

Furthermore, the standardization of surface measurement 
techniques, as outlined in ISO 25178, has provided a unified frame-
work for assessing surface texture, ensuring consistency and com-
parability across different industries and applications [24]. This 
standard encompasses both contact and non-contact measure-
ment methods, reflecting the diverse approaches employed in mod-
ern surface analysis. 

In conclusion, the convergence of advanced technologies such 
as AI, machine learning, and non-contact measurement techniques 
has significantly enhanced the field of surface quality analysis. 
These innovations have led to more accurate, efficient, and reliable 
defect detection methods, ultimately contributing to improved prod-
uct quality and manufacturing efficiency.BR roughness parameters 
are statistically homogeneous along the angular coordinate, so de-
fects are identified as statistical anomalies of these parameters de-
pending on the BR rotation angle for each point on the symmetry 
axis. This means that any anomalies in roughness can be detected 
by analyzing deviations from the norm at different angles of rota-
tion. The surface equation (1) of some defect-free BR in a cylindri-
cal coordinate system (𝜌, 𝜑, 𝑧) (Fig. 2) is a one-dimensional non-
negative function 𝑆 independent of 𝜑. This means that the BR sur-
face is symmetric about the z-axis and does not vary with the angle 
𝜑. With this symmetry, the analysis of the BR surface becomes 
simpler, as it is sufficient to study changes in one dimension. 

𝜌 =  𝑆 (𝑧)   (1) 

where: 𝑧 − axis of symmetry BR; 𝜌 − radius BR; 𝑆 − defined 
function.  

Surface defects can be represented as a two-dimensional var-
iable function, i.e., as noise (2): This approach allows for more pre-
cise defect modeling and analysis, since the noise can represent a 
variety of surface inhomogeneities. By analyzing the characteristics 
of this noise, different types of defects can be more accurately iden-
tified and classified. 

𝑑 =  𝑁𝑜𝑖𝑠𝑒 (𝜑, 𝑧)   (2) 

where: 𝜑 - rotation BR. 

 
Fig. 2. Typical surface defects BR 

With this approach, the BR surface equation (3) forms that de-
scribes its physical structure and properties in the context of the 
application under study. This is a key element of the analysis that 
enables accurate modeling and simulation of BR surfaces under 
various operating conditions. 

𝜌 =  𝑆 (𝑧) + 𝑁𝑜𝑖𝑠𝑒 (𝜑, 𝑧)   (3) 

Assume that a parallel beam of light falls on the BR surface at 
an angle whose aperture is larger than the allowable size of the 
defects. In this case, defects on the BR surface will be easier to 
detect because they will cause light scattering. By analysing the 
pattern of this scattering, the size and location of defects can be 
precisely identified and measured. The intensity of the reflected 
beam at a certain point in space for a BR without defects can be 
described by a one-dimensional non-negative function 𝑓𝑠, which 

does not depend on the angle 𝜑 (4). This means that the distribu-
tion of reflected light intensity on the BR surface is uniform along 
the angular coordinate 𝜑, which simplifies the analysis and inter-
pretation of the measurement results. 
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𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =  𝑓𝑠(𝑧)   (4) 

In contrast, for BRs with defects, the intensity of the reflected 
beam is a two-dimensional non-negative function (5). In this case, 
the analysis must consider the rotation of the BR depending on both 
the angle 𝜑 and the variation of the reflected intensity along the 
entire z-symmetry axis of the BR to accurately identify and charac-
terize defects. This reflects the complexity and irregularity of the 
surface due to the presence of defects.  

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦  =  𝑓𝑑(𝜑, 𝑧)   (5) 

which after discretization takes the form (6): 

∆𝜑 =
2𝜋

𝐼
;  ∆𝑧 =

𝑧𝑚𝑎𝑥

𝐽
  

for 𝑗 = 1, 𝐽̅̅ ̅̅   

for  𝑖 = 1, 𝐼̅̅ ̅̅   

𝐷𝑖,𝑗 = 𝑓𝑑(𝑖∆𝜑, 𝑗∆𝑧)                                                                 (6)  

end; end; 

where:  𝐼 – number of counts per one rotation turn BR, 𝐽 – number 

of counts by length BR, 𝑧𝑚𝑎𝑥 – BR length. 
Let us estimate the moving average of intensity 𝐷𝑖,𝑗 as (7): 

