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Abstract: Collision avoidance is a crucial aspect of autonomous ground vehicles (AGVs). One of the most common algorithms is called the
dynamic window approach (DWA). The algorithm enables AGVs to operate with high performance in an unknown environment with
a particular emphasis on achieving maximum linear and angular acceleration. However, DWA requires high computational effort
to examine all possibilities with high resolution, and then select the best possible pair of control signals, i.e., linear and angular velocities.
In this paper, the Pattern Search (PS) optimization algorithm is used to reduce the computational requirement of the DWA. Instead
of calculating the DWA objective function for each possibility, the PS is used for algorithmically selecting the next examined pair of control
signals. The results obtained demonstrate that a similar resolution of control signals can be achieved with almost two times less
computational effort. The proposed approach has been examined in the MATLAB environment, while the source code is available on the

MathWorks FileExchange.
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1. INTRODUCTION

Autonomous ground vehicles (AGVs) are rapidly advancing to
provide efficient and safe operations in various industrial sectors,
including logistics, manufacturing, and healthcare [1-2]. The navi-
gation of an AGV can be divided into two parts: local and global
path planning [3]. The global one is responsible for providing the
shortest path to the goal based on the environment map [4]. The
AGV then follows the global path using the sensors onboard to
avoid unpredictable obstacles - this is known as a local path plan-
ning problem [5-6].

In this paper, the local path planning problem is considered.
One of the most commonly used algorithms is called the Dynamic
Window Approach (DWA) [7]. It is worth noting that DWA is one of
the default local path planning algorithms implemented in the Robot
Operating System. The algorithm is based on selection control sig-
nals (i.e., linear and angular velocity pairs) to minimize the objective
function. The procedure is as follows: Generate possible pairs of
velocities with particular emphasis on limited dynamics (i.e., linear
and angular accelerations). Next, for each pair, predict the future
trajectory and calculate the objective function. The objectives are
as follows: to maximize the linear velocities, maximize the clear-
ance, and minimize the heading angle of movement to the goal.
The algorithm is relatively simple. However, to provide high perfor-
mance, the number of pairs for evaluation must be relatively high.
In such a case, the computational effort is significant.

In recent years, researchers have focused on enhancing the
DWA algorithm to achieve the highest performance in AGV opera-
tions. However, there is a gap related to the computational perfor-
mance of the DWA. In [8], the integration of reinforcement learning
with an improved dynamic window approach is proposed to plan

the path of mobile robots in unknown environments. Using learning
policies (Q-learning algorithm), the AGV can adjust the weight of
the objective function of the DWA. This solution enables the authors
to enhance the efficiency and effectiveness of robotic navigation in
complex and unpredictable terrains. Unfortunately, such a solution
increases the computational effort of the algorithm. An improved
DWA for unmanned surface vehicles (USVs) is proposed by incor-
porating environmental factors such as wind, waves, and current
into the local path planning process [9]. Additional factors were
added to the objective function of the DWA. This modification ena-
bles USVs to more effectively adapt their navigation strategies in
real-time, thereby significantly enhancing their ability to maneuver
through complex and dynamic maritime environments. The compu-
tational effort was not considered in the article. In [10], the smooth
and safe path is provided using a path planner based on DWA and
A* algorithms. The solution by the fusion algorithm can successfully
avoid dynamic obstacles and is effective and feasible in path plan-
ning. A similar approach was proposed in [11]. However, the pro-
posed mechanism appears more complex, and enhancements sig-
nificantly improve global planning efficiency, ensuring smoother
paths. In [12], the DWA was combined with the rapidly-exploring
random free (RRT*) algorithm. The modification was similar to the
ones mentioned above. The RRT* was used to provide a global
path, while the DWA algorithm was responsible for tracking the
global path. Moreover, the object recognition using the YOLO
framework was adopted. The presented results demonstrate that
the DWA algorithm is a crucial path-planning algorithm for a broad
range of autonomous vehicles. The objective of the work described
in [13 is to design an improved DWA algorithm to enhance the ob-
stacle avoidance ability of mobile robot formations when encoun-
tering dynamic obstacle interference. In [14], enhanced DWA is
proposed to improve performance in environments filled with dense

