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Abstract: The proposed PD-type position control law for manipulator robots adjusts the proportional gains based on the desired position. 
This capability improves the PD controller’s efficiency in trajectory tracking in terms of accumulated position error and energy efficiency, even 
when the manipulator’s dynamic model parameters are unknown. To accomplish this goal, a Radial Basis Function interpolation network, 
trained offline to avoid higher computational demands, replaces each proportional gain. The Lyapunov method ensures the system’s stability, 
and its effectiveness in position control is further assessed under parametric uncertainties and external perturbations through Monte Carlo 
analysis and Kruskal–Wallis statistical tests. Matlab simulations on a two-degree-of-freedom manipulator arm following an owl-shaped tra-
jectory demonstrate that, in trajectory tracking, the proposed controller achieves improved 𝓛𝟐 norm and energy efficiency compared with the 
PD controllers of Takegaki–Arimoto and Tanh(•) with bounded actions. 
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1. INTRODUCTION 

In recent decades, industries have used robotic systems to au-
tomate repetitive or dangerous tasks in industrial applications. In 
automated processes where the robot moves within its workspace 
without interacting with the environment, a control system based on 
position or motion is a viable option. However, as the demands of 
scientific and technological production processes increase, the 
tasks assigned to robotic arms are becoming increasingly complex 
[1]. Motion control has the drawback of requiring a precise model 
of all the robot’s parameters, which is challenging because com-
plete model information is not always available and often needs to 
be obtained through regression models [2]. The motion control 
problem also involves modeling through non-autonomous differen-
tial equations, requiring asymptotic stability proofs using strict Lya-
punov functions—a non-trivial task [3]. To address this challenge, 
position control, also known as the regulation problem, simplifies 
trajectory tracking by using point-to-point control [4]. This approach 
enables the robot’s end-effector to move to a fixed and constant 
desired position over time, regardless of its initial joint position. 
Since the initial position does not affect the system’s stability, the 
manipulator can trace a series of consecutive points in space 
(where the previous point serves as the initial condition) that ap-
proximate the desired trajectory.  

In the regulation problem, the Proportional-Derivative (PD) con-
trol law with gravity compensation proposed in [5] ensures global 
asymptotic stability of the closed-loop system with an appropriate 
selection of proportional and derivative gains. However, since these 
gains are constant, abrupt changes in the desired trajectory can 
increase tracking error, leading some authors to propose variable 
gains to improve performance. For instance, in [4], researchers pro-
pose a solution to the regulation problem by introducing a set of 

saturated controllers with variable gains. These controllers gener-
ate torques within the prescribed limits of the servomotors. The 
functions for the variable gains allow for smooth self-tuning as the 
joint position error and velocity approach zero, but it is still neces-
sary to establish parameters for the proportional and derivative 
gains. In [6], the authors propose a modified neural network algo-
rithm as an adaptive tuning method to optimize the controller gains. 
The proposal is complex, but robust against uncertainties in system 
parameters and various trajectories. Unfortunately, it lacks a stabil-
ity demonstration and requires careful selection of the controller 
gain limits. The authors of [7] introduce an optimization technique 
based on an improved Artificial Bee Colony. This technique uses 
Lyapunov stability functions to determine the optimal gains of a Pro-
portional-Integral-Derivative controller in a 3 degrees-of-freedom 
manipulator system. The optimized system shows robustness 
against various perturbation conditions and uncertainty in the pay-
load mass, but the algorithm lacks a stability demonstration, and 
understanding its operating principle requires considerable effort. 
Similar observations can be applied to gain tuning using fuzzy al-
gorithms [8]. The authors in [9] propose a regulator with constant 
proportional gains and variable derivative gains to enhance the ro-
bot’s transient response through damping, utilizing position error 
and velocity. This allows the system to reach a steady state 
smoothly while meeting the servomotor constraints. Although the 
results are better than the hyperbolic tangent controller [10], which 
is known for its effectiveness, tuning still requires designer exper-
tise. In Section 5, we review additional relevant contributions on 
PD-like controllers with variable gain adaptations [15–23]. The dis-
cussion emphasizes the type of controller, the specific structure of 
the variable gains (e.g. state-dependent, adaptive, fuzzy, or neural-
network-based), the stability analysis methods applied (such as 
Lyapunov theory, singular perturbation theory, or global 

https://orcid.org/0000-0003-4386-5066
https://orcid.org/0000-0002-3899-0746
https://orcid.org/0000-0002-4058-9513


Carlos Muñiz-Montero, Luis A. Sánchez-Gaspariano, Javier Lemus-López                                                                                                                   DOI 10.2478/ama-2025-0070 
Pd Control with Auto-Tuned Gains using RBF Networks for Enhanced Trajectory Track-Ing in Manipulator Robots 

618 

convergence arguments) and the validation strategies adopted, 
ranging from numerical simulations to experimental implementa-
tions. 

