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Abstract: This study presents an advanced approach to modeling Unmanned Aerial Vehicle (UAV) dynamics by integrating Artificial Neural 
Networks (ANNs) and the Output Error Method (OEM). Moreover, the research analyzes the longitudinal flight characteristics of the Multiplex 
FunCub R/C, using data from designed flight tests complemented by simulations incorporating sensor noise and drift effects. Furthermore, 
the study captures a comprehensive range of aerodynamic responses essential for precise system identification by employing a multistep 
elevator input signal. In addition, the OEM approach, a traditional parameter estimation method, offers robust statistical estimation by  
minimizing the discrepancies between measured and predicted outputs. However, due to the nonlinear complexities inherent in UAV flight 
dynamics, the study also explores ANNs, leveraging their capability to model intricate nonlinear behaviors without requiring predefined  
aerodynamic parameters. Subsequently, the performance of both methodologies is critically evaluated against measured aerodynamic  
coefficients, revealing ANNs’ superior adaptability in accurately predicting complex aerodynamic interactions compared to OEM.  
Consequently, results indicate notable reductions in relative error, particularly in challenging aerodynamic coefficients. Overall, this research 
not only highlights the comparative advantages of ANNs in UAV system identification but also lays an initial structure for future advancements 
in UAV modeling and control systems.     
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1. INTRODUCTION 

Unmanned Aerial Vehicles (UAVs) are crucial in various sec-
tors, including aerial surveillance, environmental monitoring, preci-
sion agriculture, and disaster management [1–3]. These platforms 
navigate through complex environments, where stability and pre-
cise navigation are important [4–6]. Robust control systems are es-
sential to ensure operational safety and efficiency across varied en-
vironmental and operational contexts [1,7]. At the core of these sys-
tems lies the process of system identification, which models the dy-
namic behaviors from observed data [8–10]. This modeling is cru-
cial for enabling accurate predictions of UAV responses to com-
mand inputs under diverse flight conditions, thereby ensuring the 
effectiveness and reliability of their missions [11,12]. This study fo-
cuses on the  R/C airplane Multiplex-FunCub [13], selected for its 
stability and payload capacity, which make it ideal for research ap-
plications [14] and utilizes a comprehensive dataset from flight tests 
complemented by simulations tailored for sensor noise and drift ef-
fects, providing a realistic representation of UAV dynamics. These 
tests are meticulously designed to extract a wide spectrum of aer-
odynamic responses by employing a multistep input elevator signal 
in the longitudinal axis. This approach determines key aerodynamic 
characteristics and enhances the precision of the system identifica-
tion process. Building upon this robust dataset, system identifica-
tion becomes crucial for translating observed behavior into predic-
tive models. 

In system identification, two widely recognized methods are 
Maximum Likelihood Estimation (MLE) and the Output Error 
Method (OEM) [8,10,15,16]. MLE is a statistical approach that iden-
tifies model parameters by selecting the values that make the ob-
served flight data most probable. In contrast, OEM is more error-
focused, aiming to minimize the gap between measured outputs—
such as pitch angle or velocity—and the corresponding outputs pre-
dicted by the model. Despite their long-standing use and proven 
effectiveness in many scenarios, both methods frequently encoun-
ter difficulties in adequately representing the complex, nonlinear 
behaviors characteristic of UAV flight [17,18]. 

