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Abstract: This study presents a multiscale modeling approach for the design and analysis of a Type IV composite pressure vessel subjected 
to an internal pressure of 70 MPa. The vessel's composite section comprises carbon fiber and epoxy resin. Micromechanical properties were 
determined using two methods: the Material Designer module in Ansys Workbench and a periodic boundary condition (PBC) approach 
implemented in Mechanical APDL. Three fiber geometries-actual scanned, circular, and elliptical-were considered to assess their influence 
on the homogenized material properties. A macroscale finite element model was developed incorporating variable layer thicknesses in the 
dome regions and varying winding angles, constructed using an algorithm within the Ansys ACP module. Failure analyses employed the 
Puck and Hashin criteria for constituent-level assessment and the Tsai-Wu criterion for the homogenized composite. Dehomogenization 
techniques were applied to extract strain tensors from critical regions, which were then imposed on representative volume elements (RVEs) 
reflecting the different fiber geometries. Comparative analysis of the RVEs provided insights into the initiation and progression of damage 
within the composite structure. The dehomogenisation method used in this study makes it possible to investigate the state of stress on  
a micro scale. In addition, the results obtained were compared with the strength criteria of the composites. 
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1. INTRODUCTION 

Composite pressure vessels are widely used in transportation, 
automotive, and aerospace industries. They are most used for stor-
ing gases, which are various types of fuel for internal combustion 
and electric engines stored under high pressure (1) . Therefore, the 
main task of these structures is to ensure their adequate strength, 
stiffness and resistance to various external environmental factors 
such as different temperatures, impacts, etc. When designing struc-
tures using composites, it is important to select the appropriate ma-
terial structure (2). The use of multiscale modelling makes it possi-
ble to build a model of the material on a microscopic scale and, 
based on this, to determine the constants of the resulting compo-
site. Figure 1 describes the scales of analysis for composite mate-
rials (3). 

On a microscopic scale, materials can be chosen, their volume 
ratio, fibre diameter and the way the fibers are arranged. Depend-
ing on the materials used and their proportions, different values of 
material constants can be obtained. From the microscopic scale 
one moves to the macro scale, which represents the layer scale, 
and then to the laminate scale which represents the sequence of 
layers (4). The last is the component scale, for example the com-
posite overlap in a Type IV pressure vessel. In the case of hydrogen 
storage vessels, a high operating pressure of 70 MPa is required. 
Operation under such conditions is provided by this type of tanks 
design, in which the strength is provided by a carbon fibre compo-
site, and the internal gas diffusion barrier is provided by a plastic 
liner. The use of a plastic liner allows the weight of such a tank to 

be reduced compared to the Type III design, where the liner is 
made of aluminium [5, 6].  Figure 2 shows an example of a Type IV 
composite pressure vessel. For the composite overlap in these 
structures, the method of winding the fibre band is used. As a result 
of using this method, in the dome section of the tank, each layer 
has a variable thickness and a variable winding angle of the fibre 
tape, which is an important aspect in the design process [7, 8]. 

Damage analysis of composite pressure vessels is complex, 
requiring a multiscale approach to accurately capture various dam-
age mechanisms. This research presents a comprehensive frame-
work for damage analysis and finite element micromechanical mod-
eling of Type IV composite pressure vessels, focusing on stress 
state dehomogenization and damage initiation. Numerical studies 
of composite pressure vessels necessitate the analysis of strain in 
homogeneous materials. Multiscale modeling approaches have 
been employed by numerous researchers, including Sadik L. 
Omairey (3), Xin Liu (4), to determine the mechanical properties of 
composite materials based on the properties of their constituent el-
ements. This methodology has been applied to composite vessels 
by Song Lin (9), P.F. Liu (10) and Nan Zhang (11). In the studies 
reported here, this approach was implemented using periodic 
boundary conditions in Abaqus. In the present study, the Material 
Designer plug-in available in Ansys Workbench and a second novel 
approach using the Mechanical APDL programming language were 
used to create equations satisfying periodic boundary conditions to 
map these conditions for each cubic cell size under different loading 
conditions. The micromechanical model was constructed using a 
fibre model based on a scan of its actual structure, in addition to 
two simplified fibre models with elliptical and circular cross-
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sections. The resulting material constants were then compared, 
and the effect of fibre shape on their values was assessed. It was 
determined that the developed equations will be used in future work 
for numerical simulations of the resin polymerization process in fi-
ber composites to determine the residual stresses then arising. A 
detailed process for building a braided composite is presented, us-
ing Wang's method, which was also used by Jiao Lin (12), Qian 
Zhang (13) and Hui Wang (14). A detailed analysis of the com-
posite's strain was conducted using the criteria of Puck, Hashin, 
and Tsai Wu. The results were compared and the stress distribu-
tions in other elements of the tank were shown, which had not been 
done by previous researchers except for Qian Zhang (13).  

The approach used in this study will allow a more accurate pre-
diction of the failure of composites in structures and show the im-
pact that the fibre geometry used has.  Novel aspect of the work is 
the application of a dehomogenisation process to a composite pres-
sure vessel, considering three different fibre geometries, including 

their actual structure. Dehomogenisation involves transferring the 
deformation state from the macroscopic scale to the microscopic 
scale, enabling stress analysis of the constituent materials. A strain 
tensor using equations describing the three-dimensional strain 
state obtained from the most critically stressed points was applied 
to representative volumetric elements. A comparative analysis of 
the results was performed to assess the influence of fibre shape 
and orientation on the reinforcement in the composite structure. 
The equations were created using the Mechanical APDL language 
and allowed a numerical analysis of the deformation state in the 
component materials based on the obtained stress distributions in 
the RVE. This approach makes it possible to observe the behaviour 
of the fibres and resin with greater accuracy, where and how they 
will fail or break, which the macro-scale model does not allow. In 
addition, a comparison was made between the obtained stress dis-
tributions of the component materials and the strength criteria of the 
composites. 

 
Fig. 1. Composite analysis scales

 
Fig.2. Construction of composite pressure vessel type IV 

2. MICROMECHANICAL MODEL OF COMPOSITE MATERIAL 

The micromechanical model of a composite material made of 
carbon fibre and epoxy resin (15) was created in Ansys Workbench 
in two ways, the first using the Material Designer plug-in and the 
second requiring much more work to create the model using Me-
chanical APDL language. The composite material was created us-
ing Toray T700 carbon fibre and epoxy resin (9). Orthotropic mate-
rial properties were assigned to carbon fibre and isotropic proper-
ties to the resin, as shown in Table 1. 

The representative volume element has a cube shape, where 
the ratio of the materials used is 60% fibre and 40% resin. Three 
different fibre geometries were used to build a representative vol-
ume element. The first uses a circular fibre diameter of 7µm, which 
is what the fibre manufacturer states. The second geometry is 
based on a simplified elliptical shape, which is a simplified scan of 
the actual fibre. The last geometry reproduces the actual scan of 
the fibre, which is shown in figure 3. Using material designer, only 

an RVE model with a circular fibre was created, and using Ansys 
mechanical, models using all three proposed fibre geometries were 
created. In total, therefore, results from four modelling approaches 
were obtained and are summarised in Table 6. Figures 4 and 5 
show geometric models of RVE with three fibre shapes and a finite 
element mesh. 

