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Abstract: The proposed PD-type position control law for manipulator robots adjusts the proportional gains based on the desired position.
This capability improves the PD controller’s efficiency in trajectory tracking in terms of accumulated position error and energy efficiency, even
when the manipulator's dynamic model parameters are unknown. To accomplish this goal, a Radial Basis Function interpolation network,
trained offline to avoid higher computational demands, replaces each proportional gain. The Lyapunov method ensures the system'’s stability,
and its effectiveness in position control is further assessed under parametric uncertainties and external perturbations through Monte Carlo
analysis and Kruskal-Wallis statistical tests. Matlab simulations on a two-degree-of-freedom manipulator arm following an owl-shaped tra-
jectory demonstrate that, in trajectory tracking, the proposed controller achieves improved £, norm and energy efficiency compared with the

PD controllers of Takegaki—Arimoto and Tanh(+) with bounded actions.
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1. INTRODUCTION

In recent decades, industries have used robotic systems to au-
tomate repetitive or dangerous tasks in industrial applications. In
automated processes where the robot moves within its workspace
without interacting with the environment, a control system based on
position or motion is a viable option. However, as the demands of
scientific and technological production processes increase, the
tasks assigned to robotic arms are becoming increasingly complex
[1]. Motion control has the drawback of requiring a precise model
of all the robot's parameters, which is challenging because com-
plete model information is not always available and often needs to
be obtained through regression models [2]. The motion control
problem also involves modeling through non-autonomous differen-
tial equations, requiring asymptotic stability proofs using strict Lya-
punov functions—a non-trivial task [3]. To address this challenge,
position control, also known as the regulation problem, simplifies
trajectory tracking by using point-to-point control [4]. This approach
enables the robot’s end-effector to move to a fixed and constant
desired position over time, regardless of its initial joint position.
Since the initial position does not affect the system’s stability, the
manipulator can trace a series of consecutive points in space
(where the previous point serves as the initial condition) that ap-
proximate the desired trajectory.

In the regulation problem, the Proportional-Derivative (PD) con-
trol law with gravity compensation proposed in [5] ensures global
asymptotic stability of the closed-loop system with an appropriate
selection of proportional and derivative gains. However, since these
gains are constant, abrupt changes in the desired trajectory can
increase tracking error, leading some authors to propose variable
gains to improve performance. For instance, in [4], researchers pro-
pose a solution to the regulation problem by introducing a set of

saturated controllers with variable gains. These controllers gener-
ate torques within the prescribed limits of the servomotors. The
functions for the variable gains allow for smooth self-tuning as the
joint position error and velocity approach zero, but it is still neces-
sary to establish parameters for the proportional and derivative
gains. In [6], the authors propose a modified neural network algo-
rithm as an adaptive tuning method to optimize the controller gains.
The proposal is complex, but robust against uncertainties in system
parameters and various trajectories. Unfortunately, it lacks a stabil-
ity demonstration and requires careful selection of the controller
gain limits. The authors of [7] introduce an optimization technique
based on an improved Artificial Bee Colony. This technique uses
Lyapunov stability functions to determine the optimal gains of a Pro-
portional-Integral-Derivative controller in a 3 degrees-of-freedom
manipulator system. The optimized system shows robustness
against various perturbation conditions and uncertainty in the pay-
load mass, but the algorithm lacks a stability demonstration, and
understanding its operating principle requires considerable effort.
Similar observations can be applied to gain tuning using fuzzy al-
gorithms [8]. The authors in [9] propose a regulator with constant
proportional gains and variable derivative gains to enhance the ro-
bot's transient response through damping, utilizing position error
and velocity. This allows the system to reach a steady state
smoothly while meeting the servomotor constraints. Although the
results are better than the hyperbolic tangent controller [10], which
is known for its effectiveness, tuning still requires designer exper-
tise. In Section 5, we review additional relevant contributions on
PD-like controllers with variable gain adaptations [15-23]. The dis-
cussion emphasizes the type of controller, the specific structure of
the variable gains (e.g. state-dependent, adaptive, fuzzy, or neural-
network-based), the stability analysis methods applied (such as
Lyapunov theory, singular perturbation theory, or global
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convergence arguments) and the validation strategies adopted,
ranging from numerical simulations to experimental implementa-
tions.
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Fig. 1. (a) Two-DOF manipulator diagram; (b) Desired positions in the
workspace for RBF training

