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Abstract: Collision avoidance is a crucial aspect of autonomous ground vehicles (AGVs). One of the most common algorithms is called the 
dynamic window approach (DWA). The algorithm enables AGVs to operate with high performance in an unknown environment with  
a particular emphasis on achieving maximum linear and angular acceleration. However, DWA requires high computational effort  
to examine all possibilities with high resolution, and then select the best possible pair of control signals, i.e., linear and angular velocities.  
In this paper, the Pattern Search (PS) optimization algorithm is used to reduce the computational requirement of the DWA. Instead  
of calculating the DWA objective function for each possibility, the PS is used for algorithmically selecting the next examined pair of control 
signals. The results obtained demonstrate that a similar resolution of control signals can be achieved with almost two times less  
computational effort. The proposed approach has been examined in the MATLAB environment, while the source code is available on the 
MathWorks FileExchange. 
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1. INTRODUCTION 

Autonomous ground vehicles (AGVs) are rapidly advancing to 
provide efficient and safe operations in various industrial sectors, 
including logistics, manufacturing, and healthcare [1-2]. The navi-
gation of an AGV can be divided into two parts: local and global 
path planning [3]. The global one is responsible for providing the 
shortest path to the goal based on the environment map [4]. The 
AGV then follows the global path using the sensors onboard to 
avoid unpredictable obstacles – this is known as a local path plan-
ning problem [5-6].  

In this paper, the local path planning problem is considered. 
One of the most commonly used algorithms is called the Dynamic 
Window Approach (DWA) [7]. It is worth noting that DWA is one of 
the default local path planning algorithms implemented in the Robot 
Operating System. The algorithm is based on selection control sig-
nals (i.e., linear and angular velocity pairs) to minimize the objective 
function. The procedure is as follows: Generate possible pairs of 
velocities with particular emphasis on limited dynamics (i.e., linear 
and angular accelerations). Next, for each pair, predict the future 
trajectory and calculate the objective function. The objectives are 
as follows: to maximize the linear velocities, maximize the clear-
ance, and minimize the heading angle of movement to the goal. 
The algorithm is relatively simple. However, to provide high perfor-
mance, the number of pairs for evaluation must be relatively high. 
In such a case, the computational effort is significant. 

In recent years, researchers have focused on enhancing the 
DWA algorithm to achieve the highest performance in AGV opera-
tions. However, there is a gap related to the computational perfor-
mance of the DWA. In [8], the integration of reinforcement learning 
with an improved dynamic window approach is proposed to plan 

the path of mobile robots in unknown environments. Using learning 
policies (Q-learning algorithm), the AGV can adjust the weight of 
the objective function of the DWA. This solution enables the authors 
to enhance the efficiency and effectiveness of robotic navigation in 
complex and unpredictable terrains. Unfortunately, such a solution 
increases the computational effort of the algorithm. An improved 
DWA for unmanned surface vehicles (USVs) is proposed by incor-
porating environmental factors such as wind, waves, and current 
into the local path planning process [9]. Additional factors were 
added to the objective function of the DWA. This modification ena-
bles USVs to more effectively adapt their navigation strategies in 
real-time, thereby significantly enhancing their ability to maneuver 
through complex and dynamic maritime environments. The compu-
tational effort was not considered in the article. In [10], the smooth 
and safe path is provided using a path planner based on DWA and 
A* algorithms. The solution by the fusion algorithm can successfully 
avoid dynamic obstacles and is effective and feasible in path plan-
ning. A similar approach was proposed in [11]. However, the pro-
posed mechanism appears more complex, and enhancements sig-
nificantly improve global planning efficiency, ensuring smoother 
paths. In [12], the DWA was combined with the rapidly-exploring 
random tree (RRT*) algorithm. The modification was similar to the 
ones mentioned above. The RRT* was used to provide a global 
path, while the DWA algorithm was responsible for tracking the 
global path. Moreover, the object recognition using the YOLO 
framework was adopted. The presented results demonstrate that 
the DWA algorithm is a crucial path-planning algorithm for a broad 
range of autonomous vehicles. The objective of the work described 
in [13 is to design an improved DWA algorithm to enhance the ob-
stacle avoidance ability of mobile robot formations when encoun-
tering dynamic obstacle interference. In [14], enhanced DWA is 
proposed to improve performance in environments filled with dense 
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objects. An additional component of the DWA objective function re-
lated to object density is introduced. Improvements enable more 
effective real-time navigation in complex environments, resulting in 
increased safety and operational efficiency for AGVs. The calcula-
tion time of the algorithm was not taken into account. The algorithm 
proposed in [15] integrates the Particle Swarm Optimization (PSO) 
algorithm with an improved DWA to achieve effective planning of 
AGV routes in a dynamic environment. The PSO has been used for 
global path planning, while the DWA has been used to track the 
optimal trajectory. Improvement in the DWA was related to modify-
ing the objective function of the DWA to account for dynamic obsta-
cle velocities. The computational effort has not been presented in 
the paper. Dynamic adaptive DWA was proposed in [16]. The algo-
rithm enhances the DWA by introducing adaptive mechanisms that 
dynamically adjust its prediction horizon in response to environ-
mental conditions and obstacle information. It allows the authors to 
improve the DWA algorithm in densely packed environments. Fur-
thermore, the article proposes applying fuzzy logic to adapt the 
weights of the DWA objective function. Unfortunately, the calcula-
tion time of the modification was not presented in comparison to the 
original DWA. 