Tab. 1.  Mechanical properties of carbon fibre and resin epoxy 

Carbon fiber T700 (9) Epoxy resin (9) 

Properties Values Properties Values 

𝐸𝑥[GPa] 230 
Tensile modulus 𝐸𝑚[GPa] 3,2 

𝐸𝑦, 𝐸𝑧 [GPa] 28 

𝐺𝑥𝑦 , 𝐺𝑥𝑧 [GPa] 50 
Shear modulus 𝐺𝑚 [GPa] 1,17 

𝐺𝑦𝑧[GPa] 10 

𝑣𝑥𝑦, 𝑣𝑥𝑧 0,23 
Poisson's ratio 𝑣𝑚 0,35 

𝑣𝑦𝑧 0,3 

component laminate macroscale microscale 

Metal boss without 
opening 

Metal boss with 
opening 

Composite overlap 

Plastic liner 
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Fig. 3. Scan of the actual fibre structure: a) multifiber view, b) single fibre   

zoom 

 

 

Fig. 4. a) RVE with circular fibre: b) RVE with elliptical fibre 

 

 

Fig. 5. RVE with actual fibre: a) geometry, b) mesh 

To create a finite element mesh on the RVE in Ansys Mechan-
ical, it is necessary to ensure that there is an equal number of nodes 
on each opposite face. This is because if the number of nodes is 
not equal, it will not be possible to solve the model correctly [3, 16, 
17, 18], as each node must have a counterpart. The formulation of 
the equations that describe the dependence of the displacements, 
the behaviour of the nodes on the individual walls, edges and ver-
tices, and the representation of the periodic boundary conditions 
was conducted in the mechanical language APDL and is presented 
in Tables 2-5. Each equation establishes a linkage between the dis-
placements of two nodes located on opposite walls.  

 
Fig. 6. Numbering of RVE vertices 

The determination of all nine material constants was achieved 
by setting six loading conditions, namely tension in the X, Y, Z di-
rections and shear in the XY, XZ and YZ planes. The equations 
used were divided into three groups, categorised by faces, edges 
and vertices. Each vertex of the cubic RVE model was assigned a 
number, as illustrated in Figure 4, and the displacement equations 
[16, 17, 18, 19] were defined using these numbers of vertices. 

The displacement conditions were set using the displacement 
function and the displacement has the same value for each load 
case. For example, for tension in the X-direction, the displacement 
was set on the front surface on X-direction, for shear in the XZ-
plane the displacement was set in the X-direction on the top Z-sur-
face and in the Z-direction on the front X-surface. Based on the 
specified loads using periodic boundary conditions, distributions of 
resultant displacements (Fig.7) and Huber von Mises reduced 
stresses (Fig. 8). The distributions are shown for RVE with circular 
cross-section fibre. 

 
 
 
 

a) 

b) 

a) 

b) 

a) 

b) 
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Tab. 2. PBC equations for tensile in X, Y, and Z direction 

Surfaces Edges Vertices 

𝑢𝑥
5678 − 𝑢𝑥

1234 = 0 
𝑢𝑥

56 − 𝑢𝑥
12 = 0,     𝑢𝑥

78 − 𝑢𝑥
34 = 0, 

𝑢𝑥
58 − 𝑢𝑥

14 = 0,     𝑢𝑥
67 − 𝑢𝑥

23 = 0 

𝑢𝑥
5 − 𝑢𝑥

1 = 0,     𝑢𝑥
6 − 𝑢𝑥

2 = 0, 

𝑢𝑥
8 − 𝑢𝑥

4 = 0 ,    𝑢𝑥
7 − 𝑢𝑥

3 = 0 

𝑢𝑦
2367 − 𝑢𝑦

1458 = 0 
𝑢𝑦

23 − 𝑢𝑦
14 = 0,     𝑢𝑦

67 − 𝑢𝑦
58 = 0, 

𝑢𝑦
26 − 𝑢𝑦

15 = 0,    𝑢𝑦
37 − 𝑢𝑦

48 = 0 

𝑢𝑦
2 − 𝑢𝑦

1 = 0  ,   𝑢𝑦
6 − 𝑢𝑦

5 = 0, 

𝑢𝑦
3 − 𝑢𝑦

4 = 0  ,   𝑢𝑦
7 − 𝑢𝑦

8 = 0 

𝑢𝑧
3478 − 𝑢𝑧

1256 = 0 
𝑢𝑧

78 − 𝑢𝑧
56 = 0  ,   𝑢𝑧

34 − 𝑢𝑧
12 = 0, 

𝑢𝑧
48 − 𝑢𝑧

15 = 0  ,   𝑢𝑧
37 − 𝑢𝑧

26 = 0 

𝑢𝑧
4 − 𝑢𝑧

1 = 0  ,   𝑢𝑧
8 − 𝑢𝑧

5 = 0, 

𝑢𝑧
7 − 𝑢𝑧

6 = 0  ,   𝑢𝑧
3 − 𝑢𝑧

2 = 0 

Tab. 3. PBC equations for shear in XZ-plane 

Surfaces Edges Vertices 

𝑢𝑥
3478 − 𝑢𝑥

1256 = 0 𝑢𝑥
34 − 𝑢𝑥

12 = 0,     𝑢𝑥
78 − 𝑢𝑥

56 = 0 𝑢𝑥
4 − 𝑢𝑥

1 = 0 

𝑢𝑦
2367 − 𝑢𝑦

1458 = 0 
𝑢𝑦

37 − 𝑢𝑦
48 = 0,     𝑢𝑦

26 − 𝑢𝑦
15 = 0 

𝑢𝑦
23 − 𝑢𝑦

14 = 0,     𝑢𝑦
67 − 𝑢𝑦

58 = 0 

𝑢𝑦
3 − 𝑢𝑦

4 = 0,     𝑢𝑦
2 − 𝑢𝑦

1 = 0 

𝑢𝑦
6 − 𝑢𝑦

5 = 0,     𝑢𝑦
7 − 𝑢𝑦

8 = 0 

𝑢𝑧
5678 − 𝑢𝑧

1234 = 0 𝑢𝑧
78 − 𝑢𝑧

34 = 0,     𝑢𝑧
56 − 𝑢𝑧

12 = 0 𝑢𝑧
5 − 𝑢𝑧

1 = 0 

Tab. 4. PBC equations for shear in XY-plane 

Surfaces Edges Vertices 

𝑢𝑥
2367 − 𝑢𝑥

1458 = 0 𝑢𝑥
23 − 𝑢𝑥

14 = 0,     𝑢𝑥
67 − 𝑢𝑥

58 = 0 𝑢𝑥
2 − 𝑢𝑥

1 = 0 

𝑢𝑦
5678 − 𝑢𝑦

1234 = 0 𝑢𝑦
67 − 𝑢𝑦

23 = 0,     𝑢𝑦
58 − 𝑢𝑦

14 = 0 𝑢𝑦
5 − 𝑢𝑦

1 = 0 

𝑢𝑧
3478 − 𝑢𝑧

1256 = 0 
𝑢𝑧

48 − 𝑢𝑧
15 = 0,     𝑢𝑧

37 − 𝑢𝑧
26 = 0 

𝑢𝑧
34 − 𝑢𝑧

12 = 0,     𝑢𝑧
78 − 𝑢𝑧

56 = 0 

𝑢𝑧
4 − 𝑢𝑧

1 = 0,     𝑢𝑧
3 − 𝑢𝑧

2 = 0 

𝑢𝑧
7 − 𝑢𝑧

6 = 0,     𝑢𝑧
8 − 𝑢𝑧

5 = 0 

Tab. 5. PBC equations for shear in YZ-plane 

Surfaces Edges Vertices 

𝑢𝑥
5678 − 𝑢𝑥

1234 = 0 
𝑢𝑥

58 − 𝑢𝑥
14 = 0,     𝑢𝑥

67 − 𝑢𝑥
23 = 0 

𝑢𝑥
78 − 𝑢𝑥

34 = 0,     𝑢𝑥
56 − 𝑢𝑥

12 = 0 

𝑢𝑥
5 − 𝑢𝑥

1 = 0,     𝑢𝑥
6 − 𝑢𝑥

2 = 0 

𝑢𝑥
8 − 𝑢𝑥

4 = 0,     𝑢𝑥
7 − 𝑢𝑥

3 = 0 

𝑢𝑦
3478 − 𝑢𝑦

1256 = 0 𝑢𝑦
48 − 𝑢𝑦

15 = 0,     𝑢𝑦
37 − 𝑢𝑦

26 = 0 𝑢𝑦
4 − 𝑢𝑦

1 = 0 

𝑢𝑧
2367 − 𝑢𝑧

1458 = 0 𝑢𝑧
26 − 𝑢𝑧

15 = 0,     𝑢𝑧
37 − 𝑢𝑧

48 = 0 𝑢𝑧
2 − 𝑢𝑧

1 = 0 

 