In this work, we propose a PD-type position control law for ro-
botic manipulators, where the proportional gains are adjusted as
functions of the desired position. These gains are obtained through
a Radial Basis Function (RBF) interpolation network trained offline,
which reduces online computational demands. The objective is to
improve trajectory-tracking performance in terms of accumulated
error and energy efficiency when compared to the classical PD reg-
ulator [5] and the Tanh regulator [10]. The system’s stability is for-
mally ensured using Lyapunov’s second method. In the remainder
of this paper, we denote the proposed approach as the PDN con-
troller. From a theoretical standpoint, PDN does not differ from the
classical PD controller of Takegaki—Arimoto [5], since the gains de-
pend solely on the desired position and not on the system states.
Consequently, its stability proof is identical to that of the conven-
tional PD law. However, PDN introduces practical advantages: (i)
there is no need for re-tuning gains at different desired positions,
and (ii) it exhibits enhanced performance in point-to-point trajectory
tracking, particularly in terms of robustness, accumulated error, and
energy efficiency.

The main contributions of this manuscript can be summarized
as follows:

— A methodology for determining the proportional gains of a ro-
botic manipulator controller directly from the desired position,
avoiding conventional procedures that depend on designer ex-
pertise.

— The use of RBF networks for automatic gain tuning, providing
a simpler and more practical implementation compared to alter-
native methods reported in the literature [6-9].

— Demonstration of improved performance in terms of L2-norm
error and energy efficiency in trajectory-tracking tasks with re-
spect to existing approaches.

— Integration of three distinctive features—desired-position de-
pendence, offline RBF training, and Lyapunov-based stability
analysis—which together enhance both theoretical guarantees
and practical applicability. This combination particularly
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strengthens point-to-point trajectory tracking and robust regula-

tion without the need for gain re-scheduling, aspects not simul-

taneously addressed in previous studies.

This work is structured as follows: Section 2 presents the dy-
namic model of the manipulator robot and the PD regulator. Section
3 discusses the proposed regulator, its stability proof, and the
method for training the interpolation networks. Section 4 presents
the results of position control and tracking of an owl-shaped trajec-
tory, comparing them with those got from the PD and hyperbolic
tangent regulators. A qualitative comparison is presented in Section
5 with state-of-the-art works that employ variable-gain controllers.
Section 6 provides the conclusions.

2. MANIPULATOR DYNAMICS AND PD CONTROL

The dynamic model of a manipulator robot with n degrees of
freedom composed of rigid links (see Fig. 1a) can be written as [11]:

M(q)g +C(q,9)q +g(q) + f(q) = 7, (1)

where g, 4,4 € R™ are the joint position, velocity, and accelera-
tion vectors, T € R™ is the vector of applied torques or control law,
f(q) € R™ is the friction phenomena vector (in this work, only vis-
cous friction is considered, f(q) = Bq), M(q) € R™" is the ma-
nipulator's inertia matrix, symmetric and positive definite, C(q, q)q
€ R™ is the vector of centrifugal and Coriolis forces, and g(q) <
R™ is the vector of gravitational torques, calculated as the gradient
of the manipulator's potential energy U(q):

(a)
9@ =72 @

For position control or regulation, the dynamic model can be
expressed in closed-loop form as:

T R —
acq] — M~ (){r — C(q, 9 — g(@) — BG}

where g4 = [G41, Qa2 - Ganl” € R™ is the vector of desired
positions, and § = q4; — q € R™ is the vector of position errors.
The goal of position control is to satisfy [11]:

- [q]_ 0

pim 4] = [0} “
such that the manipulator's end-effector reaches, as time pro-
gresses, a fixed and constant desired position with zero velocity

g=0. To satisfy (4), Takegaki and Arimoto propose the proportional-
derivative (PD) control law, given by [5]:

T= qu_qu+g(Q), (5)
where K,,, K, € R™™ are diagonal positive definite matrices of
proportional and derivative gains. The values of K, and K, can be
theoretically approximated according to the tuning rule [11]:

kg @
kpi < W’ (6)
Kyi = piKyi (7)

where, for i = 1,2, ...,n, k,;>0 is the proportional gain of the i-th
link, kg, (q) represents the upper bound of the gravitational torque,
d,(0) is the initial position error of the i-th link and p; is a unidimen-
sional positive number between 0 and 1. In practice, K, and K,
can be chosen through trial and error to meet specifications such
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as overshoot or settling time. In either of the two ways, if the desired
position is changed, it is necessary to retune K, and K,,, which
limits the precision of the PD regulator for point-to-point trajectory
tracking. The expressions (6) and (7) are not optimized values; they
are derived from upper bounds to prevent actuator saturation.

3. PROPOSED PDN CONTROL LAW

The following is a proposed variant of the PD position control
that automatically adjusts K, and K, based on the desired position,
transforming from Cartesian space to joint space through inverse
kinematics. The aim is to enhance the controller's performance in
trajectory tracking, even when the parameters of the dynamic
model (1) are not available. This proposal involves replacing the
constant gains K, and K, in (5) with diagonal matrices K,,(q4) =

diag{kyi(qa)},  Ky(qa) = diag{pikyi(q)}, for i=
1,2,..,n, and p; € (0,1). The variable gains k,;(q,) and
k,;(qq) are scalar functions of q,4, the desired position. Each
k,:(qq) corresponds to the output of a Radial Basis Function In-
terpolation Network [12]. Neural networks are used to learn, from
data, the nonlinear map from the desired position to effective PD
gains, avoiding manual tuning and gain scheduling. The network is
trained offline; at runtime only a fast, deterministic mapping is eval-
uated, reducing commissioning effort and sustaining consistent
performance across desired positions. These networks have an in-
put layer, a hidden layer with Gaussian activation functions
¢i;(qq) fori=1,2,..,nand j = 1,2,...,m, where m is the
number of neurons in the hidden layer, and an output layer that
sums the activation functions weighted by factors w;; [12]. The pro-
posed PD control law is:

T = diag{k,i(q)}q — diag{pikyi(qa)}q + g(a),
0<p; <1 ®)
kpi(qq) = X7k, wij exp [_ ('quU‘C]||> 9)

3

>0,i=1..n

where w;; are the weights of the hidden layer of the interpolation
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— Design n interpolation networks corresponding to the gains
k,;:(qq4) for each link or degree of freedom.

— Select m desired positions distributed within the manipulator's
workspace (see Fig. 1b), which will represent the centers of the
Gaussian functions in Cartesian coordinates. Convert them to
joint coordinates using the manipulator's Inverse Kinematics.
The Inverse Kinematics problem involves calculating the angu-
lar displacement vector g based on the orientation and position
of the end effector, expressed in reference Cartesian coordi-
nates. The expression for the inverse kinematics of the manip-
ulator shown in Fig. 1a, in the “elbow up” configuration and with
reference coordinates (x, y), is [13]:

T —1 (B-B+x2+y? -1 x
—— COos —F———|] — CO0S —
211/ x2+y? Vx2+y?

2,.0,2_32_32
— x“+y“—=l1-1
Cos 1(—3/ L 2)
2141,

q= (10)

These samples form the training dataset C={C, Cx,..., Cn},
where Cje R,

— Perform calibration of the gains k,,; and select parameters p;
for the controller in (5) for each position in the set C. The got
data will correspond to the training values assigned to the out-
put layer of the n interpolation networks, i.e. {k;q, .., kim},
where k;; represents the proportional gain of the i-th joint for
the j-th training data.