659


https://orcid.org/0000-0002-7363-1618

Rafal Szczepanski

Computationally Efficient Dynamic Window Approach Based on Pattern Search Optimization

objects. An additional component of the DWA objective function re-
lated to object density is introduced. Improvements enable more
effective real-time navigation in complex environments, resulting in
increased safety and operational efficiency for AGVs. The calcula-
tion time of the algorithm was not taken into account. The algorithm
proposed in [15] integrates the Particle Swarm Optimization (PSO)
algorithm with an improved DWA to achieve effective planning of
AGV routes in a dynamic environment. The PSO has been used for
global path planning, while the DWA has been used to track the
optimal trajectory. Improvement in the DWA was related to modify-
ing the objective function of the DWA to account for dynamic obsta-
cle velocities. The computational effort has not been presented in
the paper. Dynamic adaptive DWA was proposed in [16]. The algo-
rithm enhances the DWA by introducing adaptive mechanisms that
dynamically adjust its prediction horizon in response to environ-
mental conditions and obstacle information. It allows the authors to
improve the DWA algorithm in densely packed environments. Fur-
thermore, the article proposes applying fuzzy logic to adapt the
weights of the DWA objective function. Unfortunately, the calcula-
tion time of the modification was not presented in comparison to the
original DWA.

The original DWA method for selecting the optimal pair of ve-
locities is not computationally efficient. To improve the selection
process, the author proposes an approach based on the Pattern
Search (PS) optimization algorithm. The algorithm does not require
a gradient calculation, and it can efficiently solve the local optimi-
zation problem. The algorithm calculates the candidates with a pre-
defined step size in each dimension. If the algorithm finds a better
solution, the current position is switched to the new one. Otherwise,
the step size is reduced (divided by 2) and the procedure is re-
peated until the predefined resolution or the maximum number of
function evaluations is reached. In this paper, the pattern search
dynamic window approach (PSDWA) is proposed. The proposed
approach enables a significant reduction in the computational effort
required by the algorithm.

The paper is organized as follows. Section 2 describes the orig-
inal Dynamic Window Approach. The proposed PSDWA is pre-
sented in Section 3, while the simulation results, along with a com-
parison to the original DWA, are presented in Section 4. The paper
is summarized in Section 5.

2. DYNAMIC WINDOW APPROACH

The Dynamic Window Approach is a fundamental local path
planning algorithm and is included as one of the default libraries in
the Robot Operating System (ROS). DWA incorporates the predic-
tion of future movements based on the specified linear and angular
velocities of the AGV. The algorithm itself can be divided into two
primary components:

—  Search within the solution space,

—  Optimization.

The first component is responsible for preparing a discrete set
of possible control signals, i.e., linear and angular velocities. It com-
prises the following three elements:

—  Circular trajectories: A key assumption of the dynamic win-
dow approach is the consideration of circular trajectories,
which can be defined as pairs of linear and angular velocities
(v, w). This assumption reduces the path planning problem
to a two-dimensional one.

— Admissible velocities: A given velocity pair is considered only
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if the resulting trajectory is deemed safe, which means that it
does not result in a collision with any obstacle. The admissi-
bility condition for a velocity pair (v, w) is that the AGV must
be able to stop before reaching the closest obstacle on the
generated trajectory.

—  Dynamic window: Limited AGV accelerations are assumed.
Therefore, considering the AGV's current velocities, future
velocities are allowed to change only within a bounded range
defined by the maximum linear and angular accelerations.

The second component, namely optimisation, involves maxim-
izing a cost function expressed by the following equation:

Gv,w) = a(a - heading(v, w) + B - dist(v,w) + vy -
vel(v, w)) (1)

where: a, B, and y are weighting parameters of the cost function,
and o denotes a smoothing function to keep the subobjectives (i.e.
heading, dist and vel functions) in range < 0,1 > for entire
DWA iteration. This cost function comprises the following compo-
nents:

—  Target heading: A reward is assigned for movement directed
toward the target. The motion toward the goal gives the max-
imum value.