 

 
Fig. 1.   (a) Two-DOF manipulator diagram; (b) Desired positions in the 

workspace for RBF training 

In this work, we propose a PD-type position control law for ro-
botic manipulators, where the proportional gains are adjusted as 
functions of the desired position. These gains are obtained through 
a Radial Basis Function (RBF) interpolation network trained offline, 
which reduces online computational demands. The objective is to 
improve trajectory-tracking performance in terms of accumulated 
error and energy efficiency when compared to the classical PD reg-
ulator [5] and the Tanh regulator [10]. The system’s stability is for-
mally ensured using Lyapunov’s second method. In the remainder 
of this paper, we denote the proposed approach as the PDN con-
troller. From a theoretical standpoint, PDN does not differ from the 
classical PD controller of Takegaki–Arimoto [5], since the gains de-
pend solely on the desired position and not on the system states. 
Consequently, its stability proof is identical to that of the conven-
tional PD law. However, PDN introduces practical advantages: (i) 
there is no need for re-tuning gains at different desired positions, 
and (ii) it exhibits enhanced performance in point-to-point trajectory 
tracking, particularly in terms of robustness, accumulated error, and 
energy efficiency. 

The main contributions of this manuscript can be summarized 
as follows: 

− A methodology for determining the proportional gains of a ro-
botic manipulator controller directly from the desired position, 
avoiding conventional procedures that depend on designer ex-
pertise. 

− The use of RBF networks for automatic gain tuning, providing 
a simpler and more practical implementation compared to alter-
native methods reported in the literature [6–9]. 

− Demonstration of improved performance in terms of L2-norm 
error and energy efficiency in trajectory-tracking tasks with re-
spect to existing approaches. 

− Integration of three distinctive features—desired-position de-
pendence, offline RBF training, and Lyapunov-based stability 
analysis—which together enhance both theoretical guarantees 
and practical applicability. This combination particularly 

strengthens point-to-point trajectory tracking and robust regula-
tion without the need for gain re-scheduling, aspects not simul-
taneously addressed in previous studies. 
This work is structured as follows: Section 2 presents the dy-

namic model of the manipulator robot and the PD regulator. Section 
3 discusses the proposed regulator, its stability proof, and the 
method for training the interpolation networks. Section 4 presents 
the results of position control and tracking of an owl-shaped trajec-
tory, comparing them with those got from the PD and hyperbolic 
tangent regulators. A qualitative comparison is presented in Section 
5 with state-of-the-art works that employ variable-gain controllers. 
Section 6 provides the conclusions. 

2. MANIPULATOR DYNAMICS AND PD CONTROL 

The dynamic model of a manipulator robot with n degrees of 
freedom composed of rigid links (see Fig. 1a) can be written as [11]: 
 
𝑀(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝑔(𝑞) + 𝑓(𝑞̇) = 𝜏 ,  (1) 
 

where q, q̇, q̈  ℝ𝑛  are the joint position, velocity, and accelera-

tion vectors, τ  ℝ𝑛  is the vector of applied torques or control law, 

f(q̇)  ℝ𝑛  is the friction phenomena vector (in this work, only vis-

cous friction is considered, f(q̇) = Bq̇), M(q)  ℝ𝑛x𝑛 is the ma-
nipulator's inertia matrix, symmetric and positive definite, C(q, q̇)q̇ 

 ℝ𝑛 is the vector of centrifugal and Coriolis forces, and g(q)  
ℝ𝑛 is the vector of gravitational torques, calculated as the gradient 
of the manipulator's potential energy 𝒰(𝑞): 

𝑔(𝑞) =
𝜕𝒰(𝑞)

𝜕𝑞
.  (2) 

For position control or regulation, the dynamic model can be 
expressed in closed-loop form as: 

𝑑

𝑑𝑡
[
𝑞̃
𝑞̇
] = [

−𝑞̇

𝑀−1(𝑞){𝜏 − 𝐶(𝑞, 𝑞̇)𝑞̇ − 𝑔(𝑞) − 𝐵𝑞̇}
],  (3) 

where 𝑞𝑑 = [𝑞𝑑1 , 𝑞𝑑2, … , 𝑞𝑑𝑛]𝑇  ℝ𝑛 is the vector of desired 

positions, and 𝑞̃ = 𝑞𝑑 − q  ℝ𝑛 is the vector of position errors. 
The goal of position control is to satisfy [11]: 

lim
𝑡→∞

[
𝑞̃
𝑞̇
] = [

0
0
],   (4) 

such that the manipulator's end-effector reaches, as time pro-
gresses, a fixed and constant desired position with zero velocity 
q̇=0. To satisfy (4), Takegaki and Arimoto propose the proportional-
derivative (PD) control law, given by [5]: 

𝜏 = 𝐾𝑝𝑞̃ − 𝐾𝑣𝑞̇ + 𝑔(𝑞),   (5) 

where 𝐾𝑝, 𝐾𝑣  ℝ𝑛x𝑛 are diagonal positive definite matrices of 

proportional and derivative gains. The values of 𝐾𝑝 and 𝐾𝑣 can be 

theoretically approximated according to the tuning rule [11]:  

𝑘𝑝𝑖 <
𝜏𝑖
𝑚𝑎𝑥−𝑘𝑔𝑖(𝑞)

𝑞𝑖̃(0)
 ,   (6) 

𝐾𝑣𝑖 = 𝜌𝑖𝐾𝑝𝑖 ,  (7) 

where, for 𝑖 = 1, 2, … , 𝑛, 𝑘𝑝𝑖>0 is the proportional gain of the i-th 

link, 𝑘𝑔𝑖(𝑞) represents the upper bound of the gravitational torque, 

𝑞𝑖̃(0) is the initial position error of the i-th link and 𝜌𝑖 is a unidimen-

sional positive number between 0 and 1. In practice, 𝐾𝑝 and 𝐾𝑣 

can be chosen through trial and error to meet specifications such 
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as overshoot or settling time. In either of the two ways, if the desired 
position is changed, it is necessary to retune 𝐾𝑝 and 𝐾𝑣, which 

limits the precision of the PD regulator for point-to-point trajectory 
tracking. The expressions (6) and (7) are not optimized values; they 
are derived from upper bounds to prevent actuator saturation. 