The original DWA method for selecting the optimal pair of ve-
locities is not computationally efficient. To improve the selection 
process, the author proposes an approach based on the Pattern 
Search (PS) optimization algorithm. The algorithm does not require 
a gradient calculation, and it can efficiently solve the local optimi-
zation problem. The algorithm calculates the candidates with a pre-
defined step size in each dimension. If the algorithm finds a better 
solution, the current position is switched to the new one. Otherwise, 
the step size is reduced (divided by 2) and the procedure is re-
peated until the predefined resolution or the maximum number of 
function evaluations is reached. In this paper, the pattern search 
dynamic window approach (PSDWA) is proposed. The proposed 
approach enables a significant reduction in the computational effort 
required by the algorithm.  

The paper is organized as follows. Section 2 describes the orig-
inal Dynamic Window Approach. The proposed PSDWA is pre-
sented in Section 3, while the simulation results, along with a com-
parison to the original DWA, are presented in Section 4. The paper 
is summarized in Section 5. 

2. DYNAMIC WINDOW APPROACH 

The Dynamic Window Approach is a fundamental local path 
planning algorithm and is included as one of the default libraries in 
the Robot Operating System (ROS). DWA incorporates the predic-
tion of future movements based on the specified linear and angular 
velocities of the AGV. The algorithm itself can be divided into two 
primary components: 

− Search within the solution space, 

− Optimization. 
The first component is responsible for preparing a discrete set 

of possible control signals, i.e., linear and angular velocities. It com-
prises the following three elements: 

− Circular trajectories: A key assumption of the dynamic win-
dow approach is the consideration of circular trajectories, 
which can be defined as pairs of linear and angular velocities 
(𝑣, 𝜔). This assumption reduces the path planning problem 
to a two-dimensional one. 

− Admissible velocities: A given velocity pair is considered only 

if the resulting trajectory is deemed safe, which means that it 
does not result in a collision with any obstacle. The admissi-
bility condition for a velocity pair (𝑣, 𝜔) is that the AGV must 
be able to stop before reaching the closest obstacle on the 
generated trajectory. 

− Dynamic window: Limited AGV accelerations are assumed. 
Therefore, considering the AGV's current velocities, future 
velocities are allowed to change only within a bounded range 
defined by the maximum linear and angular accelerations. 