𝑚𝑖,𝑗 =
1

𝐾
∑ 𝐷|𝑖+𝑘|𝐼,𝑗
𝐾
𝑘=1    (7) 

where: 𝐾 – the size of the sliding window (the period of the moving 

average), |𝑖 + 𝑘|𝐼 – modulo 𝐼 addition operation. 
To reduce calculation time, recurring formulas are used (8): 

𝑚𝑖,𝑗 = 𝑚𝑖−1,𝑗 +
1

𝐾
𝐷𝑖,𝑗 −

1

 𝐾
𝐷|𝑖−𝐾|𝐼,𝑗     (8) 

Equation (8) introduces a recursive method for computing the mov-
ing average of intensity 𝑚𝑖,𝑗 significantly reducing the number of 

operations required for data analysis. Instead of summing the in-
tensity values within the window  𝐾  at each step, the new average 

is computed based on the previously calculated value  𝑚𝑖−1,𝑗, by 

adding the newly acquired sample  𝐷𝑖,𝑗 and removing the oldest 

sample  𝐷|𝑖−𝐾|𝐼,𝑗. This approach reduces the computational com-

plexity from O(K) to O(1), which is particularly advantageous for 
large datasets. As a result, it enables a faster and more efficient 
analysis of reflected light intensity, making it especially beneficial 
for real-time processing or extensive measurement datasets. Ulti-
mately, this method optimizes computational performance while 
maintaining the same level of accuracy as the traditional moving 
average calculation. 

2. ESTIMATING THE DISPERSION OF THE MOVING 
AVERAGE 

Let us determine the RMS1 measurements of 𝐷𝑖,𝑗  according to 

the expression (9) [14-15]: 

𝜎𝑖,𝑗 = √
1

𝐾−1
∑ (𝐷|𝑖+𝑘|𝐼,𝑗 −𝑚𝑖.𝑗)

2𝐾
𝑘=1     (9) 

The coefficient of variation (CV) is a commonly used quantity 
that is equal to the ratio of the standard deviation of a random var-
iable to its mathematical expectation. It is used to compare the 

 
1 The root mean square (RMS) is the square root of the mean square, which is the 

arithmetic average of the squares of a set of values. 

variation of the same attribute across several aggregates using dif-
ferent arithmetic means (10). 

𝐶𝑉𝑖,𝑗 = (𝜎𝑖,𝑗/𝑚𝑖.𝑗) ∙ 100   (10) 

Let us define the average value of the moving dispersion vola-
tility2 𝑣𝑎𝑣𝑖,𝑗 as (11) 

{
 
 

 
 
𝑣𝑎𝑣𝑖,𝑗 = 𝑚𝑎𝑥𝑖,𝑗 −𝑚𝑖𝑛𝑖,𝑗

𝑚𝑎𝑥𝑖,𝑗 = max⏟
𝑘=1

⏞
𝐾

{𝐶𝑉|𝑖+𝑘|𝐼,𝑗}

 𝑚𝑖𝑛𝑖,𝑗 = min⏟
𝑘=1

⏞
𝐾

{𝐶𝑉|𝑖+𝑘|𝐼,𝑗}

   (11) 

For a deep understanding of the statistical properties of the BR 
flow, it is desirable to construct a distribution function 𝑣𝑎𝑣𝑖,𝑗, which, 

as a rule, takes the form (12).    
If 𝑣𝑎𝑣𝑖,𝑗 ≥ 𝑉𝑚𝑎𝑥  then go to 

𝐷𝑒𝑓𝑒𝑐𝑡  {𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐷𝑖,𝑗
𝑑𝑒𝑓
}.                                          (12)                                                                                                                

 
Fig. 3.  Distribution function of the variability  𝑣𝑎𝑣𝑖,𝑗 : 𝑉𝑚𝑖𝑛 – minimum 

acceptable value of sliding dispersion variability; 𝑉𝑚𝑎𝑥 – 
maximum acceptable value; ∆𝑉𝑚𝑎𝑥 – uncertainty range 
introduced for borderline classification cases; 𝑣𝑎𝑣𝑖,𝑗 – difference 
between local maximum and minimum coefficient of variation 
within the sliding window  

Figure 3 illustrates the discriminant function for deciding 
whether there is a surface defect in the body of revolution based on 
the difference value of the 𝑚𝑎𝑥𝑖,𝑗 −𝑚𝑖𝑛𝑖,𝑗.  