3. PROPOSED PDN CONTROL LAW 

The following is a proposed variant of the PD position control 
that automatically adjusts 𝐾𝑝 and 𝐾𝑣 based on the desired position, 

transforming from Cartesian space to joint space through inverse 
kinematics. The aim is to enhance the controller's performance in 
trajectory tracking, even when the parameters of the dynamic 
model (1) are not available. This proposal involves replacing the 
constant gains 𝐾𝑝 and 𝐾𝑣 in (5) with diagonal matrices 𝐾𝑝(𝑞𝑑) =

𝑑𝑖𝑎𝑔{𝑘𝑝𝑖(𝑞𝑑)}, 𝐾𝑣(𝑞𝑑) = 𝑑𝑖𝑎𝑔{𝜌𝑖𝑘𝑝𝑖(𝑞𝑑)}, for 𝑖 =

1, 2,… , 𝑛, and 𝜌𝑖  (0,1). The variable gains 𝑘𝑝𝑖(𝑞𝑑) and 

𝑘𝑣𝑖(𝑞𝑑) are scalar functions of 𝑞𝑑, the desired position. Each 
𝑘𝑝𝑖(𝑞𝑑) corresponds to the output of a Radial Basis Function In-

terpolation Network [12]. Neural networks are used to learn, from 
data, the nonlinear map from the desired position to effective PD 
gains, avoiding manual tuning and gain scheduling. The network is 
trained offline; at runtime only a fast, deterministic mapping is eval-
uated, reducing commissioning effort and sustaining consistent 
performance across desired positions. These networks have an in-
put layer, a hidden layer with Gaussian activation functions 
𝜙𝑖,𝑗(𝑞𝑑) for 𝑖 = 1, 2, … , 𝑛 and 𝑗 = 1, 2,… ,𝑚, where m is the 

number of neurons in the hidden layer, and an output layer that 
sums the activation functions weighted by factors 𝑤𝑖𝑗  [12]. The pro-

posed PD control law is: 

𝜏 = 𝑑𝑖𝑎𝑔{𝑘𝑝𝑖(𝑞𝑑)}𝑞̃ − 𝑑𝑖𝑎𝑔{𝜌𝑖𝑘𝑝𝑖(𝑞𝑑)}𝑞̇ + 𝑔(𝑞),    

𝑜 < 𝜌𝑖 < 1    (8) 

𝑘𝑝𝑖(𝑞𝑑) = ∑ 𝑤𝑖𝑗
𝑚
𝑗=1 𝑒𝑥𝑝 [− (

‖𝑞𝑑−𝐶𝑗‖

𝜎𝑖
)

2

] > 0, 𝑖 = 1…𝑛     (9) 

where 𝑤𝑖𝑗 are the weights of the hidden layer of the interpolation 

network 𝑘𝑝𝑖(𝑞𝑑), 𝐶𝑗  ℝ𝑛 are the centers of the Gaussian func-

tions, 𝜎𝑖 are constants that controls the width of the Gaussian 

functions, and ‖∙‖ denotes the Euclidean distance.  

3.1. Training Procedure   

Next, the following steps detail the procedure for building and 
training these interpolation networks: 

− Design n interpolation networks corresponding to the gains 
𝑘𝑝𝑖(𝑞𝑑) for each link or degree of freedom. 

− Select m desired positions distributed within the manipulator's 
workspace (see Fig. 1b), which will represent the centers of the 
Gaussian functions in Cartesian coordinates. Convert them to 
joint coordinates using the manipulator's Inverse Kinematics. 
The Inverse Kinematics problem involves calculating the angu-
lar displacement vector 𝑞 based on the orientation and position 
of the end effector, expressed in reference Cartesian coordi-
nates. The expression for the inverse kinematics of the manip-
ulator shown in Fig. 1a, in the “elbow up” configuration and with 
reference coordinates (𝑥, 𝑦), is [13]: 

𝑞 = [

𝜋

2
− cos−1 (

𝑙1
2−𝑙2

2+𝑥2+𝑦2

2𝑙1√𝑥2+𝑦2
) − cos−1 (

𝑥

√𝑥2+𝑦2
)

cos−1 (
𝑥2+𝑦2−𝑙1

2−𝑙2
2

2𝑙1𝑙2
)

].    (10) 

These samples form the training dataset C={C1, C2,…, Cm}, 

where Cj  ℝ𝑛. 

− Perform calibration of the gains 𝑘𝑝𝑖 and select parameters 𝜌𝑖 

for the controller in (5) for each position in the set C. The got 
data will correspond to the training values assigned to the out-
put layer of the n interpolation networks, i.e. {𝑘𝑖1, … , 𝑘𝑖𝑚},  
where 𝑘𝑖𝑗  represents the proportional gain of the i-th joint for 

the j-th training data. 