The second component, namely optimisation, involves maxim-
izing a cost function expressed by the following equation: 

𝐺(𝑣, 𝜔) = 𝜎(𝛼 ⋅ heading(𝑣, 𝜔) + 𝛽 ⋅ dist(𝑣, 𝜔) + 𝛾 ⋅

vel(𝑣, 𝜔))                                                                                  (1) 

where: 𝛼, 𝛽, and 𝛾 are weighting parameters of the cost function, 
and 𝜎 denotes a smoothing function to keep the subobjectives (i.e.  
heading, dist and vel functions) in range < 0,1 > for entire 
DWA iteration. This cost function comprises the following compo-
nents: 

− Target heading: A reward is assigned for movement directed 
toward the target. The motion toward the goal gives the max-
imum value. 

− Clearance: The dist function represents the minimum dis-
tance to an obstacle along a given trajectory. The smaller the 
distance to the obstacle, the higher the likelihood that the 
AGV will attempt to maneuver around it. 

− Velocity: A reward is provided for a higher linear velocity in 
the cost function. 

First, the algorithm generates possible linear and angular ve-
locities within the maximum capabilities of the AGV. Additionally, 
assuming that the robot is currently moving with velocities (𝑣𝐴𝐺𝑉, 
𝜔𝐴𝐺𝑉) and that the maximum linear and angular accelerations are 

(𝑎𝑚𝑎𝑥, 𝜀𝑚𝑎𝑥), the upper and lower bounds for admissible veloci-

ties can be defined as: 

𝑣𝐴𝐺𝑉
𝑚𝑎𝑥(𝑘 + 1) = 𝑣𝐴𝐺𝑉(𝑘) + 𝑎𝑚𝑎𝑥 ⋅ 𝑇𝑠                                        (2) 

𝑣𝐴𝐺𝑉
𝑚𝑖𝑛(𝑘 + 1) = 𝑣𝐴𝐺𝑉(𝑘) − 𝑎𝑚𝑎𝑥 ⋅ 𝑇𝑠                                        (3) 

𝜔𝐴𝐺𝑉
𝑚𝑎𝑥(𝑘 + 1) = 𝜔𝐴𝐺𝑉(𝑘) + 𝜖𝑚𝑎𝑥 ⋅ 𝑇𝑠    (4) 

𝜔𝐴𝐺𝑉
𝑚𝑖𝑛(𝑘 + 1) = 𝜔𝐴𝐺𝑉(𝑘) − 𝜖𝑚𝑎𝑥 ⋅ 𝑇𝑠                                       (5) 

where: 𝑇𝑠 denotes the time at the 𝑘-th sample time. In this manner, 
the dynamic window defining the admissible range of linear and an-
gular velocities is obtained. When this dynamic window is inter-
sected with the maximum allowed AGV velocities, the set of per-
missible velocities (that is, the search space dictated by dynamics) 
is obtained. Therefore, two-dimensional search space is obtained 
by discretizing this range with a given resolution or dividing it into 
𝑁𝑣 and 𝑁𝜔 values for linear and angular velocities, respectively.  

The next step involves predicting future positions (that is, the 
trajectory of the AGV) using the following equations: 

𝜃(𝑘 + 1) = 𝜃(𝑘) + 𝜔𝐴𝐺𝑉(𝑘) ⋅ Ts                                        (6) 

𝑥𝐴𝐺𝑉(𝑘 + 1) = 𝑥𝐴𝐺𝑉(𝑘) + 𝑣𝐴𝐺𝑉(𝑘) ⋅ 𝑐𝑜𝑠(θ(𝑘 + 1)) ⋅ 𝑇𝑠  (7) 

𝑦𝐴𝐺𝑉(𝑘 + 1) = 𝑦𝐴𝐺𝑉(𝑘) + 𝑣𝐴𝐺𝑉(𝑘) ⋅ 𝑠𝑖𝑛(θ(𝑘 + 1)) ⋅ 𝑇𝑠  (8) 

where: 𝜃 denotes the AGV’s orientation, and 𝑥𝐴𝐺𝑉 and 𝑦𝐴𝐺𝑉 are 
the robot's positions along the 𝑥 and 𝑦 axes respectively. Predic-

tions are carried out over predefined time interval (𝐻𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛). If 
a trajectory has been generated for every pair (𝑣, 𝜔), it can then 
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be verified whether the trajectory is collision-free, and whether the 
AGV is capable of stopping before encountering an obstacle. The 
second condition can be expressed as the following condition: 

𝑣 ≤ √2 ⋅ dist(𝑣, 𝜔) ⋅ 𝑎𝑏                                                          (9) 

where: 𝑎𝑏 denotes the deceleration values during braking. For a 
simplification the following assumption can be made: 𝑎𝑏 = 𝑎𝑚𝑎𝑥. 