—  Clearance: The dist function represents the minimum dis-
tance to an obstacle along a given trajectory. The smaller the
distance to the obstacle, the higher the likelihood that the
AGV will attempt to maneuver around it.

—  Velocity: A reward is provided for a higher linear velocity in
the cost function.

First, the algorithm generates possible linear and angular ve-
locities within the maximum capabilities of the AGV. Additionally,
assuming that the robot is currently moving with velocities (v,
w4cv) and that the maximum linear and angular accelerations are
(@™, €M), the upper and lower bounds for admissible veloci-
ties can be defined as:

v+ 1) = vygp (k) + a™ - T, )
vidp(k + 1) = v, (k) — ™ - T, (3)
WFF (k + 1) = wagy (k) + €™ - T, (4)
Wit (k +1) = wagy (k) — €™ - T, (5)

where: T, denotes the time at the k-th sample time. In this manner,
the dynamic window defining the admissible range of linear and an-
gular velocities is obtained. When this dynamic window is inter-
sected with the maximum allowed AGV velocities, the set of per-
missible velocities (that is, the search space dictated by dynamics)
is obtained. Therefore, two-dimensional search space is obtained
by discretizing this range with a given resolution or dividing it into
N, and N, values for linear and angular velocities, respectively.

The next step involves predicting future positions (that is, the
trajectory of the AGV) using the following equations:

Ok +1) = 6(k) + wagy (k) - Ts (6)
Xagy (k + 1) = xp61 (k) + vy (k) - COS(G(k + 1)) T (7)

Yagv(k + 1) = yagy (k) + v46y (k) - Sin(e(k + 1)) - Ts (8)

where: 0 denotes the AGV's orientation, and x4, and y,qy are
the robot's positions along the x and y axes respectively. Predic-
tions are carried out over predefined time interval (HPTediction) |
a trajectory has been generated for every pair (v, w), it can then
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be verified whether the trajectory is collision-free, and whether the
AGV is capable of stopping before encountering an obstacle. The
second condition can be expressed as the following condition:

v < /2 dist(v, w) - a, (9)

where: a;, denotes the deceleration values during braking. For a
simplification the following assumption can be made: a, = a™**.
Next, by excluding collision-prone trajectories, a set of linear and
angular velocity pairs is obtained for the optimization process. For
each pair, a quality index value is computed using eq. (1), and sub-
sequently, the pair with the maximum value among all evaluated
options is selected. This determines the new linear and angular ve-
locity of the robot. The procedure of the DWA algorithm is pre-
sented in Fig. 1 in graphical representation for a single linear veloc-
ity for better readability.

The most computationally complex part of the algorithm is to
predict the future trajectory and calculate the objective function for
each pair of possible linear and angular velocities. Commonly, the
fixed number of division of linear and angular velocities (N,, and
N, respectively) are used. For example, the default values for Ro-
bot Operating System are as follows: N, =3 and N, = 10.
Therefore, the 30 trajectories must be predicted to calculate the ob-
jective functions and select the best.

3. THE PROPOSED COMPUTATIONALLY EFFICIENT
DYNAMIC WINDOW APPROACH

The proposed approach aims to reduce the computational effort
of the DWA algorithm by integrating it with the Pattern Search opti-
mization algorithm. The PS algorithm is employed to efficiently se-
lect new control signals for the AGV, rather than evaluating all pos-
sible solutions.

The Pattern Search algorithm is a direct method of finding the
extremum of a function. It is a gradient-free optimization algorithm.
The initial guess position and the initial step-size (A) are the only
parameters of PS. Next, the neighborhood of the current point is
examined. In the case of a better value in the neighborhood, the
algorithm moves the current position to this point. When no im-
provement in the function's value is observed, the algorithm de-
creases the step size by a factor of two. The process is repeated
iteratively until a stopping criterion is reached. PS is characterized
by simplicity of implementation and robustness to the lack of
smoothness of the objective function. However, its effectiveness
may be limited for problems with high dimensionality or in the pres-
ence of local minima.