− Set the value of 𝜎𝑖 such that the activation of the Gaussian 
functions in the hidden layer is less than 50%: 

𝜙𝑖,𝑘𝑗 = 𝑒𝑥𝑝 [−(
‖𝑄𝑘−𝑄𝑗‖

𝜎𝑖
)

2

]  < 0.5 ,   (11) 

with 𝑖 = 1, 2, … , 𝑛, 𝑗 = 1, 2, … ,𝑚,  and 𝑘 = 1, 2, … ,𝑚. 
This value of 𝜎𝑖 allows the neurons in the hidden layer to spe-
cialize in defined regions within the manipulator's workspace. 
The maximum activation level of these neurons will be reached 
when the input value is close to their center. 

− Calculate the weights 𝑤𝑖𝑗 of each network by means of: 

[

𝑘𝑖1

𝑘𝑖2

⋮
𝑘𝑖𝑚

] =

[
 
 
 
𝜙𝑖,11 𝜙𝑖,12 … 𝜙𝑖,1𝑚

𝜙𝑖,21 𝜙𝑖,22 … 𝜙𝑖,2𝑚

⋮
𝜙𝑖,𝑚1

⋮
𝜙𝑖,𝑚2

…
…

⋮
𝜙𝑖,𝑚𝑚]

 
 
 

[

𝑤𝑖1

𝑤𝑖2

⋮
𝑤𝑖𝑚

], i=1,…n           (12) 

− Substitute the values of , Cj, and 𝑤𝑖𝑗 in (8) and (9) to get 

𝑘𝑝𝑖(𝑞𝑑) and 𝑘𝑣𝑖(𝑞𝑑) = 𝜌𝑖𝑘𝑝𝑖(𝑞𝑑)  as functions of the de-

sired position 𝑞𝑑. 
With this method, n interpolation networks are trained offline.  

Tab. 1. Parameters of the simulated anthropomorphic arm manipulator 

Parameter Value 

l1, l2 (link lengths) 0.45m 

𝜏1
𝑚𝑎𝑥 (shoulder), 𝜏2

𝑚𝑎𝑥 (elbow) 150 Nm, 15 Nm 

𝑘𝑔1(𝑞),  𝑘𝑔2(𝑞) 40.28 Nm, 1.81 Nm 

Inertia Matrix 𝑀(𝑞) = [
2.351 + 0.167 cos(𝑞2) 0.102 + 0.083 cos(𝑞2)
0.102 + 0.083 cos(𝑞2) 0.102

] 

Coriolis Matrix 𝐶(𝑞, 𝑞̇) = [
−0.1676sin(𝑞2) 𝑞̇2 −0.083sin(𝑞2) 𝑞̇2

0.084sin(𝑞2) 𝑞̇1 0
] 

Gravitational torque vector 𝑔(𝑞) = 9.81 [
3.92sin(𝑞1) + 0.186sin(𝑞1 + 𝑞2)

0.186sin(𝑞1 + 𝑞2)
] 

Friction coefficient matrix 𝐵 = [
2.288 0

0 0.175
] 
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3.2. Stability proof 

The stability proof of (8) using the direct Lyapunov method is 
similar to that presented in [5] for conventional PD control. Be 

𝐾𝑝(𝑞𝑑) = 𝑑𝑖𝑎𝑔{𝑘𝑝𝑖(𝑞𝑑)} and 𝐾𝑣(𝑞𝑑) = 𝑑𝑖𝑎𝑔{𝜌𝑖𝑘𝑝𝑖(𝑞𝑑)}, 

with 𝑘𝑝𝑖(𝑞𝑑) > 0 for all 𝑖 = 1,2, … , 𝑛. These are not functions of 

time or system states. Let the Lyapunov candidate function be: 

𝑉(𝑞̇, 𝑞̃) =
1

2
𝑞̇𝑇𝑀(𝑞)𝑞̇ +

1

2
𝑞̃𝑇𝑑𝑖𝑎𝑔{𝑘𝑝𝑖(𝑞𝑑)}𝑞̃  > 0   (13) 

Differentiating with respect to time, we have:  

𝑉̇(𝑞̇, 𝑞̃) = 𝑞̇𝑇𝑀(𝑞)𝑞̈ +
1

2
𝑞̇𝑇𝑀̇(𝑞)𝑞̇ − 𝑞̃𝑇𝑑𝑖𝑎𝑔{𝑘𝑝𝑖(𝑞𝑑)}𝑞̇                                    

                                                                                                (14) 

Substituting 𝑞̈ from (3) into (14), considering 𝜏 as in (8), and 

applying the properties 𝑥𝑇𝑦 ≡ 𝑦𝑇𝑥 and of anti-symmetry 
1

2
𝑞̇𝑇𝑀̇(𝑞)𝑞̇ − 𝑞̇𝑇𝐶(𝑞, 𝑞̇)𝑞̇ = 0, we get:  