3. THE DECISIVE RULE OF DEFECT DETECTION 

This rule (13) is based on the coefficient of variation (CV), a sta-
tistical measure that quantifies fluctuations in signal intensity across 
multiple sampling points. By leveraging this approach, the system 
effectively classifies surface conditions into three categories: defec-
tive, acceptable, or requiring further training. 

The decision-making process relies on a threshold-based 
framework, where the maximum permissible variability, denoted 
as  𝑉𝑚𝑎𝑥, acts as a critical limit for defect detection. This threshold 
is determined experimentally to ensure optimal sensitivity in identi-
fying structural anomalies. Additionally, an uncertainty 
zone,  ∆𝑉𝑚𝑎𝑥 , is introduced to account for borderline cases where 
classification remains inconclusive. In such scenarios, the system 
requires further adaptation to refine its diagnostic accuracy, reduc-
ing false positives and false negatives. 

The algorithm operates iteratively, processing samples along 

2 VAV − Variability Average  
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both the axis of symmetry and the rotation angle of the examined 
surface. The variability index, 𝑣𝑎𝑣𝑖,𝑗 , is computed as the differ-

ence between the maximum and minimum CV values within a pre-
defined analysis window. If 𝑣𝑎𝑣𝑖,𝑗 exceeds 𝑉𝑚𝑎𝑥 , the system clas-

sifies the corresponding region as defective, assigning it to the de-

fect class 𝐷𝑖,𝑗
𝑑𝑒𝑓

. If the variability remains below 𝑉𝑚𝑎𝑥 – ∆𝑉𝑚𝑎𝑥, 

the surface is deemed acceptable and labeled as 𝐷𝑖,𝑗
𝑂𝐾 . For cases 

where the variability falls within the uncertainty range, the sample 

is assigned to a pre-training category  𝐷𝑖,𝑗
𝑡𝑟 , signaling the need for 

additional model refinement. 
This structured approach significantly enhances classification 

accuracy by integrating an adaptive learning mechanism that con-
tinuously evolves based on new defect patterns. Unlike traditional 
methods that rely on fixed thresholds, this system dynamically im-
proves over time, ensuring greater reliability in detecting even sub-
tle irregularities. By employing statistical analysis and machine 
learning-based adaptation, the model optimizes its diagnostic pre-
cision, reducing the reliance on manual inspection and increasing 
automation efficiency. 

The implementation of this decision rule holds substantial im-
plications for industrial applications, particularly in sectors where 
precision and defect detection are paramount, such as aerospace, 
automotive, and high-precision manufacturing. By minimizing hu-
man intervention and optimizing defectoscopy workflows, this 
methodology paves the way for a more robust, scalable, and intel-
ligent quality control system. 

for 𝑛 = 1,𝑁̅̅ ̅̅ ̅  {N − total number of BR} 

for 𝑗 = 1, 𝐽̅̅ ̅̅   {J − number of samples along the axis of symmetry 
BR} 

for 𝑖 = 1, 𝐼̅̅ ̅̅   {I − number of samples by rotation angle of BR} 

𝑣𝑎𝑣𝑖,𝑗 = 𝑚𝑎𝑥⏟
𝑘=1

⏞
𝐾

{𝐶𝑉|𝑖+𝑘|𝐼,𝑗} − 𝑚𝑖𝑛⏟
𝑘=1

⏞
𝐾

{𝐶𝑉|𝑖+𝑘|𝐼,𝑗} 

if  𝑣𝑎𝑣𝑖,𝑗 ≥ 𝑉𝑚𝑎𝑥  

then go to  𝐷𝑒𝑓𝑒𝑐𝑡 {𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐷𝑖,𝑗
𝑑𝑒𝑓
} 

else if  𝑣𝑎𝑣𝑖,𝑗 < (𝑉𝑚𝑎𝑥 − ∆𝑉𝑚𝑎𝑥)  