The most time-consuming part of the DWA algorithm is related
to the optimization process. The original DWA algorithm determines
the possible velocities and then calculates the objective function for
each of these possibilities. To improve this part of the algorithm, the
above-described PS optimization algorithm is applied. Therefore,
the following possibilities are examined only if necessary. The pro-
cedure of the proposed PSDWA is as follows:

— Calculate the possible linear and angular velocities using eq.

2)-(5)-

— Set the initial position for PS as the current linear and angular
velocities.

— Set the initial step size as a quarter of the linear and angular
range.

— Run PS, while the maximum number of evaluated solutions are
not reached (iter™a*).
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— Set the current position of the PS algorithm as linear and angu-
lar velocities.

It should be noted that the DWA'’s objective function of DWA (eq.
(1)) requires a smoothing function (). Such a function normalizes
the values of the subobjectives to range < 0,1 > using the mini-
mum and maximum value obtained in the examined solutions. In
the proposed approach, the objective functions are calculated and
compared sequentially. In such a case the smoothing function is
not simple to determine, due to lack of information of the maximum
and minimum value of examined objective functions. To address
this issue, Author proposes to normalize the components using
constant values: maximum allowed AGV'’s linear velocity (v™%*) for
velocity, m for heading angle, and obstacle distance reaction
(dmin .0 for clearance.

a) 0

AGV's possibilities

3 @mesgiiin

b)

c) o

Collision check

Fig. 1. Visualisation of the DWA procedure for a single linear velocity
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4. RESULTS

The effectiveness of the proposed PSDWA test and the com-
parison with the original DWA will be presented. The validation was
executed in a MATLAB environment. The source code has been
published on MathWorks FileExchange [18]. To ensure that the pro-
posed approach allows AGV to reach similar performance, the ex-
amination has been provided in a thousand randomly generated
environments with ten static obstacles. The algorithms’ parameters
are presented in Tab. 1.

Tab. 1. Parameters of the examined local path planning algorithms

Parameter Symbol Value
Sampling period T_s 0.01s
Horizon of prediction Hprediction 1.0s
Maximum linear acceleration a™* 1.0 m/s?
Maximum linear velocity il 0.5 m/s
Maximum angular acceleration em 1.0 -  rad/s?
Maximum angular velocity W™ 0.5 - 7 rad/s
Obstacle distance reaction amt . 2.0
DWA: number of samples for
; : N, 3
linear velocity
DWA: number of samples for
. N, 10
angular velocity
PSDWA: maximum number of itermax 15
examinations
Lo 1 max __ ,,min
PSDWA: Initial step size Ainitial S A
4| wiey — waey

For comparison, statistical indicators commonly used for path
planning algorithms have been used [19]:

~ pathlength: L = ¥M7td(q”, q7)),

i

_ 2
— smoothness: S = \/ﬁﬂ‘if(qf -a%.)",

where: M is number of samples, g;” is AGV position in i-th itera-

tion, g is AGV orientation in i-th iteration, and d(...) is a function
that calculated euclidean distance between two points. The ob-
tained results are presented in Tab. 2. One can see that the quality
indicators are very similar for the original DWA and the proposed
PSDWA except for the mean computation time of the algorithm. The
proposed method has limited the trajectory examination to 15, while
the DWA parameters requires computation unit to examine 30.
Therefore, the mean computation time of the algorithm is almost
two times smaller. The difference between the path indicators is re-
lated to unpredictable resolution of the linear and angular velocities
- the count of step-size reductions at each iteration may differ. Nev-
ertheless, the speed-up of the proposed approach is close to 2 (i.e.,
mean computation time of DWA divided by mean computation time
of the proposed PSDWA), and the path quality indicators are almost
the same.
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Tab. 2. Comparison of quality indicators obtained for DWA and the
proposed PSDWA examined in a thousand randomly
generated environments with ten obstacles

Quality indicator DWA PSDWA
Mean path length [m] 3.972 3.996
Mean smoothness [rad] 0.989 1.009
Mean goal-reaching time [s] 8.114 8.162
Mean C(;T;%L:ittitrfr[]ntqlge of the 2297 11.60
Speed-up 1.00 1.98

The maximum number of examinations has been selected em-
pirically in the above-described comparison. The specified value
has been chosen to minimize computational effort while maintaining
the high performance of the algorithm. However, the computational
effort can be reduced if the lower performance is acceptable, or the
higher performance can be achieved if the higher computational ef-
fort is possible.