𝑉̇(𝑞̇, 𝑞̃) = 𝑞̇𝑇𝑑𝑖𝑎𝑔{𝑘𝑝𝑖(𝑞𝑑)}𝑞̃ − 𝑞̇𝑇𝑑𝑖𝑎𝑔{𝜌𝑖𝑘𝑝𝑖(𝑞𝑑)}𝑞̇ +
 

+𝑞̇𝑇𝑔(𝑞) − 𝑞̇𝑇𝐶(𝑞, 𝑞̇)𝑞̇−𝑞̇𝑇𝑔(𝑞) − 𝑞̇𝑇𝐵𝑞̇ +
1

2
𝑞̇𝑇𝑀̇(𝑞)𝑞̇ − 

−𝑞̇𝑇𝑑𝑖𝑎𝑔{𝑘𝑝𝑖(𝑞𝑑)}𝑞̃   (15) 

Simplifying: 

𝑉̇(𝑞̇, 𝑞̃) = 𝑞̇𝑇𝑑𝑖𝑎𝑔{𝑘𝑝𝑖(𝑞𝑑)}𝑞̃ − 𝑞̇𝑇𝑑𝑖𝑎𝑔{𝜌𝑖𝑘𝑝𝑖(𝑞𝑑)}𝑞̇ +  

−𝑞̇𝑇𝐵𝑞̇ +
1

2
𝑞̇𝑇𝑀̇(𝑞)𝑞̇ − 𝑞̇𝑇𝑑𝑖𝑎𝑔{𝑘𝑝𝑖(𝑞𝑑)}𝑞̃,                          (16)

 𝑉̇(𝑞̇, 𝑞̃) = −𝑞̇𝑇𝑑𝑖𝑎𝑔{𝜌𝑖𝑘𝑝𝑖(𝑞𝑑)}𝑞̇ − 𝑞̇𝑇𝐵𝑞̇ ≤ 0               (17) 

which is true if 𝜌𝑖𝑘𝑝𝑖(𝑞𝑑) > 0 for all 𝑖 = 1,2, … , 𝑛 and because 

𝐵 > 0. Thus, global stability of the equilibrium point [𝑞̃ 𝑞̇]𝑇 =
[0𝑇 0𝑇]𝑇 is demonstrated. Since (3) with (8) is an autonomous 
differential equation, it is possible to prove asymptotic stability using 
the Barbashin-Krasovskii-LaSalle theorem [14]. 

4. RESULTS 

To validate the PDN control law, simulations were conducted in 
MATLAB for regulation and trajectory tracking. The trajectory had 
the shape of an owl within the workspace of the anthropomorphic 
arm manipulator of Fig. 1a. The parameters of this direct-drive 

actuator robotic arm are reported in [2, 14], with some of the most 
important ones shown in Tab. 1.  

4.1. Interpolation of 𝒌𝒑𝟏(𝒒𝒅) and 𝒌𝒑𝟐(𝒒𝒅) 

The gains 𝑘𝑝1(𝑞𝑑) and 𝑘𝑝2(𝑞𝑑) of the PDN regulator were 

adjusted using two RBF interpolation networks (9) and selecting 50 
of the 100 desired positions shown in Fig. 1b. The tuning process 
aimed to optimize the 100 gains to meet the following criteria: less 
than 1% overshoot, a response time under 2.5 second, 𝜏1 <
150 𝑁𝑚, 𝜏2 < 15 𝑁𝑚, 𝑞̇1 < 135 degrees/s, and 𝑞̇2 < 270 
degrees/s. These torque and joint velocity limits were set to prevent 
actuator saturation. The condition in (11) is satisfied with 𝜎1 = 7.8 

and 𝜎2 = 13.8. To determine the weights 𝑤1𝑗 and 𝑤2𝑗, two equa-

tions (12) were solved. Fig. 2 presents the obtained functions 
𝑘𝑝1(𝑞𝑑) > 0 and 𝑘𝑝2(𝑞𝑑) > 0. The resulting regulator with 

𝜌1 = 0.3 and 𝜌2 = 0.45 in (8) will be compared with a PD regu-
lator (5), with parameters 𝑘𝑝1 = 157, 𝑘𝑝2 = 6.3, 𝑘𝑣1 = 0.3𝑘𝑝1, and 

𝑘𝑣2 = 0.45𝑘𝑝2 (as reported in [11]), and with a regulator with its 

bounded actions given by [10]: 

𝜏 = 𝑑𝑖𝑎𝑔{tanh(𝑘𝑝𝑖)}𝑞̃ − 𝑑𝑖𝑎𝑔{tanh(𝑘𝑣𝑖)}𝑞̇ + 𝑔(𝑞),   (18) 

with 𝑘𝑝1 = 100, 𝑘𝑝2 = 6.3, 𝑘𝑣1 = 0.65𝑘𝑝1, and 𝑘𝑣2 = 0.65𝑘𝑝2. 

4.2. Regulation 

Fig. 3 shows the error responses and ℒ2(𝑞̃) norms (root-
mean-square RMS error) with the PD, Tanh and PDN regulators 
for (𝑞𝑑1, 𝑞𝑑2)  =  (−40°, 120°), where [11]: 

ℒ2(𝑞̃) = √
1

𝑇
∫ ‖𝑞̃(𝑡)‖2𝑑𝑡

𝑇

0
.   (19) 

The PD and PDN controllers exhibit very similar position errors 
(see Fig. 3a), as expected since the PDN regulator was designed 
based on the PD regulator. In both, the position errors decrease, 
reaching a steady state in around 2.5 seconds. The Tanh controller 
shows a less pronounced correction in 𝑞1 and a more pronounced 
correction in 𝑞2, but reaching a steady state also around 2.5 sec-

onds. Fig. 3b shows the comparison of the ℒ2 norms of the three 
controllers. 