 
Fig. 7. Displacement distributions of RVE: a) tensile in X-direction, b) tensile in Y-direction, c) tensile in Z-direction 

 
Fig. 8. Displacement distributions of RVE: a) shear in XY-plane, b) shear in XZ-plane, c) shear in YZ-plane 

 

 

a) b)

) 

    

c) 

c) b)

) 

    

a) 
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Fig. 9. Equivalent stress distributions of RVE: a) tensile X-direction, b) tensile Y-direction, c) tensile Z-direction 

 
Fig. 10. Equivalent stress distributions of RVE: a) shear in XY-plane, b) shear in XZ-plane, c) shear in YZ-plane

From the displacement distributions it is possible to see how 
the constituent materials of the composite work and it is evident in 
the shear and tensile cases that the matrix deforms more due to its 
much lower stiffness compared to the fibres. From the Huber von 
Mises reduced stress distributions, higher values are obtained in 
the fibres, which is also understandable due to their higher stiffness. 
In the case of tensile and shear in the XY and XZ planes, the high-
est stress values are obtained at the fibre-resin interface. By far the 
highest stress level is reached in the case of tension in the X-axis 
direction, where it is 1354 MPa. Once all the load cases have been 
simulated, the necessary information for calculating the material 
constants can be derived from the results. The mechanical proper-
ties of the composite represented by them were calculated using 
the following equations [3, 21]: 

𝐸𝑖 =

𝐹𝑖
𝐴𝑖

2∙∆𝐿𝑖
𝐿𝑖

,                                                                                      (1) 

𝑣𝑖𝑗 =

∆𝐿𝑗
𝐿𝑗
∆𝐿𝑖
𝐿𝑖

,                                                                                      (2) 

𝐺𝑖𝑗 =

𝐹𝑖𝑗
𝐴𝑗

∆𝐿𝑖
∆𝐿𝑗

+
∆𝐿𝑗
∆𝐿𝑖

,                                                                                (3) 

Where E is Young modulus, 𝑣 is Poisson ratio, G is Kirchoff 
modulus and  𝑖, 𝑗 are directions of the local coordinate system (x, 

y, z).  𝐹𝑖 is the force normal to the surface in i direction, 𝐹𝑖,𝑗 is the 

shear force in i direction applied to a surface normal to j direction. 
𝐿𝑖,𝑗 is dimension of RVE with respect to the local coordinate sys-

tem, ∆𝐿𝑖,𝑗 is the displacement under loading conditions. Top and 

bottom surfaces are normal to Y axis, front and back surfaces are 
normal to X axis, right and left surfaces are normal to Z axis. From 
tension in X direction Young’s modulus 𝐸1 and Poisson’s ratio 𝑣12,  
𝑣13 are calculated. Similarly, Young’s modulus 𝐸2 and 𝑣23 Pois-
son’s ratio are calculated from tension in Y direction and 𝐸3 
Young’s modulus is obtained from tension in Z direction. Kirchoff 
modules are calculated from shear loads in XY, YZ and XZ planes. 
Examples of labelled dimensions and displacements for tension 
and shear are shown in Figure 11. Table 6 shows the results of the 
material constants obtained by the two methods and using three 
different fibre geometry. 

 

Fig.11. Model displacements to calculate Young's modulus, Poisson's ratio           
             and shear modulus

Tab. 6. Mechanical properties of carbon epoxy composite 

Properties 
Material Designer 

(Circular fibre) 

PBC equations in Mechanical Difference between actual  
fibre and circular fibre [%] Circular fibre Eliptical fibre Actual fibre 

𝐸1[GPa] 139,345 139,012 138,972 142,502 2,51 

𝐸2[GPa] 8,242 8,195 8,291 8,612 5,09 

𝐸3[GPa] 8,242 8,195 8,288 8,620 5,19 

𝐺12[GPa] 4,657 4,629 4,900 5,122 10,65 

𝐺23[GPa] 3,943 3,936 4,454 4,153 5,51 

𝐺13[GPa] 4,657 4,629 4,899 5,143 11,10 

𝑣12 0,271 0,271 0,272 0,270 0,37 

𝑣23 0,501 0,494 0,468 0,466 6,99 

𝑣13 0,271 0,271 0,272 0,270 0,37 

a) 
b)

) 

    

c) 

a) b) c) 
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A comparison of the results obtained reveals that the key sig-
nificance for the values of the material constants in fibre composites 
does not depend solely on the ratio of the component materials 
used, but also on the distribution of the fibres in the resin and the 
geometry of the fibre. The final column of the table displays the per-
centage discrepancy between the values obtained using the peri-
odic conditions in mechanical for a fibre with a circular cross-sec-
tion and its actual scan. The most minute disparities are observed 
in Young's modulus and Poisson's ratios along the direction of ma-
terial reinforcement. The maximum discrepancies are observed for 
the Kirchoff moduli, attaining up to 11% of the total variation. How-
ever, the most significant parameter in the case of fibre composites 
is the Young's modulus in the direction of reinforcement, as it is 
from this that the strength primarily depends. 

3.   PRESSURE VESSEL GEOMETRY MODEL AND MATERIAL 
PROPERTIES 

A Type IV composite tank with a cylindrical shape was de-
signed, with an internal plastic liner and aluminium bosses at the 
ends of the tank [13, 21, 22].  Figure 12 shows a cross section of 
the model with general dimensions. 

 
Fig. 12. Solid model of composite pressure vessel 

The open boss is sealed with a plug to provide more realistic 
conditions inside the structure. The structure is reinforced with car-
bon fibre over the entire surface of the tank. The liner thickness is 
8mm, the thickness of the composite overlap in the cylindrical sec-
tion is 26,25mm and the maximum thickness in the dome section 
resulting from the filament winding method is 41mm. Table 7 shows 
the material properties of the aluminium and plastic used for the 
tank bosses and liner. The material constants were chosen based 
on existing materials. [23, 24]. Only the linear properties of these 
materials have been used as the simulation includes the working 
pressure of the tank. The material constants shown in Table 6 were 
applied sequentially to the composite material, and the effect of the 
different fibre geometries on the results was checked. Therefore, a 
total of four simulations containing different material properties will 
be performed. 

Tab. 7. Mechanical properties of 6061 and PA6 [23, 24] 

Properties 6061-T6 PA6 

Tensile Modulus [GPa] 68,9 1,4 

Poisson's ratio 0,33 0,35 

Yield Strength [MPa] 276 76 

Tensile Strength [MPa] 310 - 

Based on the data provided by the Toray composite manufac-
turer, the composite strength properties necessary to evaluate the 

stress state of the structure according to the intended criteria were 
also selected. The properties are given in Table 8. Selected prop-
erties are available for T700 carbon-epoxy composite with 60% fi-
bre volume, which is constructed from the fibres used in the micro-
mechanical model. 

Tab. 8. Mechanical strength properties of carbon epoxy composite 

Properties Values [MPa] 

Longitudinal Tensile Strength 𝑋𝑡 2860 

Transverse Tensile Strength 𝑌𝑡 , 𝑍𝑡 81 

Longitudinal Compressive Strength 𝑋𝑐  -1450 

Transverse Compressive Strength 𝑌𝑐 , 𝑍𝑐  -268,5 

Shear Strength in fiber plane 𝑆12, 𝑆13 136 

Sherar strength out of fiber plane 𝑆23 87 

3.1. Construction of composite laminate 

The ACP Composite module in Ansys Workbench was used to 
design the overlap composite (25). The entire laminate consists of 
42 hoop layers and 30 helical layers (26) with a carbon fibre tape 
thickness of 0,25mm. The construction of the laminate also used a 
variable winding polar radius of the helical layers to achieve a 
smooth decrease in thickness of the laminate away from the bottom 
of the tank. Table 9 shows all the spiral layer angles used, corre-
sponding to the variable polar radius. Helical layers occur in both 
the dome and cylindrical sections of the tank; hoop layers occur 
only in the cylindrical section of the tank and have a constant wind-
ing angle of 90°. 