then go to 𝑂𝐾 {𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐷𝑖,𝑗
𝑂𝐾} 

else go to Pre-training  {𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐷𝑖,𝑗
𝑡𝑟} 

end; end; end.   (13) 

where: 𝑉𝑚𝑖𝑛 – minimum acceptable value of sliding dispersion 
variability, 𝑉𝑚𝑎𝑥 – maximum acceptable value of sliding dispersion 

variability; ∆𝑉𝑚𝑎𝑥 – uncertainty zone in the decision-making 
process, introduced to handle borderline cases where classification 
remains inconclusive; 𝑣𝑎𝑣𝑖,𝑗 – the variability index; all threshold 

values (𝑉𝑚𝑖𝑛 , 𝑉𝑚𝑎𝑥 , ∆𝑉𝑚𝑎𝑥) are determined experimentally; 
That is, the BR input stream is divided into three groups of prod-

ucts (Fig. 4), while the "Undetermined (Pre-training)” group is used 
to retrain the flaw detector with a teacher (human operator). 

 
Fig. 4.   The input stream of bodies of revolution (BR) is classified into three 

categories: suitable (OK), defective (Defect), and undetermined 
(Pre-training). The undetermined group serves as an 
experimental base for additional supervised training. This 
classification allows the system to iteratively refine the decision 
boundary between suitable and defective BR through feedback-
based adaptation 

The result of the work (13) is the division of the input flow from 

𝑁 BR into three groups of products: 100% suitable (𝑂𝐾) − 𝐷𝑖,𝑗
𝑂𝐾, 

100% defective (𝐷𝑒𝑓𝑒𝑘𝑡) − 𝐷𝑖,𝑗
𝑑𝑒𝑓

 and undetermined (𝑃𝑟𝑒 −

𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔) − 𝐷𝑖,𝑗
𝑡𝑟. 

Let us adjust the average value of the moving volatility disper-
sion 𝑣𝑎𝑣𝑖,𝑗 and 𝑉𝑚𝑎𝑥 (14-15): 

 

{
  
 

  
 
𝑣𝑎𝑣𝑖,𝑗

𝑛𝑒𝑤 = 𝑚𝑎𝑥𝑖,𝑗
𝑛𝑒𝑤 −𝑚𝑖𝑛𝑖,𝑗

𝑛𝑒𝑤                                                        

𝑚𝑎𝑥𝑖,𝑗
𝑛𝑒𝑤 = 𝑚𝑎𝑥⏟

𝑘=1

⏞
𝐾

{
100

1

𝐾
∑ 𝐷|𝑖+𝑘|𝐼,𝑗

𝑑𝑒𝑓𝐾
𝑘=1

√ 1

𝐾−1
∑ (𝐷|𝑖+𝑘|𝐼,𝑗

𝑑𝑒𝑓
−𝑚𝑖.𝑗)

2
𝐾
𝑘=1 }

𝑚𝑖𝑛𝑖,𝑗
𝑛𝑒𝑤 = 𝑚𝑖𝑛⏟

𝑘=1

⏞
𝐾

{
100

1

𝐾
∑ 𝐷|𝑖+𝑘|𝐼,𝑗

𝑑𝑒𝑓𝐾
𝑘=1

√
1

𝐾−1
∑ (𝐷|𝑖+𝑘|𝐼,𝑗

𝑑𝑒𝑓
−𝑚𝑖.𝑗)

2𝐾
𝑘=1 }   

   (14) 

Based on (14), it is necessary to adjust the value of 𝑉𝑚𝑎𝑥 (15): 

𝑉𝑚𝑎𝑥 =
1

𝑁
∑ 𝑣𝑎𝑣𝑖,𝑗

𝑛𝑒𝑤𝑁
𝑘=1    (15) 

Let's adjust the average value of the moving volatility dispersion 
∆𝑉𝑚𝑎𝑥 based on 100% suitable (𝑂𝐾) (16): 

{
  
 

  
 