Next, by excluding collision-prone trajectories, a set of linear and 
angular velocity pairs is obtained for the optimization process. For 
each pair, a quality index value is computed using eq. (1), and sub-
sequently, the pair with the maximum value among all evaluated 
options is selected. This determines the new linear and angular ve-
locity of the robot. The procedure of the DWA algorithm is pre-
sented in Fig. 1 in graphical representation for a single linear veloc-
ity for better readability. 

The most computationally complex part of the algorithm is to 
predict the future trajectory and calculate the objective function for 
each pair of possible linear and angular velocities. Commonly, the 
fixed number of division of linear and angular velocities (𝑁𝑣 and 
𝑁𝜔, respectively) are used. For example, the default values for Ro-

bot Operating System are as follows: 𝑁𝑣 = 3 and 𝑁𝜔 = 10. 
Therefore, the 30 trajectories must be predicted to calculate the ob-
jective functions and select the best. 

3. THE PROPOSED COMPUTATIONALLY EFFICIENT  
DYNAMIC WINDOW APPROACH 

The proposed approach aims to reduce the computational effort 
of the DWA algorithm by integrating it with the Pattern Search opti-
mization algorithm. The PS algorithm is employed to efficiently se-
lect new control signals for the AGV, rather than evaluating all pos-
sible solutions.  

The Pattern Search algorithm is a direct method of finding the 
extremum of a function. It is a gradient-free optimization algorithm. 
The initial guess position and the initial step-size (Δ) are the only 
parameters of PS. Next, the neighborhood of the current point is 
examined. In the case of a better value in the neighborhood, the 
algorithm moves the current position to this point. When no im-
provement in the function's value is observed, the algorithm de-
creases the step size by a factor of two. The process is repeated 
iteratively until a stopping criterion is reached. PS is characterized 
by simplicity of implementation and robustness to the lack of 
smoothness of the objective function. However, its effectiveness 
may be limited for problems with high dimensionality or in the pres-
ence of local minima. 

The most time-consuming part of the DWA algorithm is related 
to the optimization process. The original DWA algorithm determines 
the possible velocities and then calculates the objective function for 
each of these possibilities. To improve this part of the algorithm, the 
above-described PS optimization algorithm is applied. Therefore, 
the following possibilities are examined only if necessary. The pro-
cedure of the proposed PSDWA is as follows: 

− Calculate the possible linear and angular velocities using eq. 
(2)-(5). 

− Set the initial position for PS as the current linear and angular 
velocities. 

− Set the initial step size as a quarter of the linear and angular 
range. 

− Run PS, while the maximum number of evaluated solutions are 
not reached  (𝑖𝑡𝑒𝑟𝑚𝑎𝑥). 

− Set the current position of the PS algorithm as linear and angu-
lar velocities. 

It should be noted that the DWA’s objective function of DWA (eq. 
(1)) requires a smoothing function (𝜎). Such a function normalizes 
the values of the subobjectives to range < 0,1 > using the mini-
mum and maximum value obtained in the examined solutions. In 
the proposed approach, the objective functions are calculated and 
compared sequentially. In such a case the smoothing function is 
not simple to determine, due to lack of information of the maximum 
and minimum value of examined objective functions. To address 
this issue, Author proposes to normalize the components using 
constant values: maximum allowed AGV’s linear velocity (𝑣𝑚𝑎𝑥) for 

velocity, π for heading angle, and obstacle distance reaction 
(𝑑𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒

𝑚𝑖𝑛 ) for clearance. 
 