 

 
Fig. 2. Interpolation of 𝑘𝑝1(𝑞𝑑1, 𝑞𝑑2) and 𝑘𝑝2(𝑞𝑑1, 𝑞𝑑2) 
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Fig. 3. Responses for 𝑞𝑑1 = −40o and 𝑞𝑑2 = 120o. (a) Position errors. (b) Comparison of 𝓛𝟐 Norms 

 
Fig. 4. Responses for 𝑞𝑑1 = −40o and 𝑞𝑑2 = 120o. (a) Torque responses. (b) Angular velocities 

 
The PDN controller serves as the 100% reference due to its 

slightly lower performance. The PD and Tanh controllers have 
lower ℒ2 norms (less cumulative error), with values of 99.62% and 
96.1%. This shows that although all three controllers perform well 
and similar in terms of position error, the Tanh controller offers a 
slight advantage by minimizing the ℒ2 norm, suggesting better 
overall performance in terms of total error energy compared to the 
other two controllers in the regulation problem. This comparable 
performance of the three regulators will allow for a meaningful eval-
uation of their performance in the point-to-point trajectory-tracking 
problem.  

Fig. 4 shows the corresponding torques and angular velocities. 
As expected, the responses of PD and PDN are practically identical 
(see Fig. 4a). Both control laws apply similar forces to the manipu-
lator, resulting in equivalent performance. In both cases, torque 𝜏1 
shows a sharp negative peak at the start (-107.46 Nm and -102.48 
Nm, respectively) before stabilizing near to 𝜏1 = −22.9 Nm, 

indicating a significant initial effort to correct the position, but still 
within actuator limit of 150 Nm. Torque 𝜏2 exhibits a smoother be-
havior, with an initial peak (12.69 Nm in the PD and 11.51 Nm in 
the PDN, still within actuator limit of 15 Nm) that stabilizes to 𝜏2 =
1.79 Nm. The Tanh regulator generates lower torques than the PD 
and PDN controllers (𝜏1 initial of -58.74 Nm and 𝜏2 initial of 5.75 

Nm). Additionally, the torque 𝜏1 in Tanh stabilizes more slowly to 
𝜏1 = −22.9 Nm, suggesting a behavior with bounded actions. As 
with the other controllers, torque 𝜏2 is smoother than 𝜏1 and stabi-

lizes to 𝜏2 = 1.79 Nm.  The angular velocities in Fig. 4b show that 
the PD and PDN controllers exhibit almost identical behavior, as 
expected. In both cases, the velocities of 𝑞1 and 𝑞2 reach their 
maximum values and then decreases. The Tanh controller results 
in a more damped response, especially for 𝑞1, showing that its 
bounded actions result in smoother transitions. In all scenarios, the 
angular velocities remain within the maximum limits.  
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Fig. 5. Monte Carlo robustness of PD, Tanh, and PDN controllers under parametric uncertainty and (𝑞𝑑1, 𝑞𝑑2) = (−40°, 120°) 

 

 

Fig. 6.   Boxplots of robustness metrics (𝑇𝑠, e(𝑡𝑠), ISE, and ℒ2 − i. e. , ‖𝑒‖2 −) for PD, Tanh, and PDN controllers with (𝑞𝑑1, 𝑞𝑑2) = (−40°, 120°), ±15% 
parametric uncertainty, and 200 Monte Carlo trials 

 
To evaluate controller robustness under parametric uncer-

tainty—for example, payload-driven changes in link-2 mass and 
center of mass—we ran a 200-trial Monte Carlo with truncated 
Gaussian perturbations (±15%) applied to all the Tab. 1 coeffi-
cients with the desired position (𝑞𝑑1, 𝑞𝑑2)  =  (−40°, 120°).  

The Fig. 5 overlays the nominal error response (black) with 
shaded ±1 standard deviation bands, and Fig. 6 shows boxplots of 
robustness metrics obtained by Kruskal-Wallis and bootstrap anal-
yses. Qualitatively, PD exhibits the tightest dispersion and quickest 
convergence in the 𝑞1 error; PDN shows similar transients but a 
wider spread, consistent with PD gains being hand-tuned for this 

set-point while PDN gains are produced by a neural estimator not 
tailored to the operating point. For 𝑞2, all controllers decay rapidly, 
but Tanh is visibly poorer and with larger spread.  