𝑣𝑎𝑣𝑖,𝑗

𝑛𝑒𝑤 = 𝑚𝑎𝑥𝑖,𝑗
𝑛𝑒𝑤 −𝑚𝑖𝑛𝑖,𝑗

𝑛𝑒𝑤                                                         

𝑚𝑎𝑥𝑖,𝑗
𝑛𝑒𝑤 = 𝑚𝑎𝑥⏟

𝑘=1

⏞
𝐾

{
100

1

𝐾
∑ 𝐷|𝑖+𝑘|𝐼,𝑗

𝑂𝐾𝐾
𝑘=1

√
1

𝐾−1
∑ (𝐷|𝑖+𝑘|𝐼,𝑗

𝑂𝐾 −𝑚𝑖.𝑗)
2𝐾

𝑘=1 } 

𝑚𝑖𝑛𝑖,𝑗
𝑛𝑒𝑤 = 𝑚𝑖𝑛⏟

𝑘=1

⏞
𝐾

{
100

1

𝐾
∑ 𝐷|𝑖+𝑘|𝐼,𝑗

𝑂𝐾𝐾
𝑘=1

√
1

𝐾−1
∑ (𝐷|𝑖+𝑘|𝐼,𝑗

𝑂𝐾 −𝑚𝑖.𝑗)
2𝐾

𝑘=1 }    

   (16) 

Based on (16), it is necessary to adjust the value of ∆𝑉𝑚𝑎𝑥 (17): 

∆𝑉𝑚𝑎𝑥 = 𝑉𝑚𝑎𝑥 −
1

𝑁
∑ 𝑣𝑎𝑣𝑖,𝑗

𝑛𝑒𝑤𝑁
𝑘=1    (17) 

That is, in this way, the range of additional values is deter-
mined ∆𝑉𝑚𝑎𝑥. 
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4. DISCUSSIONS 

The training of the machine in the process of its operation (Pre-
training) is carried out by the operator, who selects defect-free BR 
from among the undefined BR and feeds them to the input of the 
machine in the training mode. Automatically, the system corrects 
𝑉𝑚𝑎𝑥 and ∆𝑉𝑚𝑎𝑥. Ensuring high accuracy in determining these pa-
rameters is a top priority. The probability of convergence to optimal 
values can be close to one with unlimited additional training time. 
However, the number of iterations required for convergence in-
creases over time almost linearly, while accuracy increases loga-
rithmically with the number of iterations. 

External correction is carried out by the "teacher". Both a hu-
man operator and an automaton can act as a "teacher". In our case, 
the teacher is a human operator. It is based on the processing of 
control (a posteriori) information that the missing initial information 
is filled. While training, the automatic system accumulates experi-
ence, based on which the necessary reaction of the system to ex-
ternal influences is gradually developed. A learning automatic sys-
tem is an asymptotically optimal system, since its optimal response 
to external disturbances is not achieved immediately, but over time, 
as a result of training.  

In the self-learning mode, each BR assigned by the automaton 
to the class (OK) generates a parameter refinement 𝑉𝑚𝑎𝑥 and 

∆𝑉𝑚𝑎𝑥. The operation of the machine in self-learning mode is peri-
odically monitored by the operator, who selectively checks small 
batches of BR from classes (OK) and (Defect) and decides whether 
additional training of the machine is necessary. A self-learning sys-
tem is a self-adjusting system, the algorithm of which develops and 
improves in the process of self-learning. This process comes down 
to trial and error. The system makes tentative changes to the algo-
rithm and simultaneously monitors the results of these changes. 
If the results are favorable from the point of view of management 
goals, then changes continue in the same direction until the best 
results are achieved or until the management process begins to de-
teriorate. 

Machine vision-based methods overcome the low accuracy and 
low throughput of manual (visual) detection and are widely used in 
a variety of industrial applications, including the inspection of steel 
strips, aluminum profiles, and optical components. Images of steel 
surfaces contain a lot of noise caused by lighting problems, pseudo-
defects (artifacts), etc. Surface defects, their types, and character-
istics vary greatly. A wide range of methods are used to detect de-
fects, both in the spatial and frequency domains. Often, a combina-
tion of several methods produces useful results. Recently, neural 
networks or neural network-based methods have been used to 
classify defects. 

One of the main directions of development of modern 
mechanical engineering is the creation of the so-called "intelligent 
engineering" based on computerized integrated production, 
modern computer equipment, software control and special-purpose 
software, the main goals of which are: 

− Optimization of production processes using machine learning 
algorithms.   