In Fig. 2, examples of paths obtained by DWA and PSDWA are
presented. The graphical representation of the AGV’s paths ob-
tained for the original DWA and the proposed PSDWA confirms the
performance of the PSDWA regardless of the reduced computa-
tional requirements.

It is worth noting that the computational effort of the DWA is
strongly dependent on the density of obstacles. Therefore, a per-
formance sensitivity analysis under different obstacle distributions
has been conducted, and the results are presented in Table 3. The
higher number of obstacles in the environment significantly in-
creases computational time due to the prediction and optimization
processes. However, the proposed modification decreases the
number of predicted paths. In such a case, the speed-up indicator
appears to be constant, regardless of the number of obstacles. For
the two obstacles, the speed-up indicator is slightly lower due to the
other parts of the algorithm, such as the prediction path and optimi-
zation process.

Tab. 3. Comparison of computation time of algorithms for various obstacle
density in the environment

Number of Mean computation time [ms] Speed-
obstacles DWA PSDWA up
2 497 + 1.49 2.68 1+ 0.81 1.85
6 13.26 + 3.77 6.76 + 1.93 1.97
10 22.97 £ 4.67 11.60 + 3.59 1.98
15 42,92 +5.78 21.40 + 4.49 2.01
30 65.67 + 7.12 33.07 +£5.13 1.99

The speed-up indicator is close to two due to the DWA number
of velocity pairs being equal to 30, while for the proposed PSDWA,
the maximum number of examinations was set to 15. This number
can be increased or decreased. The higher number enables higher
performance in local path planning, but it requires more computa-
tional resources. To illustrate its relationships, a comparison of path
quality indicators and the maximum number of examinations is pro-
vided in Table 4.
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Fig. 2. Example trajectories of the AGV obtained for the original DWA
and the proposed PSDWA

Tab. 4. Comparison of quality indicators obtained for DWA and the
proposed PSDWA with different numer of examinations

PSDWA
Quality indicator | DWA Maximum number of
y examinations (iter™%*)
5 15 30
Mean p[?:; length 6.23 7.03 619 | 6.18
Mean smoothness
1.063 | 1.253 | 1.059 | 1.056
[rad]
Mean goal-reaching | 1, o | 1457 | 1258 | 1256
time [s]
Speed-up 1.00 5.31 1.93 0.92
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5. CONCLUSIONS

In this paper, the combination of the Dynamic Window Ap-
proach and the Pattern Search optimization algorithm was pro-
posed. To reduce the computational effort of the DWA algorithm,
the procedure for selecting the next control signals (i.e., linear and
angular velocities of the AGV) is based on a gradient-free optimi-
zation algorithm, specifically PS. The simulation examinations
demonstrate that the proposed approach enables a reduction in
calculation time by approximately two times, while maintaining the
provided solution's smoothness as in the original DWA implemen-
tation. Moreover, the validation of the provided speed-up indicator
for the proposed approach has been provided using environments
with different obstacle densities. The maximum number of exami-
nations has been examined to present possibilities for achieving a
higher performance of the AGV with a similar calculation time to the
original DWA.

It should be noted that the proposed approach can be imple-
mented with more complex modifications of the DWA. The literature
review in the Introduction section demonstrates that the improve-
ment of the DWA algorithm primarily relies on modifications to the
objective functions. Therefore, the selection based on the PS algo-
rithm is still applicable to achieve a lower computational effort and
higher AGV efficiency.

Future research will focus on experimental validation of the pro-
posed approach using a real AGV and implementing PS with more
complex DWA improvements proposed in the literature.
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