 
Fig. 1. Visualisation of the DWA procedure for a single linear velocity 
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4. RESULTS 

The effectiveness of the proposed PSDWA test and the com-
parison with the original DWA will be presented. The validation was 
executed in a MATLAB environment. The source code has been 
published on MathWorks FileExchange [18]. To ensure that the pro-
posed approach allows AGV to reach similar performance, the ex-
amination has been provided in a thousand randomly generated 
environments with ten static obstacles. The algorithms’ parameters 
are presented in Tab. 1.  

Tab. 1. Parameters of the examined local path planning algorithms 

Parameter Symbol Value 

Sampling period 𝑇_𝑠 0.01 s 

Horizon of prediction 𝐻𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 1. 0 s 

Maximum linear acceleration 𝑎𝑚𝑎𝑥 1.0 m/s2 

Maximum linear velocity 𝑣𝑚𝑎𝑥 0.5 m/s 

Maximum angular acceleration 𝜖𝑚𝑎𝑥 1.0 ⋅ 𝜋 rad/s2 

Maximum angular velocity 𝜔𝑚𝑎𝑥 0.5 ⋅ 𝜋 rad/s 

Obstacle distance reaction  𝑑𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒
𝑚𝑖𝑛  2.0 

DWA: number of samples for 
linear velocity 

𝑁𝑣 3 

DWA: number of samples for 
angular velocity 

𝑁𝜔 10 

PSDWA: maximum number of 
examinations 

𝑖𝑡𝑒𝑟𝑚𝑎𝑥 15 

PSDWA: Initial step size Δ𝑖𝑛𝑖𝑡𝑖𝑎𝑙  
1

4
[

 𝑣𝐴𝐺𝑉
𝑚𝑎𝑥 − 𝑣𝐴𝐺𝑉

𝑚𝑖𝑛

  𝜔𝐴𝐺𝑉
𝑚𝑎𝑥 − 𝜔𝐴𝐺𝑉

𝑚𝑖𝑛
] 

For comparison, statistical indicators commonly used for path 
planning algorithms have been used [15]: 

− path length:  L  =   ∑ d(qi
x,y

,  qi+1
x,y

)M − 1
i=1 , 

− smoothness: 𝑆 =  √
1

𝑀−2
∑ (𝑞𝑖

𝜃 − 𝑞𝑖+1
𝜃 )

2𝑀−1
𝑖=1 , 

where: 𝑀 is number of samples, 𝑞𝑖
x,y

 is AGV position in 𝑖-th itera-

tion, 𝑞𝑖
𝜃  is AGV orientation in 𝑖-th iteration, and d(. . . ) is a function 

that calculated euclidean distance between two points. The ob-
tained results are presented in Tab. 2. One can see that the quality 
indicators are very similar for the original DWA and the proposed 
PSDWA except for the mean computation time of the algorithm. The 
proposed method has limited the trajectory examination to 15, while 
the DWA parameters requires computation unit to examine 30. 
Therefore, the mean computation time of the algorithm is almost 
two times smaller. The difference between the path indicators is re-
lated to unpredictable resolution of the linear and angular velocities 
- the count of step-size reductions at each iteration may differ. Nev-
ertheless, the speed-up of the proposed approach is close to 2 (i.e., 
mean computation time of DWA divided by mean computation time 
of the proposed PSDWA), and the path quality indicators are almost 
the same. 

 

 

Tab. 2. Comparison of quality indicators obtained for DWA and the  
 proposed PSDWA examined in a thousand randomly  
 generated environments with ten obstacles 

Quality indicator DWA PSDWA 

Mean path length [m] 3.972 3.996 

Mean smoothness [rad] 0.989 1.009 

Mean goal-reaching time [s] 8.114 8.162 

Mean computation time of the 
algorithm [ms] 

22.97 11.60 

Speed-up 1.00 1.98 

The maximum number of examinations has been selected em-
pirically in the above-described comparison. The specified value 
has been chosen to minimize computational effort while maintaining 
the high performance of the algorithm. However, the computational 
effort can be reduced if the lower performance is acceptable, or the 
higher performance can be achieved if the higher computational ef-
fort is possible.  