Because the Monte Carlo metrics were non-Gaussian (normal-
ity rejected by a Lilliefors/Kolmogorov–Smirnov test), we used 
Kruskal–Wallis and complemented it with bootstrap 95% confi-
dence intervals for the medians. The analysis confirms strong be-
tween-controller differences for settling time 𝑇𝑠(𝑞1) (significance 
p<0.05): PDN attains the smallest median 𝑇𝑠(𝑞1) = 0.773 s with 
confidence interval [0.768, 0.779], a 56.1% improvement over the 
worst case (Tanh).  
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Fig. 7. Disturbance Rejection to a 6 Nm, 0.15 s Torque Pulse at Joint 2 (t = 3 s): q1 and q2 Position Errors for PD, Tanh, and PDN 

For 𝑇𝑠(𝑞2) (p<0.05), Tanh is fastest with median 1.117 s 
[1.068, 1.150], 19.0% better than the worst (PDN). Steady-state 
error at final time, 𝑒1(𝑡𝑠), shows no significant differences 
(p=0.068), whereas 𝑒2(𝑡𝑠) does (p<0.05); PD yields the lowest 
median 𝑒2(𝑡𝑠) = 0.185 deg [0.068, 0.260], a 32.8% reduction rel-
ative to Tanh. Integrated error measures also differ markedly 
(p<0.05): Tanh achieves the smallest ISE (median 3573) and the 
lowest time-normalized error ℒ2 (median 1191), about 8.2% better 
than PDN. Overall, PDN is fastest in joint-1, Tanh is fastest in joint-
2 and most favorable in energy-like errors, and PD minimizes 
steady-state error for joint-2. 

To analyze the effect of PDN self-tuning—while keeping the 
gains of the other controllers fixed at the values used for the (𝑞𝑑1, 
𝑞𝑑2) = (−40°, 120°) operating point—we pooled the Monte Carlo 
data across the three set-points (−40°, 120°), (0°, 90°), and (−20°, 
140°) and applied a Kruskal–Wallis test; the results are as follows. 
For settling time 𝑇𝑠(𝑞1), groups differ (p<0.05); PDN attains the 
lowest median 0.7725 s, improving by 56.2% over the worst (Tanh). 
For 𝑇𝑠(𝑞2), groups differ (p<0.05); Tanh is best with median 1.100 
s, a 19.1% improvement over the worst (PDN). For steady-state 
error 𝑒1(𝑡𝑠), differences are not significant (p≥ 0.05). For 𝑒2(𝑡𝑠), 
groups differ (p<0.05); PDN is best with median 0.1163 deg, a 
55.9% reduction relative to the worst (Tanh). For the integral met-
rics, ISE andℒ2, groups differ (p<0.05); Tanh achieves the lowest 
medians (ISE = 3529, ℒ2 = 1176), each 9.3% better than the worst 
(PDN). Overall, across the three operating points, PDN is fastest in 
joint-1 transients, Tanh is fastest in joint-2 and most favorable for 
energy-type errors, and PD does not dominate but remains com-
petitive in steady-state bias for joint-2.  

Therefore, we observe that, for regulation tasks, the PDN con-
troller is competitive with PD and Tanh, even with parametric un-
certainty, but its main advantage is that it does not require manual 
tuning of the proportional and derivative gains. 

In Fig. 7, an external disturbance was applied at joint 2: a 6 Nm 
torque starting at t = 3 s and lasting 0.15 s (red dashed line). In 𝑞1 
the impact is minor and short-lived due to limited coupling; all con-
trollers keep the error close to zero with only a small blip. In 𝑞2 the 
disturbance causes a pronounced negative excursion (about −20 
to −25 degrees), which reveals clear differences in disturbance re-
jection: PD shows the smallest excursion and the fastest recovery, 
PDN is a close second with a slightly deeper dip and slower return, 
and Tanh performs worst with the largest dip and the longest tail. 

This ranking aligns with controller structure: PD and PDN retain 
linear behavior to counter a torque pulse, whereas the Tanh con-
troller soft-limits the proportional and derivative actions, reducing 
corrective effort. 

4.3. Point-to-point trajectory tracking 

Fig. 8a shows the ideal trajectory that the robot should follow, 
represented in the shape of an owl interpolated from 200 points and 
completed in 25 seconds. The PDN controller permits the robot to 
track this trajectory with a sampling period of 2.5 ms, corresponding 
to 10,000 samples, as illustrated in Fig. 8b. The Tanh and PD con-
trollers yield similar results. Fig. 8c and Fig. 8d show the joint ve-
locities for the Tanh and PDN controllers. In both cases, the veloc-
ities of joints 𝑞1 and 𝑞2 remain near the saturation limits. However, 
the Tanh controller achieves higher velocity values, although it sta-
bilizes more quickly, which affects its energy consumption. The en-
ergy consumption is calculated as: 

𝐸(𝜏, 𝑞̇) = ∫ |𝜏1(𝑡)𝑞̇1(𝑡) + 𝜏2(𝑡)𝑞̇2(𝑡)|𝑑𝑡.
𝑇

0
   (20) 

Fig. 8e and Fig. 8f compare the performance regarding the ℒ2 
norm and energy consumption. Unlike the regulation control case, 
in trajectory tracking, the PDN controller shows the best perfor-
mance in terms of accumulated position error, with the lowest ℒ2 
norm (73.48%), followed by the Tanh controller (74.12%) and then 
the PD (taken as the 100% reference). This shows that the PDN 
controller better minimizes the accumulated error. Regarding en-
ergy consumption, the PDN controller also stands out with the best 
performance (80.58%), followed by the PD (83.98%), and the Tanh 
(100%, taken as the reference). Besides reducing the error, the 
PDN controller is also more energy-efficient. 