— Set the value of g; such that the activation of the Gaussian
functions in the hidden layer is less than 50%:

- . 2
Pixj = exp [— (—”Qka,Q]”) ] <05,

3

(11)

withi=1,2,..,n, j=1,2,....m, and k=1,2,...,m.
This value of g; allows the neurons in the hidden layer to spe-
cialize in defined regions within the manipulator's workspace.
The maximum activation level of these neurons will be reached
when the input value is close to their center.

Calculate the weights w;; of each network by means of.

network k,;(q4), C; € R™ are the centers of the Gaussian func- ki [d’i,ll binz ¢i,1m] Wi
tions, o; are constants that controls the width of the Gaussian kiz| _|bizn  Piza Gi2m Wiz i1 n (12)
functions, and ||+]| denotes the Euclidean distance. : : : : I

kim ¢i,m1 ¢i,m2 ¢i,mm Wim

3.1. Training Procedure

Next, the following steps detail the procedure for building and
training these interpolation networks:

Tab. 1. Parameters of the simulated anthropomorphic arm manipulator

— Substitute the values of [, C;, and wy; in (8) and (9) to get
k,i(qq) and k,;(qq) = pikyi(qq) as functions of the de-
sired position q4.

With this method, n interpolation networks are trained offline.

Parameter Value
I1, 12 (link lengths) 0.45m
7% (shoulder), 77*** (elbow) 150 Nm, 15 Nm

k k

9:1(@) %g,(@ 40.28 Nm, 1.81 Nm

o~ EL ) oo

Coriolis Matrix (@) = ‘gégzgi‘?;j)z;fz 0083 () de)
Gravitational torque vector 9(q) = 9.81 [3'925‘“(().5111;%?1-(1;16?2511 + ‘12)]
Friction coefficient matrix B= [2-2088 0.1075]
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3.2. Stability proof

The stability proof of (8) using the direct Lyapunov method is
similar to that presented in [5] for conventional PD control. Be

Ky (qq) = diag{ky(qa)} and K,(qa) = diag{pikp;(qa)},
with k,; (qq) > Oforalli = 1,2, ..., n. These are not functions of
time or system states. Let the Lyapunov candidate function be:

V(@9 =34"M(@) +;7"diag{ky(aa)}g >0 (13)
Differentiating with respect to time, we have:
V(@@ = 4"M(Q)i +4"M(q)q — §" diag{ky:(92)}d
(14)

Substituting ¢ from (3) into (14), considering T as in (8), and
applying the properties xTy =yTx and of anti-symmetry

~q"M(q)q — 4" C(q,4)q = 0, we get
V(g §) = 4" diag{k,i(q.)}d — 4" diag{p;k,i(qa)}d +

+q"9(q) —4"C(q,9)q—4"g(a) = q"Bq + 54" M(q)q —

—q"diag{k,i(q)}d (15)
Simplifying:

V(4,9) = q"diag{k,;(q)}d — 4" diag{pik,i(qa)}q +

—4"Bq +4"M(9)q — 4" diag{kyi(q4)}d, (16)

V(q,§ = —4"diag{pikyi(q)}d —4"BG < 0 (17)

which is true if p;kp,;(q4) > Oforalli = 1,2, ...,n and because
B > 0. Thus, global stability of the equilibrium point [§ ¢]7 =
[oT 0T]" is demonstrated. Since (3) with (8) is an autonomous
differential equation, it is possible to prove asymptotic stability using
the Barbashin-Krasovskii-LaSalle theorem [14].

4. RESULTS

To validate the PDN control law, simulations were conducted in
MATLAB for regulation and trajectory tracking. The trajectory had
the shape of an owl within the workspace of the anthropomorphic
arm manipulator of Fig. 1a. The parameters of this direct-drive

Interpolation Kp

1

Fig. 2. Interpolation of k1 (941, 942) and kp2(qa1, 9az)
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actuator robotic arm are reported in [2, 14], with some of the most
important ones shown in Tab. 1.