Tab. 9. Winding angles correspond to variable polar radius for helical  
layers 

Winding angle 
 𝜶 [°] 

Total number of layers 
Radius of polar 

openings 𝒓𝟎 [mm] 

10 10 30 

14,5 4 42 

19 4 54 

23 4 66 

27,5 4 78 

31,5 2 90 

36,5 2 102 

Wang's method was used to calculate the thickness distribution 
of the helical layers [12, 13, 14, 27]. The winding angels are calcu-
lated from equation: 

𝛼 = asin ( 
𝑟0

𝑅
 )                                                                           (4) 

Where 𝑅 is the radius of the cylinder section, 𝑟0 is, the radius 
of the polar opening. The thickness distribution can be determined 
from equations that reflect the actual thickness after filament wind-
ing with a high degree of accuracy. In the part of the dome section 
where the radius of the tank varies from 𝑟0 to 𝑟2𝑏, the following 
equation is used: 

𝑡(𝑟) = 𝑚1 + 𝑚2 ∙ 𝑟 + 𝑚3 ∙ 𝑟2 + 𝑚4 ∙ 𝑟3                             (5) 

The parameters m1, m2, m3, m4 of the equations are calculated 
from: 
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[

𝑚1

𝑚2

𝑚3

𝑚4

] = 𝐴−1 ∙ 𝐵                                                                                 (6) 

Where A and B are matrices as shown below: 

𝐴 =

[
 
 
 
 

1 𝑟0 𝑟0
2 𝑟0

3

1 𝑟2𝑏 𝑟2𝑏
2 𝑟2𝑏

3

0 1 2 ∙ 𝑟2𝐵 3 ∙ 𝑟2𝐵
2

𝜋 ∙ (𝑟2𝑏
2 − 𝑟0

2)
2∙𝜋

3
∙ (𝑟2𝑏

3 − 𝑟0
3)

𝜋

2
∙ (𝑟2𝑏

4 − 𝑟0
4)

2∙𝜋

5
∙ (𝑟2𝑏

5 − 𝑟0
5)]

 
 
 
 

 (7) 

𝐵 =

[
 
 
 
 
 
 
 𝑡𝑅 ∙ 𝜋 ∙ 𝑅 ∙

cos𝛼0

𝑚0∙𝑏

𝑚𝑅∙𝑛𝑅

𝜋
∙ (acos (

𝑟0

𝑟2𝑏
) − acos (

𝑟𝑏

𝑟2𝑏
)) ∙ 𝑡0

𝑚𝑅∙𝑛𝑅

𝜋
∙ (

𝑟0

𝑟2𝑏∙√𝑟2𝑏
2 −𝑟0

2
−

𝑟0

𝑟2𝑏∙√𝑟2𝑏
2 −𝑟𝑏

2
) ∙ 𝑡0

𝑣𝑐𝑜𝑛𝑠𝑡 ]
 
 
 
 
 
 
 

                                 (8) 

Components of matrices are calculated from equations: 

𝑣𝑐𝑜𝑛𝑠𝑡 = ∫ 2 ∙ 𝜋 ∙ 𝑟 ∙
𝑚𝑅∙𝑛𝑅

𝜋
∙ acos (

𝑟0

𝑟
) ∙ 𝑡0𝑑𝑟 +

𝑟𝑏

𝑟0
  

∫ 2 ∙ 𝜋 ∙ 𝑟 ∙
𝑚𝑅∙𝑛𝑅

𝜋

𝑟2𝑏

𝑟𝑏
∙ (acos (

𝑟0

𝑟2𝑏
) − acos (

𝑟𝑏

𝑟2𝑏
))                    (9) 

Radius of polar opening with fibre band width:                                      
𝑟𝑏 = 𝑟0 + 𝑏.                                                                                         (10) 

Radius of polar opening with two fibre band width:                               
𝑟2𝑏 = 𝑟0 + 2 ∙ 𝑏                                                                                 (11) 

Number of fibre bands in the cylindrical section for one layer:       

 𝑚𝑅 =
2∙𝜋∙𝑅∙cos𝛼

𝑏
                                                                         (12) 

Number of fibre bands which create one layer in dome section: 

 𝑚0 = 𝑚𝑅                                                                                (13) 

Thickness of helical layers in cylindrical section: 

 𝑡𝑅 = 2 ∙ 𝑡0 ∙ 𝑛𝑅                                                                                (14) 

nR is the total number of helical layers and 𝑡0 is the thickness of 
fibre band. In the dome section where the radius of the tank varies 
from 𝑟2𝐵 to 𝑅, the thickness is calculated using the following equa-
tion: 

𝑡(𝑟) =
𝑚𝑅∙𝑛𝑅

𝜋
∙ (acos (

𝑟0

𝑟
) − acos (

𝑟𝐵

𝑟
)) ∙ 𝑡0                           (15) 

 
Fig.13.  Composite thickness distribution at dome section for first 8  

helical layers 

Based on the calculations using the equations shown, thick-
ness distributions were obtained and used to build the numerical 
model. The overall lay-up configuration is shown in the Table 10 
and the thickness distribution of the composite at the dome part is 
shown in Figure 13 for the first 8 helical layers. 

 Tab. 10. Layup configuration 

Number of layers Angle [°] Quantity 

2 10 

x2 

3 90 

1 14,5 

1 19 

3 90 

1 23 

1 27,5 

3 90 

1 31,5 

1 36,5 

3 90 

2 10 

x2 

3 90 

1 14,5 

1 19 

3 90 

1 23 

1 27,5 

3 90 

2 10 x1 

4.  FINITE ELEMENT METHOD MODEL 

A three-dimensional numerical model of the composite pres-
sure vessel was created using Ansys Workbench, and a cross-sec-
tion of the model with finite element mesh is shown in Figure 14. 
Once the material had been constructed and the material constants 
had been determined, a composite overlap was constructed using 
the ACP Composite Prepost module. The model used an algorithm 
to create layers with variable thickness and variable fibre angle ac-
cording to the equations described by Wang's method. Initially, a 
surface model was constructed upon which a two-dimensional finite 
element mesh was superimposed. Thereafter, a layer layout was 
defined as illustrated in Figure 13, incorporating variable thickness 
and winding angle parameters. Subsequently, a three-dimensional 
model was generated based on the thickness data of the individual 
layers and imported into the mechanical environment. The three-
dimensional models of the liner and the bosses were permanently 
connected, and a three-dimensional finite element mesh was con-
structed. 

In the numerical model of the composite laminate, each layer 
has a finite element in thickness, and the generation of composite 
layers allows to capture the structure of the laminate. The thickness 
distribution of the composite in the finite element part of the dome 
compared to the data calculated by Wang’s method is shown in 
Figure 15.
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Fig. 14. Finite element mesh on 3D tank model

 

 
Fig. 15. Thickness distribution of composite at dome part in 3D model:  

a) Wang method, b) numerical model 

The shape of the composite overlap was smoothed using the 
extrusion guide function in ACP Prepost. Figure 8 shows diagrams 
of aspect ratio, element quality, skewness and Jacobian ratio of all 
finite elements in 3D model of liner and bosses and 2D surface 
where composite 3D model was built. The maximum value of as-
pect ratio is 5,07 and most of the elements have a ratio below 3. 
Minimum value of element quality is 0,24 and more than 90% of all 
elements have a ratio above 0,4.  

The maximum value of skewness is 0,67 and more than 90% 
of the finite elements have this ratio below 0,4. The last graph is the 
Jacobian ratio where the minimum value is 0,2 and more than 90% 
have this ratio above 0,4, so the summary mesh has very good 
quality in this model. 