5. DISCUSSION 

In agreement with Tab. 2, the proposed controller differs from 
previous variable-gain PD approaches in several key aspects. 
While many studies introduce variable gains as functions of state 
variables (e.g., position, velocity, or error) [15–23], our approach 
uniquely defines the proportional gain as a function of the desired 
position. This structural distinction has important implications:  
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− Offline Training and Practical Implementation: Unlike methods 
that rely on adaptive or iterative online updates [15, 17, 21], the 
proposed controller employs an RBF interpolation network 

trained offline. This design reduces online computational bur-
den, making the method more practical for real-time applica-
tions without sacrificing performance. 

 
 

Fig. 8.   Point-to-point "Owl" trajectory tracking. (a) Ideal trajectory. (b) Trajectory with the PDN controller. (c) Actuator speed with the Tanh controller. (d) 
Actuator speed with the PDN controller. (e) Comparison of ℒ2 norms. (f) Comparison of energy consumption. 

Tab. 2. Comparative table of studies on PD controllers with variable gains 

Study Controller Type Variable Gain Structure Stability Analysis Method Validation Approach 

[4] PD-like with variable gains Variable; state-, position-, and 
velocity-dependent; smooth 

functions (e.g. cos² (tanh 
(error+velocity))) 

Lyapunov theory; global asymp-
totic stability; gravity compensa-

tion required 

Simulation; two-DOF direct-drive robot; 
joint regulation; L2 norm 

[15] PD iterative neural-net-
work learning (PDISN) 

Likely variable/adaptive; neural 
network and iterative learning 

Extended Lyapunov theories; 
stability type not specified 

Simulation; manipulator characteristics 
not specified; scenario not specified 

[16] Proportional-derivative 
(PD) 

Variable; tuned by self-organiz-
ing fuzzy algorithm 

Not analyzed (no details) Simulation; manipulator characteristics 
not specified; tracking control; position 

error metric 

[17] Self-tuning PD Bounded, time-varying; neuro-
fuzzy recurrent scheme 

Lyapunov theory; semi-global ex-
ponential stability 

Simulation; manipulator characteristics 
not specified; trajectory tracking 

[18] Nonlinear PID with fuzzy 
self-tuned PD gains 

Variable, position-dependent; 
fuzzy logic 

Not mentioned; global asymptotic 
stability; no gravity compensation 

Experiments; type not specified; sce-
nario and metrics not specified 

[19] Adaptive PD Adaptive to gravity parameters Not mentioned; global conver-
gence 

Simulation; three-DOF manipulator; 
point-to-point and tracking 

[20] PD-type robust Variable, error-varying; param-
eterized by perturbing parame-

ter 

Singular perturbation theory; sta-
bility type not explicit 

Physical experiment; planar two-DOF 
direct-drive robot; trajectory tracking 

[21] Adaptive iterative learning 
control (ILC)-PD 

Variable; iterative learning, two 
iterative variables 

Lyapunov theory; asymptotic 
convergence 

Simulation; two-DOF manipulator; tra-
jectory tracking 

[22] PD-type Variable, state-dependent Not mentioned; global asymptotic 
stability claimed 

Physical experiment; two-DOF direct-
drive arm; scenario not specified 

[23] Linear and nonlinear PD-
type 

Nonlinear functions of system 
states 

Not mentioned; global asymptotic 
stability claimed 

Simulation; single-link and two-DOF ro-
bots; trajectory tracking 

This 
work 

PD-like with variable gains Variable; desired  position de-
pendent proportional gains with 

RBF interpolation networks 
trained offline 

Lyapunov theory; global asymp-
totic stability; gravity compensa-

tion required 

Simulation; two-DOF direct-drive robot; 
joint regulation; L2 norm, point-to-point 
tracking; regulation performance evalu-
ated with parametric uncertainties and 

external perturbations 
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− Formal Stability Guarantees: Several previous works either 
omit stability analysis [16, 18, 19, 23] or provide only limited 
claims (e.g., “global convergence” without detailed proofs) [19]. 
In contrast, our control law is rigorously validated through Lya-
punov theory, ensuring global asymptotic stability under both 
trajectory tracking and regulation tasks. 

− Point-to-Point Tracking and Regulation without Re-tuning: 
Whereas prior approaches often require parameter re-adjust-
ment depending on trajectory complexity or regulation scenar-
ios, our method demonstrates strong performance in point-to-
point tracking while also showing that regulation tasks can be 
achieved without re-tuning the gains.  
This makes the controller particularly suitable for manipulators 

executing sequences of set-points, as the stability and efficiency 
remain robust across tasks. 

− Robustness to Uncertainties and Perturbations: While some 
works include robustness studies under limited assumptions 
[20], the proposed control law explicitly evaluates performance 
under parametric uncertainties and external perturbations, con-
firming its reliability in realistic operating conditions. 

6. CONCLUSIONS 

Compared to the existing literature, the proposed controller 
combines three distinctive contributions-desired-position depend-
ence, offline RBF training, and formal Lyapunov stability- which to-
gether enhance both theoretical guarantees and practical applica-
bility. Its strength lies particularly in point-to-point trajectory track-
ing, where the error is reduced in a more energy-efficient form re-
garding PD and Tanh controllers. It also presents robust regulation 
without gain re-scheduling, aspects that are not simultaneously ad-
dressed by previous studies. 
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