4.1. Interpolation of k,;(q4) and k,;(q4)

The gains k,,(qq) and k,,(qq) of the PDN regulator were
adjusted using two RBF interpolation networks (9) and selecting 50
of the 100 desired positions shown in Fig. 1b. The tuning process
aimed to optimize the 100 gains to meet the following criteria: less
than 1% overshoot, a response time under 2.5 second, 7, <
150 Nm, 7, < 15 Nm, ¢, < 135 degrees/s, and ¢, < 270
degrees/s. These torque and joint velocity limits were set to prevent
actuator saturation. The condition in (11) is satisfied with 0; = 7.8
and g, = 13.8. To determine the weights w; j and w; ;, two equa-
tions (12) were solved. Fig. 2 presents the obtained functions
ky1(qq) >0 and k,,(qq) > 0. The resulting regulator with
p1 = 0.3 and p, = 0.45 in (8) will be compared with a PD regu-
lator (5), with parameters k,,; =157, k,,, = 6.3, k,y = 0.3k, and
k,, = 0.45k,, (as reported in [11]), and with a regulator with its
bounded actions given by [10]:

1 = diag{tanh(k,;)}§ — diag{tanh(k,)}q + g(q), (18)
wWith e,y =100, kyy = 6.3, kyy = 065k, and kyy = 0.65k 5.

4.2. Regulation

Fig. 3 shows the error responses and £,(§) norms (root-
mean-square RMS error) with the PD, Tanh and PDN regulators
for (941, 942) = (—40°,120°), where [11]:

L@ = [ lgolkde. (19)

The PD and PDN controllers exhibit very similar position errors
(see Fig. 3a), as expected since the PDN regulator was designed
based on the PD regulator. In both, the position errors decrease,
reaching a steady state in around 2.5 seconds. The Tanh controller
shows a less pronounced correction in g, and a more pronounced
correction in g, but reaching a steady state also around 2.5 sec-
onds. Fig. 3b shows the comparison of the £, norms of the three
controllers.

Interpolation sz
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100{b) Comparison of L2 Norm Percentages
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Fig. 3. Responses for g4, = —40° and g4, = 120°. (a) Position errors. (b) Comparison of £, Norms
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Fig. 4. Responses for g4, = —40° and g4, = 120°. (a) Torque responses. (b) Angular velocities

The PDN controller serves as the 100% reference due to its
slightly lower performance. The PD and Tanh controllers have
lower £, norms (less cumulative error), with values of 99.62% and
96.1%. This shows that although all three controllers perform well
and similar in terms of position error, the Tanh controller offers a
slight advantage by minimizing the £, norm, suggesting better
overall performance in terms of total error energy compared to the
other two controllers in the regulation problem. This comparable
performance of the three regulators will allow for a meaningful eval-
uation of their performance in the point-to-point trajectory-tracking
problem.

Fig. 4 shows the corresponding torques and angular velocities.
As expected, the responses of PD and PDN are practically identical
(see Fig. 4a). Both control laws apply similar forces to the manipu-
lator, resulting in equivalent performance. In both cases, torque 7,
shows a sharp negative peak at the start (-107.46 Nm and -102.48
Nm, respectively) before stabilizing near to 7, = —22.9 Nm,