 

 

 

 

 
Fig. 16. Quality of finite elements mesh graph: a) aspect ratio, b) element 

quality, c) skewness d) Jacobian ratio 
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4.1. Boundary conditions 

A fixed support is used in the end face of a closed aluminium 
boss. The internal pressure in the cylinder is 70MPa. Surfaces of 
an aluminium boss that are in contact with plastic liner surfaces are 
shared using the Share Topology function. Frictional contact was 
defined between the composite inner and outer surfaces of the 
plastic liner and the aluminium boss with a coefficient of friction 𝜇 =
0,2 [4, 5, 26]. On the outer cylindrical surface of the open boss, 
frictional contact is used to provide more stability for this model dur-
ing simulation. Due to the use of non-linear frictional contact and 
high pressure, large deformations were included in the simulation 
options.  

 

Fig. 17. Boundary conditions  

5. FAILURE CRITERIA 

The Puck, Hashin and Tsai Wu criteria were utilised in the anal-
ysis of the composite strain. The initial two criteria enable the eval-
uation of strain due to fibre or matrix damage, i.e. treating the ma-
terial as heterogeneous. Conversely, the Tsai Wu criterion does not 
permit such precise analysis and treats the composite as a homo-
geneous material. The equations that describe each criterion, in-
corporating the mechanical properties and components of the 
stress tensor, are outlined below. Failure modes in Puck criterion 
are as follows [9, 14, 28]: 

Fiber failure 3D: 

𝜎1 ≥ 0;  𝑓𝑓 =
𝜎1

𝑋𝑡
                                                                              (16) 

𝜎1 ≤ 0; 𝑓𝑓 =
𝜎1

𝑋𝑐
.                                                                      (17) 

Matrix failure 3D: 

𝜎𝑛 ≥ 0;   𝑓𝑚 =

√((
1

𝑅
⟘
+ −

𝑝⟘𝜃
+

𝑅⟘𝜃
𝐴 )𝜎𝑛)

2

+ (
𝜏𝑛𝑡

𝑅⟘⟘
𝐴 )

2

+ (
𝜏𝑛1

𝑅⟘ǁ
𝐴 )

2

+
𝑝⟘𝜃

+

𝑅⟘𝜃
𝐴 ∙ 𝜎𝑛      (18)                                                                                      

𝜎𝑛 ≤ 0;   𝑓𝑚 = √(
𝜏𝑛𝑡

𝑅⟘⟘
𝐴 )

2

+ (
𝜏𝑛1

𝑅⟘ǁ
𝐴 )

2

+ (
𝑝⟘ǁ

−

𝑅⟘𝜃
𝐴 𝜎𝑛) +

𝑝⟘𝜃
−

𝑅⟘𝜃
𝐴 𝜎𝑛   

Where 𝜎𝑛, 𝜏𝑛𝑡, and 𝜏𝑛1 are stresses described by equations: 

𝜎𝑛 = 𝜎2 cos2 𝜃 +𝜎3 sin2 𝜃 + 2𝜏23 sin 𝜃 cos 𝜃                    (19) 

𝜏𝑛𝑡 = (𝜎3 − 𝜎2) sin 𝜃 cos 𝜃 + 𝜏23(cos2 𝜃 − sin2 𝜃)           (21) 

𝜏𝑛1 = 𝜏13 sin 𝜃 + 𝜏12 cos 𝜃                                                    (22) 

The parameter 𝑅⟘⟘
𝐴  is defined as: 

𝑅⟘⟘
𝐴 =

𝑅⟘
−

2(1+𝑝⟘⟘
− )

                                                                        (23) 

The parameters 𝑅⟘
+, 𝑅⟘ǁ

𝐴  are the same as the tensile strength 

transverse to the fibre direction and the shear strength. Constant 
parameters for the Puck failure criterion for carbon fibre: 

𝑝⟘ǁ
+ = 0,35     𝑝⟘ǁ

− = 0,3    𝑝⟘⟘
+ = 0,25   𝑝⟘⟘

− = 0,2             (24) 

Hashin failure criteria in Ansys is defined by following equations 
[29, 30]: 

Fiber tensile failure 3D: 

𝑓𝑓 = (
𝜎11

𝑋𝑡
)

2

+
1

𝑆12
2 (𝜏12

2 + 𝜏13
2)                                                (25) 

Matrix Tensile failure 3D: 

  𝑓𝑚 =
1

𝑌𝑡
2 (𝜎22 + 𝜎33)

2 +
1

𝑆23
2 (𝜏23

2 − 𝜎22𝜎33)  

+
1

𝑆12
2 (𝜏12

2 + 𝜏13
2),    𝜎22 + 𝜎33 > 0                                   (26) 

Matrix compression failure 3D: 

fm=
1

Yc
[(

Yc

2S23
)

2
-1] (σ22+σ33)+

1

4S23
2 (σ22+σ33)

2+
1

S23
2 (τ23

2-

σ22σ33)+
1

S12
2 (τ12

2+τ13
2),  σ22+σ33 < 0                                  (27) 

The Tsai Wu failure criterion in Ansys is defined by the follow-
ing equation (30): 

𝑓 =
𝜎1

2

𝑋𝑡𝑋𝑐
+ 

𝜎2
2

𝑌𝑡𝑌𝑐
+

𝜎3
2

𝑍𝑡𝑍𝑐
+

τ12
2

S12
2 +

τ13
2

S13
2 +

τ23
2

S23
2 −

𝜎1𝜎2

√𝑋𝑡𝑋𝑐𝑌𝑡𝑌𝑐
−

𝜎2𝜎3

√𝑌𝑡𝑌𝑐𝑍𝑡𝑍𝑐
−

𝜎1𝜎3

√𝑋𝑡𝑋𝑐𝑍𝑡𝑍𝑐
+ 𝜎1 (

1

𝑋𝑡
−

1

𝑋𝑐
) + 𝜎2 (

1

𝑌𝑡
−

1

𝑌𝑐
) +

𝜎3 (
1

𝑍𝑡
−

1

𝑍𝑐
)                                                                                          (28) 

6. ANALYSIS OF RESULTS 

After the numerical simulation, the following results are pre-
sented: the distribution of displacements and deformations of the 
structure, the stresses in the liner and the bosses, and the distribu-
tions of the failure indices of the composite structure using the pre-
viously mentioned criteria. In addition, the maximum values of 
these failure indices for each layer are presented and a comparison 
is made between the results obtained using these criteria. All distri-
butions are presented for the model, considering the material con-
stants determined for the round fibre in the Material Designer. This 
is because the differences in results on a macroscopic scale, when 
using the other composite constants, are negligible. 

6.1. Displacements and strain distributions 

The maximum value of the resultant displacement is 3,522mm 
and it is located in the area of the hole near the aluminium boss, 
and values of about 3.5mm also occur in the aluminium boss and 
liner in this section. The displacement value increases along the 
axis of the vessel away from the fixed end of the closed aluminium 
boss. The maximum strain occurs in the liner where the shape 
changes from cylindrical to dome section. The lowest values are 
found in the composite and ferrule, as the materials used there 
have a much higher stiffness than the liner material.

Fixed  
support 

Pressure 70MPa 

Frictionless  
support 
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Fig. 18. Distribution of resultant: a) displacement b) strain  

6.2. Stress distribution in aluminium bosses and plastic liner 

In the closed aluminium boss, the highest value of von-Mises 
stress is 255,51MPa and is located at the rounding where the com-
posite laminate ends at a radius of 30mm, which is understandable 
since there is a sharp change in the stiffness of the model. In the 
open aluminium boss, the stress distribution is very similar, with the 
maximum value for this element being 259,32 MPa at the inner hole 

where the liner has bonded contact with the boss. In both stubs, the 
yield strength, which is 276 MPa, was not exceeded. The next fig-
ure shows the distribution of HMH reduced stress in the plastic liner. 
The maximum stress value in the liner is attained at the point at 
which the liner's shape transitions from elliptical to cylindrical. This 
value falls below the yield strength of the liner material. From the 
distribution, the values in the cylindrical section remain constant, 
reaching approximately 40-50 MPa. 