− Improveement of BR quality with computer vision and deep 
learning.  

− Design and development automation that reduces the 
development time of new BR and allows engineers to focus on 
more creative tasks.   
All of this is significantly transforming the process, providing 

new opportunities to optimize BR design, manufacturing, and 
quality management.  

We would like to pay special attention to the problem of end-to-
end simulation of defect control of bodies of rotation based on 
CAD/CAM/CAE systems. The key link in such production is 
numerical control machines, which provide not only automatic 
processing of workpieces but also the creation of control programs, 
the generation of design documentation based on geometric two-
dimensional and three-dimensional modeling using CAD modules 
of integrated systems, and the development of the technological 
process by means of SAM.  

To solve these problems, finite element control of surface 
defects of the rotation body type was simulated using DEFORM 3D  
and ANSYS. Simulation of the numerous physical properties of the 
reflection of electromagnetic waves from the surface of the rotation 
body leads to the solution of linear or nonlinear equations, or partial 
differential systems of equations. In some cases (Fourier analysis, 
series decomposition, etc.), solving problems in a general way, 
is impossible without the use of numerical methods. With the 
growth of computer performance, numerical simulation is of 
particular importance, as it allows for the replacement of direct 
physical experiments.  

The DEFORM 3D Finite Element Method (FEA) software 
package is based on the simulation process of a system designed 
to analyze a variety of forming processes used in metal processing, 
such as extrusion, broaching, upsetting, pressing, rolling, drawing, 
and allows for a comprehensive analysis of metalworking—from the 
operation of sectioning rolled products into billets to the operations 
of final machining, control of geometry, and surface defects of 
bodies of rotation. 

It should be noted that both convolutional neural networks 
(CNN) and holographic methods represent promising directions in 
the development of surface defect detection systems for rotational 
bodies. CNNs are capable of high-accuracy classification based on 
visual data, while holography offers detailed, high-resolution 
surface profiling. However, both approaches remain under active 
research and development and may require extensive data, 
complex setups, or specialized conditions for reliable industrial 
deployment. 

5. CONCLUSIONS 

This study presents a statistical approach to the automated 
detection of surface defects on highly reflective, rotationally 
symmetric bodies. The proposed method is based on the analysis 
of reflected light intensity and its statistical variability across the 
surface, using a sliding dispersion window. Defect detection is 
achieved through a threshold-based classification rule that 
leverages the coefficient of variation (CV) to distinguish between 
defective, acceptable, and uncertain surface regions. 

A key feature of the system is its self-learning capability. In the 
“Pre-training” mode, samples with uncertain classification are 
reintroduced into the training process under human supervision. 
This allows the system to refine its classification parameters (𝑉𝑚𝑎𝑥 
and ∆𝑉𝑚𝑎𝑥) based on verified defect-free bodies. Over time, the 
system asymptotically approaches optimal performance through 
repeated iterations and feedback. 

Although the methodology is well-formulated and supported by 
statistical reasoning, practical experimental results—such as real-
world surface images, classification accuracy, or defect detection 
rates—are not included in the current study. These will be 
addressed in a follow-up publication, which is expected to cover the 



Łukasz Lemieszewski, Janusz Szymczyk, Evgeny Ochin                                                                                                                                           DOI 10.2478/ama-2025-0069                                                                                                                                                 
Design of Automated Defectoscopy Systems  

616 

full implementation and empirical validation of the system. 
In summary: 

− The method integrates classical statistical techniques with 
adaptive learning to create an effective defect detection system. 

− The decision-making rule based on sliding dispersion variability 
enhances the robustness and interpretability of the 
classification. 

− Human-assisted self-learning ensures that the system 
continuously improves its performance with minimal manual 
intervention. 

− The described solution has promising applications in industries 
requiring high-precision surface control. 
A relatively detailed description of the end-to-end modeling 

system for monitoring surface defects of bodies of rotation is 
beyond the scope of this article and is expected to be published in 
the third part of the author's trilogy on this topic. Future work will 
also focus on the experimental validation of the proposed 
approach, including performance benchmarking, integration with 
machine vision hardware, and comparison with existing AI-based 
defect detection systems. 
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