indicating a significant initial effort to correct the position, but still
within actuator limit of 150 Nm. Torque ., exhibits a smoother be-
havior, with an initial peak (12.69 Nm in the PD and 11.51 Nm in
the PDN, still within actuator limit of 15 Nm) that stabilizes to 7, =
1.79 Nm. The Tanh regulator generates lower torques than the PD
and PDN controllers (t, initial of -58.74 Nm and 7, initial of 5.75
Nm). Additionally, the torque 7, in Tanh stabilizes more slowly to
T, = —22.9 Nm, suggesting a behavior with bounded actions. As
with the other controllers, torque 7, is smoother than 7, and stabi-
lizesto T, = 1.79 Nm. The angular velocities in Fig. 4b show that
the PD and PDN controllers exhibit almost identical behavior, as
expected. In both cases, the velocities of g, and g, reach their
maximum values and then decreases. The Tanh controller results
in a more damped response, especially for q,, showing that its
bounded actions result in smoother transitions. In all scenarios, the
angular velocities remain within the maximum limits.
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Fig. 5. Monte Carlo robustness of PD, Tanh, and PDN controllers under parametric uncertainty and (41, qq2) = (-40°, 120°)
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Fig. 6. Boxplots of robustness metrics (T, e(t), ISE, and £, — i.e., ||e]|> —) for PD, Tanh, and PDN controllers with (g4, q42) = (-40°, 120°), £15%

parametric uncertainty, and 200 Monte Carlo trials

To evaluate controller robustness under parametric uncer-
tainty—for example, payload-driven changes in link-2 mass and
center of mass—we ran a 200-trial Monte Carlo with truncated
Gaussian perturbations (+15%) applied to all the Tab. 1 coeffi-
cients with the desired position (q41,q42) = (—40°,120°).

The Fig. 5 overlays the nominal error response (black) with
shaded 1 standard deviation bands, and Fig. 6 shows boxplots of
robustness metrics obtained by Kruskal-Wallis and bootstrap anal-
yses. Qualitatively, PD exhibits the tightest dispersion and quickest
convergence in the g, error; PDN shows similar transients but a
wider spread, consistent with PD gains being hand-tuned for this
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set-point while PDN gains are produced by a neural estimator not
tailored to the operating point. For g5, all controllers decay rapidly,
but Tanh is visibly poorer and with larger spread.

Because the Monte Carlo metrics were non-Gaussian (normal-
ity rejected by a Lilliefors/Kolmogorov—Smirnov test), we used
Kruskal-Wallis and complemented it with bootstrap 95% confi-
dence intervals for the medians. The analysis confirms strong be-
tween-controller differences for settling time T, (q,) (significance
p<0.05): PDN attains the smallest median T;(g,) = 0.773 s with
confidence interval [0.768, 0.779], a 56.1% improvement over the
worst case (Tanh).
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Fig. 7. Disturbance Rejection to a 6 Nm, 0.15 s Torque Pulse at Joint 2 (t = 3 s): q1 and q2 Position Errors for PD, Tanh, and PDN

For T,(q,) (p<0.05), Tanh is fastest with median 1.117 s
[1.068, 1.150], 19.0% better than the worst (PDN). Steady-state
error at final time, e;(t;), shows no significant differences
(p=0.068), whereas e, (t,) does (p<0.05); PD yields the lowest
median e, (t,) = 0.185 deg [0.068, 0.260], a 32.8% reduction rel-
ative to Tanh. Integrated error measures also differ markedly
(p<0.05): Tanh achieves the smallest ISE (median 3573) and the
lowest time-normalized error £, (median 1191), about 8.2% better
than PDN. Overall, PDN is fastest in joint-1, Tanh is fastest in joint-
2 and most favorable in energy-like errors, and PD minimizes
steady-state error for joint-2.

To analyze the effect of PDN self-tuning—while keeping the
gains of the other controllers fixed at the values used for the (g4,
qa2) = (-40°, 120°) operating point—we pooled the Monte Carlo
data across the three set-points (-40°, 120°), (0°, 90°), and (-20°,
140°) and applied a Kruskal-Wallis test; the results are as follows.
For settling time T(q,), groups differ (p<0.05); PDN attains the
lowest median 0.7725 s, improving by 56.2% over the worst (Tanh).
For T, (q-), groups differ (p<0.05); Tanh is best with median 1.100
s, a 19.1% improvement over the worst (PDN). For steady-state
error e, (t,), differences are not significant (p= 0.05). For e, (¢,),
groups differ (p<0.05); PDN is best with median 0.1163 deg, a
55.9% reduction relative to the worst (Tanh). For the integral met-
rics, ISE andL,, groups differ (p<0.05); Tanh achieves the lowest
medians (ISE = 3529, £, = 1176), each 9.3% better than the worst
(PDN). Overall, across the three operating points, PDN is fastest in
joint-1 transients, Tanh is fastest in joint-2 and most favorable for
energy-type errors, and PD does not dominate but remains com-
petitive in steady-state bias for joint-2.