 
Fig.19. Distribution of Huber von-Mises stress in a) closed boss b) open boss [MPa] 

 
Fig. 20. Distribution of Huber von-Mises stress in the polyamide liner [MPa] 

6.3. Puck failure criterion 

The evaluation of composite laminate was conducted using the 
puck failure criterion. Figure 21 provides a visual representation of 
the distribution of fibre and matrix failure. Table 11 presents the 
maximum values of the puck failure criterion for each layer winding 
angle. The maximum failure fibre index value of 0,385 is observed 
in the cylindrical section of the first hoop layer, with values ap-
proaching this maximum found in the initial few hoop layers of the 
cylindrical section. Conversely, the minimum value of 0,02 is 

attained in the outer layer of the composite layer at an angle of 41° 
in the dome section. Larger values exceeding 0,3 are attained in 
the vicinity of the composite's interaction with the aluminium boss 
and within the composite's inner region, adjacent to the transition 
from a cylindrical to an elliptical shape. Given a safety factor of 2,5, 
it can be deduced that the fibre satisfies the stipulated strength cri-
teria, as the permissible value of this factor is 0,4. Additionally, val-
ues approaching 0,3 are achieved at the point of contact with the 
polar hole. The maximum value of the matrix failure index is 0,836, 
which is located near the polar hole on the external surface of the 
composite overlap, while a value closer to the maximum is 

a) b) 
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observed at the inner surface of the composite overlap, where con-
tact is made between the aluminium boss and the plastic liner. High 
values of failure also occur in the section where the shape changes 
from cylindrical to elliptical. In the cylindrical part, the outer helical 
layers exhibit higher values of destruction indices ranging from 0,6 
to 0,7, while the inner layers demonstrate values of approximately 
0,4 to 0,5. For the hoop layers, the maximum value of the matrix 
failure index is recorded as 0,544, which is observed in the external 
hoop layer. In contrast, the internal hoop layers exhibit lower 

values. It is evident that the failure of the matrix is prevented due to 
the failure index value not exceeding the threshold value of 1. The 
results presented in Table 11 demonstrate a decrease in the maxi-
mum destruction indices of the helical layers for the fibre failure cri-
terion as the winding angle increases. A comparison of the distribu-
tions of Puck's fibre and matrix failure indices reveals that for each 
winding angle, the values of the failure indices of the matrix are 
higher compared to fibre indices, indicating that the matrix is the 
primary source of failure in this construction.  

 
Fig. 21. Puck failure distribution: a) fibre, b) matrix 

Tab. 11. Maximum values of damage index for each winding angle layer 

Angle [°] Fiber failure Matrix failure 

10 0,329 0,836 

14,5 0,266 0,695 

19 0,238 0,715 

23 0,210 0,636 

27,5 0,185 0,620 

31,5 0,182 0,582 

36,5 0,182 0,603 

90 0,385 0,544 

   
   6.4. Hashin failure criterion 

As with the Puck criterion, the maximum value of the hoop layer 
failure index is 0,384, which is located in the first hoop layer. Hoop 
layers that are outside the overlap take smaller values than external 
hoop layers. A significant difference in this case is that the maxi-
mum value of the fibre failure index occurs in the first inner helical 
layer near the polar hole at 0,774. This value is more than double 
that of the Puck criterion, because the Hashin criterion also consid-
ers the shear stresses for the fibre. For all helical layers, the values 
of the fibre failure take on values in the prevalent range from 0,38 
to 0,51, where for the Puck criterion these values are in the range 
from 0,18 to 0,33. High values of fibre failure, reaching approxi-
mately 0,6, are evident in the area where there is a change of shape 
from the cylindrical to the elliptical part, which, in the Puck criterion, 
is evident in the failure of the matrix. The maximum matrix failure 
value of 0,795 is observed near the polar hole on the outer helical 

layer of overlap. It is notable that high values, akin to the maximum 
observed, are also evident at the interface between the liner and 
aluminium bosses, a phenomenon analogous to the Puck criterion. 
A comparative analysis of the maximum matrix failure values as-
certained in each layer, as illustrated in Tables 11 and 12, reveals 
a subtle disparity of approximately 0,05. It is observed that the ma-
trix failure values in the cylindrical segment exhibit an upward trend 
with each subsequent layer, attaining a maximum of approximately 
0,6. Concurrently, values of approximately 0,6 are observed in all 
helical layers within the region undergoing a shape transition from 
cylindrical to elliptical. A comparative analysis of the distributions 
and values of matrix failure for both the Puck and Hashin criteria 
reveals a high degree of similarity, with Hashin failure values exhib-
iting a slight increase, reaching approximately 0,05, in comparison 
to Puck failure. However, a more pronounced distinction emerges 
in the context of fibre failure, where values under the Hashin crite-
rion exceed twice those of the Puck criterion, a consequence of the 
incorporation of shear stresses.

 

a) b) 
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Fig. 22. Hashin failure distribution: a) fibre, b) matrix

Tab. 12. Maximum values of damage index for each winding angle layer 

Angle [°] Fiber failure Matrix failure 

10 0,774 0,795 

14,5 0,442 0,629 

19 0,448 0,760 

23 0,496 0,665 

27,5 0,509 0,603 

31,5 0,472 0,596 

36,5 0,446 0,622 

90 0,384 0,598 

  

6.5. Tsai-Wu failure criterion 

Tsai Wu's failure criterion treats composite material as homo-
geneous, with no distinction made between fibre and matrix. Under 
this criterion, it is not possible to ascertain which constituent mate-
rials are more strained. The maximum value of the composite fail-
ure was obtained in the same location as in the previous cases of 
the Puck and Hashin criterion, around the polar hole in the outer 

helical layer. Regarding the distribution of failure in the cylindrical 
component, the values are found to be similar at approximately 0,5-
0,6 across the entire thickness of the composite. It is noteworthy 
that the Tsai Wu criterion values for each layer, as presented in 
Table 13, are lower than those of the Hashin and Puck criterion for 
the matrix. 

 

 

Fig. 23. Tsai Wu criterion failure distribution 

Tab. 13. Maximum values of damage index for each winding angle layer 

Angle [°] Failure 

10 0,759 

14,5 0,547 

19 0,678 

23 0,498 

27,5 0,536 

31,5 0,566 

36,5 0,581 

90 0,580 

a) b) 
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6.6.  Dehomogenisation and results for RVE 

In the multiscale model, a dehomogenisation technique has 
been employed to transfer the deformation state from the macro to 
the micro scale. The finite elements were read out for the numerical 
model of the tank, in which the maximum values of the failure indi-
ces were reached according to the strength criteria used. Strain 
tensors from all simulations containing different fibre geometries for 
these elements were subsequently measured and transferred to 
the RVE, utilising the equations shown in the table 15. The maxi-
mum strain values for RVEs with circular fibre are shown in Table 
14. The equations shown in Table 14 describe the deformations on 
all RVE faces. However, it should be noted that each RVE edge lies 
simultaneously on two planes, and each vertex lies simultaneously 
on three planes. Therefore, there are also separate equations for 

the edges and vertices themselves, as in the case of periodic 
boundary conditions. The equation describing the displacement of 
an edge results from the common part of the two equations describ-
ing the displacement of the surfaces on which the edge is located, 
and the equation describing the displacement of a vertex results 
from the common part of the three equations describing the dis-
placement of the surfaces on which the vertex is located. The strain 
tensors were transferred from the most stressed finite elements ac-
cording to the given failure criteria to the RVE, maintaining the con-
sistency of the fibre coordinate systems. Numerical simulation of 
the loaded RVEs was performed for all three fibre geometries used, 
resulting in stress distributions in the constituent materials for dif-
ferent cell types. First, the stress distributions for the circular fibre 
cell are presented and compared with the failure index values ob-
tained in the macroscale model. 