In Fig. 2, examples of paths obtained by DWA and PSDWA are 
presented. The graphical representation of the AGV’s paths ob-
tained for the original DWA and the proposed PSDWA confirms the 
performance of the PSDWA regardless of the reduced computa-
tional requirements.  

It is worth noting that the computational effort of the DWA is 
strongly dependent on the density of obstacles. Therefore, a per-
formance sensitivity analysis under different obstacle distributions 
has been conducted, and the results are presented in Table 3. The 
higher number of obstacles in the environment significantly in-
creases computational time due to the prediction and optimization 
processes. However, the proposed modification decreases the 
number of predicted paths. In such a case, the speed-up indicator 
appears to be constant, regardless of the number of obstacles. For 
the two obstacles, the speed-up indicator is slightly lower due to the 
other parts of the algorithm, such as the prediction path and optimi-
zation process. 

Tab. 3. Comparison of computation time of algorithms for various obstacle 
density in the environment 

Number of 
obstacles 

Mean computation time [ms] Speed-
up DWA PSDWA 

2    4.97 ± 1.49    2.68 ± 0.81 1.85 

6 13.26 ± 3.77    6.76 ± 1.93 1.97 

10 22.97 ± 4.67 11.60 ± 3.59 1.98 

15 42.92 ± 5.78 21.40 ± 4.49 2.01 

30 65.67 ± 7.12 33.07 ± 5.13 1.99 

The speed-up indicator is close to two due to the DWA number 
of velocity pairs being equal to 30, while for the proposed PSDWA, 
the maximum number of examinations was set to 15. This number 
can be increased or decreased. The higher number enables higher 
performance in local path planning, but it requires more computa-
tional resources. To illustrate its relationships, a comparison of path 
quality indicators and the maximum number of examinations is pro-
vided in Table 4. 



DOI 10.2478/ama-2025-0074                                                                                                                                                          acta mechanica et automatica, vol.19 no.4 (2025)  

 

663 

 
Fig. 2. Example trajectories of the AGV obtained for the original DWA 

  and the proposed PSDWA 

Tab. 4. Comparison of quality indicators obtained for DWA and the  
 proposed PSDWA with different numer of examinations 

Quality indicator DWA 

PSDWA 

Maximum number of  
examinations (𝑖𝑡𝑒𝑟𝑚𝑎𝑥) 

5 15 30 

Mean path length 
[m] 

6.23 7.03 6.19 6.18 

Mean smoothness 
[rad] 

1.063 1.253 1.059 1.056 

Mean goal-reaching 
time [s] 

12.60 14.57 12.58 12.56 

Speed-up 1.00 5.31 1.93 0.92 

5. CONCLUSIONS 

In this paper, the combination of the Dynamic Window Ap-
proach and the Pattern Search optimization algorithm was pro-
posed. To reduce the computational effort of the DWA algorithm, 
the procedure for selecting the next control signals (i.e., linear and 
angular velocities of the AGV) is based on a gradient-free optimi-
zation algorithm, specifically PS. The simulation examinations 
demonstrate that the proposed approach enables a reduction in 
calculation time by approximately two times, while maintaining the 
provided solution's smoothness as in the original DWA implemen-
tation. Moreover, the validation of the provided speed-up indicator 
for the proposed approach has been provided using environments 
with different obstacle densities. The maximum number of exami-
nations has been examined to present possibilities for achieving a 
higher performance of the AGV with a similar calculation time to the 
original DWA. 

It should be noted that the proposed approach can be imple-
mented with more complex modifications of the DWA. The literature 
review in the Introduction section demonstrates that the improve-
ment of the DWA algorithm primarily relies on modifications to the 
objective functions. Therefore, the selection based on the PS algo-
rithm is still applicable to achieve a lower computational effort and 
higher AGV efficiency. 

Future research will focus on experimental validation of the pro-
posed approach using a real AGV and implementing PS with more 
complex DWA improvements proposed in the literature. 
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