Therefore, we observe that, for regulation tasks, the PDN con-
troller is competitive with PD and Tanh, even with parametric un-
certainty, but its main advantage is that it does not require manual
tuning of the proportional and derivative gains.

In Fig. 7, an external disturbance was applied at joint 2: a 6 Nm
torque starting at t = 3 s and lasting 0.15 s (red dashed line). In g,
the impact is minor and short-lived due to limited coupling; all con-
trollers keep the error close to zero with only a small blip. In g, the
disturbance causes a pronounced negative excursion (about -20
to -25 degrees), which reveals clear differences in disturbance re-
jection: PD shows the smallest excursion and the fastest recovery,
PDN is a close second with a slightly deeper dip and slower return,
and Tanh performs worst with the largest dip and the longest tail.

This ranking aligns with controller structure: PD and PDN retain
linear behavior to counter a torque pulse, whereas the Tanh con-
troller soft-limits the proportional and derivative actions, reducing
corrective effort.

4.3. Point-to-point trajectory tracking

Fig. 8a shows the ideal trajectory that the robot should follow,
represented in the shape of an owl interpolated from 200 points and
completed in 25 seconds. The PDN controller permits the robot to
track this trajectory with a sampling period of 2.5 ms, corresponding
to 10,000 samples, as illustrated in Fig. 8b. The Tanh and PD con-
trollers yield similar results. Fig. 8c and Fig. 8d show the joint ve-
locities for the Tanh and PDN controllers. In both cases, the veloc-
ities of joints g, and g, remain near the saturation limits. However,
the Tanh controller achieves higher velocity values, although it sta-
bilizes more quickly, which affects its energy consumption. The en-
ergy consumption is calculated as:

E(,q) = [} 11,(0)G:(t) + 1,(£)g2(8)]dt. (20)

Fig. 8e and Fig. 8f compare the performance regarding the £,
norm and energy consumption. Unlike the regulation control case,
in trajectory tracking, the PDN controller shows the best perfor-
mance in terms of accumulated position error, with the lowest £,
norm (73.48%), followed by the Tanh controller (74.12%) and then
the PD (taken as the 100% reference). This shows that the PDN
controller better minimizes the accumulated error. Regarding en-
ergy consumption, the PDN controller also stands out with the best
performance (80.58%), followed by the PD (83.98%), and the Tanh
(100%, taken as the reference). Besides reducing the error, the
PDN controller is also more energy-efficient.

5. DISCUSSION

In agreement with Tab. 2, the proposed controller differs from
previous variable-gain PD approaches in several key aspects.
While many studies introduce variable gains as functions of state
variables (e.g., position, velocity, or error) [15-23], our approach
uniquely defines the proportional gain as a function of the desired
position. This structural distinction has important implications:
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— Offline Training and Practical Implementation: Unlike methods
that rely on adaptive or iterative online updates [15, 17, 21], the
proposed controller employs an RBF interpolation network
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trained offline. This design reduces online computational bur-
den, making the method more practical for real-time applica-
tions without sacrificing performance.
o (b) Trajectory traced by the robot
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Fig. 8. Point-to-point "Owl" trajectory tracking. (a) Ideal trajectory. (b) Trajectory with the PDN controller. (c) Actuator speed with the Tanh controller. (d)
Actuator speed with the PDN controller. (¢) Comparison of £, norms. (f) Comparison of energy consumption.