Tab. 14. Strain values in the most loaded elements 

Failure crite-
ria/ strain 

𝜺𝒙𝒙 𝜺𝒚𝒚 𝜺𝒛𝒛 𝜺𝒙𝒚 𝜺𝒙𝒛 𝜺𝒚𝒛 

Puck fibre 7,986 ∙ 10−3 −1,011 ∙ 10−2 2,073 ∙ 10−3 −9,570 ∙ 10−5 2,034 ∙ 10−4 6,786 ∙ 10−4 

Puck matrix 4,521 ∙ 10−3 2,370 ∙ 10−3 −3,099 ∙ 10−3 −8,194 ∙ 10−3 −8,872 ∙ 10−3 3,176 ∙ 10−3 

Hashin fibre 2,230 ∙ 10−3 −6,224 ∙ 10−3 −5,999 ∙ 10−3 1,383 ∙ 10−2 1,201 ∙ 10−3 8,919 ∙ 10−3 

Hashin matrix 4,522 ∙ 10−3 2,370 ∙ 10−3 −3,098 ∙ 10−3 −8,194 ∙ 10−3 −8,875 ∙ 10−3 3,171 ∙ 10−3 

Tsai Wu 4,521 ∙ 10−3 2,370 ∙ 10−3 −3,099 ∙ 10−3 −8,194 ∙ 10−3 −8,872 ∙ 10−3 3,176 ∙ 10−3 

Tab. 15.  Displacement conditions for walls 

Surface 𝑿 = 𝟎 Surface 𝒀 = 𝟎 Surface 𝒁 = 𝟎 

𝑢(0, 𝑦, 𝑧) =  𝜀𝑥𝑦𝑦 + 𝜀𝑥𝑧𝑧 

𝑣(0, 𝑦, 𝑧) =  𝜀𝑦𝑦𝑦 + 𝜀𝑦𝑧𝑧 

𝑤(0, 𝑦, 𝑧) =  𝜀𝑦𝑧𝑦 + 𝜀𝑧𝑧𝑧 

𝑢(𝑥, 0, 𝑧) =  𝜀𝑥𝑥𝑥 + 𝜀𝑥𝑧𝑧 

𝑣(𝑥, 0, 𝑧) =  𝜀𝑥𝑦𝑥 + 𝜀𝑦𝑧𝑧 

𝑤(𝑥, 0, 𝑧) =  𝜀𝑥𝑧𝑥 + 𝜀𝑧𝑧𝑧 

𝑢(𝑥, 𝑦, 0) =  𝜀𝑥𝑥𝑥 + 𝜀𝑥𝑦𝑦 

𝑣(𝑥, 𝑦, 0) =  𝜀𝑥𝑦𝑥 + 𝜀𝑦𝑦𝑦 

𝑤(𝑥, 𝑦, 0) =  𝜀𝑥𝑧𝑥 + 𝜀𝑦𝑧𝑦 

Surface 𝑿 = 𝑳𝒙 Surface  𝒀 = 𝑳𝒙 Surface 𝒁 = 𝑳𝒙 

𝑢(𝐿𝑥, 𝑦, 𝑧) = 𝜀𝑥𝑥𝐿𝑥 + 𝜀𝑥𝑦𝑦 + 𝜀𝑥𝑧𝑧 

𝑣(𝐿𝑥, 𝑦, 𝑧) = 𝜀𝑥𝑦𝐿𝑥 + 𝜀𝑦𝑦𝑦 + 𝜀𝑦𝑧𝑧 

𝑤(𝐿𝑥 , 𝑦, 𝑧) = 𝜀𝑥𝑧𝐿𝑥 + 𝜀𝑦𝑧𝑦 + 𝜀𝑧𝑧𝑧 

𝑢(𝑥, 𝐿𝑦, 𝑧) = 𝜀𝑥𝑥𝑥 + 𝜀𝑥𝑦𝐿𝑦 + 𝜀𝑥𝑧𝑧 

𝑣(𝑥, 𝐿𝑦, 𝑧) = 𝜀𝑥𝑦𝑥 + 𝜀𝑦𝑦𝐿𝑦 + 𝜀𝑦𝑧𝑧 

𝑤(𝑥, 𝐿𝑦 , 𝑧) = 𝜀𝑥𝑧𝑥 + 𝜀𝑦𝑧𝐿𝑦 + 𝜀𝑧𝑧𝑧 

𝑢(𝑥, 𝑦, 𝐿𝑧) = 𝜀𝑥𝑥𝑥 + 𝜀𝑥𝑦𝑦 + 𝜀𝑥𝑧𝐿𝑧 

𝑣(𝑥, 𝑦, 𝐿𝑧) = 𝜀𝑥𝑦𝑥 + 𝜀𝑦𝑦𝑦 + 𝜀𝑦𝑧𝐿𝑧 

𝑤(𝑥, 𝑦, 𝐿𝑧) = 𝜀𝑥𝑧𝑥 + 𝜀𝑦𝑧𝑦 + 𝜀𝑧𝑧𝐿𝑧 

 

 
Fig. 24. Stress distributions for maximum Puck fibre failure criterion strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for 

fibre, c) Equivalent Huber von-Mises stress for matrix 

 
Fig. 25. Stress distributions for maximum Puck matrix failure criteria strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for 

fibre, c) Equivalent Huber von-Mises stress for matrix 

a) b) c) 

a) b) c) 
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Fig. 26. Stress distributions for maximum Hashin fibre failure criteria strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for 

fibre, c) Equivalent Huber von-Mises stress for matrix 

 
Fig. 27. Stress distributions for maximum Hashin matrix failure criteria strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for 

fibre, c) Equivalent Huber von-Mises stress for matrix 

 
Fig. 28. Stress distributions for maximum Tsai Wu failure criteria strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for fibre, 

c) Equivalent Huber von-Mises stress for matrix

When comparing the equivalent stress values of all the criteria 
used, the highest values of over 1800 MPa are obtained using the 
Puck fibre failure criterion. Almost identical values of equivalent 
stresses around 1100 MPa are obtained for the Puck matrix, Hashin 
matrix and Tsai Wu failure criteria. It is worth noting that the maxi-
mum value of the failure index for the Puck matrix criterion and the 
Tsai Wu criterion occurs in the same finite element of the composite 
overlap of the tank, and the maximum value of the Hashin matrix 
failure criterion occurs close to this finite element. The minimum 
value of the equivalent stress is found for the Hashin fibre failure 
criterion and is 676 MPa. There is a characteristic contrast between 
the values of this stress in the fibres themselves, which is not the 
case for the other criteria. The tensile strength of the fibres used in 
the composite is 4900 MPa [9] and the maximum stress in the X 
direction in the fibre for the Puck criterion is 1833 MPa. Using Equa-
tion 19, it can be calculated that the failure index value considering 
the fibres alone is 0.374, which is very close to the result obtained 
for the composite treated as a homogeneous material. The Hashin 
fibre failure criterion also considers the shear stress in the fibre 
planes, so that the value of the stress in the fibre direction in the 

most stressed element is only 553 MPa, which is much lower than 
the Puck fibre criterion because the stress level here is increased 
by shear stresses in the fibre plane. For the Puck and Hashin matrix 
criteria and for Tsai Wu, the stress distributions in the grain direction 
are almost the same, as are the equivalent stresses. The matrix 
equivalent stress distributions provide interesting results. Based on 
the literature, the average tensile strength values for the resin used 
are around 70-90 MPa. For the Puck fibre failure criterion, the max-
imum stress value is 90 MPa. A much higher level of stress is 
achieved for the Hashin fibre criterion, up to 154 MPa, which is well 
above the tensile strength. Despite these high stress values, these 
characteristic points were not classified as the points with the high-
est matrix failure indices, so they will require more detailed analy-
sis. On the other hand, for the most stressed components accord-
ing to the Hashin and Puck matrix criterion and the Tsai Wu crite-
rion, the maximum value of the reduced stress in the resin is 57 
MPa, which is still below the allowable value. The fibres are un-
doubtedly under greater shear stress here, hence the higher failure 
values. The following images show the stress distributions for RVE 
with elliptical fibres and with fibres of the actual geometry. 

a) b) c) 

b) c) a) 

a) b) c) 
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Fig. 29. Stress distributions for maximum Puck fibre failure criterion strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for 
fibre, c) Equivalent Huber von-Mises stress for matrix 

 
Fig. 30. Stress distributions for maximum Puck matrix failure criteria strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for 

fibre, c) Equivalent Huber von-Mises stress for matrix 

 
Fig. 31. Stress distributions for maximum Hashin fibre failure criteria strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for 

fibre, c) Equivalent Huber von-Mises stress for matrix 

 
Fig. 32. Stress distributions for maximum Hashin matrix failure criteria strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for 

fibre, c) Equivalent Huber von-Mises stress for matrix 

 
Fig. 33. Stress distributions for maximum Tsai Wu failure criteria strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for fibre, 

c) Equivalent Huber von-Mises stress for matrix

c) b) a) 

a) b) c) 

b) c) a) 

a) 
b) c) 

a) b) c) 
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Based on the obtained stress distributions for the representa-
tive volume element (RVE), it can be observed that the maximum 
stress values in the constituent materials are very similar to the 
maximum values obtained for the cell with circular fibres. The larg-
est difference in normal stress within the fiber is observed for the 
Puck fiber failure criterion, where the values are 1832,9 MPa and 
1760 MPa, respectively, corresponding to a difference of approxi-
mately 4%. The greatest discrepancy in maximum stress within the 
resin occurs in the case of the Hashin fiber failure criterion, with 
values of 154,4 MPa and 177,2 MPa, respectively. Here, the differ-
ence is more substantial, reaching nearly 15%. In both considered 
fiber geometries, the stresses in the resin significantly exceed the 
allowable stress limits for this material. In the case of the obtained 
stress distributions for the representative volume element with the 
actual fiber geometry, significant differences are observed in nearly 
every instance, which can be attributed to the irregular shape of the 

fiber. The largest discrepancies occur in the maximum stress val-
ues within the resin. The most substantial variation in stress state 
is found for the Hashin matrix failure criterion, where the stresses 
are 57 MPa and 138,7 MPa, respectively representing a remarkably 
large deviation of approximately 143%. For the fiber, the greatest 
stress difference also occurs under the Hashin matrix criterion, with 
values of 1128,2 MPa and 1204,5 MPa, corresponding to a differ-
ence of about 7%. A surprising result is that the maximum stress 
values in the resin for the RVE with the actual fiber geometry sig-
nificantly exceed the allowable stress limit in every case. Addition-
ally, the stress distributions reveal that these elevated values occur 
exclusively at the points located at the resin–fiber interface. A sum-
mary of all maximum values from the stress distributions is pre-
sented in Table 16. Red colour indicates resin stress values that 
exceed the tensile strength of 80MPa.  

 
Fig. 34. Stress distributions for maximum Puck fibre failure criterion strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for 

fibre, c) Equivalent Huber von-Mises stress for matrix 

 
Fig. 35. Stress distributions for maximum Puck matrix failure criteria strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for 

fibre, c) Equivalent Huber von-Mises stress for matrix 

 
Fig. 36. Stress distributions for maximum Hashin fibre failure criteria strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for 

fibre, c) Equivalent Huber von-Mises stress for matrix 

 
Fig. 37. Stress distributions for maximum Hashin matrix failure criteria strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for 

fibre, c) Equivalent Huber von-Mises stress for matrix 

a) b) c) 

b) a) c) 

a) b) c) 

b) c) a) 
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Fig. 38. Stress distributions for maximum Tsai Wu failure criteria strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for fibre, 

c) Equivalent Huber von-Mises stress for matrix 

Tab. 16.  Maximum stress results from dehomogenisation for different fibre geometries 

Failure criteria 

Stress limit 
[MPa] 

Circular fibre Eliptical fibre Actual fibre 

fibre resin RVE fibre resin RVE fibre resin RVE fibre resin 

Puck fibre 

4900 80 

1868 1832,9 89,9 1795,4 1760 90,5 1923 1820 133,4 

Puck matrix 1104,8 1128,1 57 1027,4 1067 55,1 1095,6 1133,6 76,3 

Hashin fibre 676,1 553,2 154,4 680,9 563,35 177,2 1110,7 580,2 238,3 

Hashin matrix 1104,9 1128,2 57 1107,9 1120,3 53,9 1188,9 1204,5 138,7 

Tsai wu 1104,8 1128,1 57 1107,8 1120,2 54 1188,8 1204,4 138,7 

 

7. SUMMARY AND CONCLUSIONS 

The use of composite strength evaluation criteria at the micro-
scopic scale provides the opportunity to evaluate the behaviour of 
the individual materials that make up the composite, as opposed to 
macroscopic evaluation criteria. Such a criterion, together with the 
use of micro-modelling technology, makes it possible to modify the 
structure of the composite material, to change the ratio of materials 
used and the way they are arranged in the structure, which later 
makes it possible to assess the influence of these parameters on 
the results of the obtained failure indices and stresses. 

One of the critical points of the structure is where the composite 
overlaps with the liner and the boss, where there is a sharp change 
in stiffness, causing an increase in stress in the composite, as can 
be seen from the failure distributions of the composite for all the 
criteria used. The values do not exceed the maximum, but this is 
one of the most stressed areas. For the most part, the maximum 
values of the failure indices are reached in the outer cylindrical part 
in the helical layers, where composite cracking would occur at 
higher pressures. There are also high values in the part of the dome 
close to the hole (such as in the outer helical layer), but these are 
small areas around which the values are much smaller. It is possi-
ble that increasing the accuracy of the layer distribution in the nu-
merical model, or arranging them differently, would compensate for 
this phenomenon. 

The development of equations written using the mechanical 
APDL language that represent the periodic boundary conditions en-
abled the determination of the material constants of the composite. 
These conditions will be applicable to future studies in which fibre 
composites will be analysed on a microscopic scale. The equations 
may prove very useful for analysing temperature-dependent defor-
mation, simulating epoxy resin polymerisation and investigating re-
sidual stresses generated during the manufacturing process. 

By loading the RVE with a strain tensor, we have the oppor-
tunity to check the stress state of the constituent materials of the 

composite, which, as can be seen from the results obtained, should 
be left for further analysis, because in the one case where the ma-
terial is within the safe range according to the Hashin criterion, the 
maximum equivalent stress in the resin exceeds the allowable 
value by a considerable margin. Using this approach, we can read 
off the normal and shear stresses in each direction for the fibres. 
By analysing the stresses following dehomogenisation, it is possi-
ble to enhance the strength criteria of the composites and to com-
pare the results obtained with experimental studies. 

Based on the obtained stress distributions in the constituent 
materials of the composite after dehomogenization, it is evident 
how significant the impact of fiber geometry is on the results. Dis-
crepancies are also observed between these stress results and the 
outcomes of the strength criteria, prompting reflection on whether 
these criteria can be refined to better represent the stress state in 
fiber-reinforced composites. The exceeding of the allowable stress 
value in the resin may indicate the formation of microcracks in this 
material and delamination at the resin-fiber interface, as the highest 
values occur precisely in these regions of the RVE. 

 A comprehensive approach based on multiscale model-
ling with a simultaneous return to microstructure has been devel-
oped, which allows a more accurate analysis of the stress state at 
critical points in the structure. This approach can be employed at a 
subsequent stage to account for the non-linear material character-
istics of the resin. This will facilitate a more profound comprehen-
sion and analysis of rheological phenomena in composite struc-
tures. The cross-sectional analysis of circular, elliptical and real fi-
bres demonstrate the necessity of investigating responsible struc-
tures using a multiscale approach that considers dehomogenisa-
tion. This is of particular importance for the correct determination of 
crack initiation. 
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