Tab. 2. Comparative table of studies on PD controllers with variable gains

Study Controller Type Variable Gain Structure Stability Analysis Method Validation Approach
[4] PD-like with variable gains | Variable; state-, position-,and | Lyapunov theory; global asymp- | Simulation; two-DOF direct-drive robot;
velocity-dependent; smooth totic stability; gravity compensa- joint regulation; L2 norm
functions (e.g. cos? (tanh tion required
(error+velocity)))
[15] PD iterative neural-net- Likely variable/adaptive; neural Extended Lyapunov theories; Simulation; manipulator characteristics
work learning (PDISN) network and iterative learning stability type not specified not specified; scenario not specified
[16] Proportional-derivative Variable; tuned by self-organiz- Not analyzed (no details) Simulation; manipulator characteristics
(PD) ing fuzzy algorithm not specified; tracking control; position
error metric
[17] Self-tuning PD Bounded, time-varying; neuro- | Lyapunov theory; semi-global ex- | Simulation; manipulator characteristics
fuzzy recurrent scheme ponential stability not specified; trajectory tracking
[18] Nonlinear PID with fuzzy Variable, position-dependent; | Not mentioned; global asymptotic | Experiments; type not specified; sce-
self-tuned PD gains fuzzy logic stability; no gravity compensation nario and metrics not specified
[19] Adaptive PD Adaptive to gravity parameters Not mentioned; global conver- Simulation; three-DOF manipulator;
gence point-to-point and tracking
[20] PD-type robust Variable, error-varying; param- | Singular perturbation theory; sta- | Physical experiment; planar two-DOF
eterized by perturbing parame- bility type not explicit direct-drive robot; trajectory tracking
ter
[21] Adaptive iterative learning | Variable; iterative learning, two Lyapunov theory; asymptotic Simulation; two-DOF manipulator; tra-
control (ILC)-PD iterative variables convergence jectory tracking
[22] PD-type Variable, state-dependent Not mentioned; global asymptotic | Physical experiment; two-DOF direct-
stability claimed drive arm; scenario not specified
[23] Linear and nonlinear PD- Nonlinear functions of system | Not mentioned; global asymptotic | Simulation; single-link and two-DOF ro-
type states stability claimed bots; trajectory tracking
This | PD-like with variable gains | Variable; desired position de- Lyapunov theory; global asymp- | Simulation; two-DOF direct-drive robot;
work pendent proportional gains with | totic stability; gravity compensa- | joint regulation; L2 norm, point-to-point
RBF interpolation networks tion required tracking; regulation performance evalu-
trained offline ated with parametric uncertainties and
external perturbations
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Formal Stability Guarantees: Several previous works either
omit stability analysis [16, 18, 19, 23] or provide only limited
claims (e.g., “global convergence” without detailed proofs) [19].
In contrast, our control law is rigorously validated through Lya-
punov theory, ensuring global asymptotic stability under both
trajectory tracking and regulation tasks.

Point-to-Point Tracking and Regulation without Re-tuning:
Whereas prior approaches often require parameter re-adjust-
ment depending on trajectory complexity or regulation scenar-
ios, our method demonstrates strong performance in point-to-
point tracking while also showing that regulation tasks can be
achieved without re-tuning the gains.

This makes the controller particularly suitable for manipulators

executing sequences of set-points, as the stability and efficiency
remain robust across tasks.

Robustness to Uncertainties and Perturbations: While some
works include robustness studies under limited assumptions
[20], the proposed control law explicitly evaluates performance
under parametric uncertainties and external perturbations, con-
firming its reliability in realistic operating conditions.

CONCLUSIONS

Compared to the existing literature, the proposed controller

combines three distinctive contributions-desired-position depend-
ence, offline RBF training, and formal Lyapunov stability- which to-
gether enhance both theoretical guarantees and practical applica-
bility. Its strength lies particularly in point-to-point trajectory track-
ing, where the error is reduced in a more energy-efficient form re-
garding PD and Tanh controllers. It also presents robust regulation
without gain re-scheduling, aspects that are not simultaneously ad-
dressed by previous studies.
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