In response to these challenges, this paper advocates for inte-
grating Artificial Neural Networks (ANNs) with experimental UAV 
datasets. Renowned for their ability as universal approximators, 
ANNs excel at capturing nonlinear relationships through highly in-
terconnected layers and at generalizing from extensive datasets 
[19,20]. This capacity can substantially enhance model accuracy 
and robustness, especially under diverse operating conditions, of-
fering notable improvements over traditional techniques in predict-
ing aerodynamic characteristics [21,22]. The application of ANNs in 
this context demonstrates their potential to refine system identifica-
tion processes and underscores their transformative impact on de-
veloping more reliable and efficient UAV control systems. The in-
sights derived from this study are expected to contribute signifi-
cantly to the field of UAV dynamics, providing a foundation for fu-
ture innovations in UAV development. 
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The subsequent sections are organized in the following way: 
Section 2 presents the Dynamic Model, outlining the fundamental 
equations that govern UAV longitudinal motion. Section 3 dis-
cusses the Simulation setup and Flight Test, describing how flight 
data and simulation results are obtained, including details on the 
data excitation approach and the Marchand Method. Section 4 ex-
plains the Methods used for system identification, detailing the in-
tegration of MLE-based OEM and Artificial Neural Networks. Sec-
tion 5 covers the Results and Discussion, comparing the perfor-
mance of the identified models and highlighting key findings. Fi-
nally, Section 6 offers the Conclusion, summarizing the study’s ma-
jor insights and suggesting future directions for UAV dynamic mod-
eling and control. 

2. DYNAMIC MODEL 

The R/C airplane model  as depicted in Fig. 1, is selected for its 
versatility in carrying various sensors and payloads, making it an 
excellent choice for UAV system identification experiments.  

Operating at lower speeds and lighter weight, it mirrors many 
UAVs commonly used in research and real-world tasks. This setup 
provides a controlled yet realistic platform for analyzing sensor 
noise impacts and validating different methods [24]. 

 

 
Fig. 1. Multiplex FunCub Airplane [23] 

Accurate system identification for UAVs heavily depends on the 
underlying fidelity of their dynamic models [6]. In this study, partic-
ular attention is given to the airplane’s longitudinal flight character-
istics [5].This aircraft has a mass of 1.96 kg and a pitch axis mo-
ment of inertia of 0.095 kg·m². Additionally, a mean aerodynamic 
chord measuring 0.226m and a wing area of 0.313m². During typi-
cal flights, it cruises at around 21 m/s. Before initiating simulations, 
initial conditions including airspeed, pitch angle, pitch rate, and an-
gle of attack are established based on data from typical flight tests. 
Aerodynamic forces and moments are subsequently computed at 
each step, utilizing these current states.[8]. This process yields time 
histories of various flight parameters, to which realistic noise levels 
are introduced, reflecting the performance limits of sensors.  

2.1. Longitudinal Dynamics 

Longitudinal motion is pivotal to predicting the aircraft’s behav-
ior under various conditions. This component of flight can be repre-
sented by a series of state equations that detail how the airspeed 
𝑉, pitch angle 𝜃, pitch rate 𝑞, and angle of attack 𝛼 evolve over 
time [5,6,8]. These equations stem from basic flight dynamics prin-
ciples and include aerodynamic forces and control inputs (elevator 
deflection or engine thrust).  

Although this study focuses on longitudinal dynamics and treats 

lateral-directional effects as decoupled, the same approach could 
extend to lateral-directional modeling [8]. 

Equations 1 - 4 capture the continuous-time dynamics, incorpo-
rating factors like aerodynamic coefficients, control deflections, and 
external forces. 

𝑉̇ = −
𝑞̄𝑆

𝑚
𝐶𝐷 + 𝑔 sin(𝛼 − 𝜃) +

𝐹𝑒

𝑚
𝑐𝑜𝑠(𝛼 + 𝜎𝑇)                     (1) 

𝛼̇ = −
𝑞̄𝑆

𝑚𝑉
𝐶𝐿 + 𝑞 +

𝑔

𝑉
𝑐𝑜𝑠(𝛼 − 𝜃) −

𝐹𝑒

𝑚𝑉
𝑠𝑖𝑛(𝛼 + 𝜎𝑇)           (2) 

𝜃̇ = 𝑞                                                                                                       (3) 

𝑞̇ =
𝑞̄𝑆𝑐

𝐼𝑦
𝐶𝑚 +

𝐹𝑒

𝐼𝑦
(𝑙𝑡𝑥 𝑠𝑖𝑛 𝜎𝑇 + 𝑙𝑡𝑧 𝑐𝑜𝑠 𝜎𝑇)                                 (4) 

 In these formulas, the coefficients for drag 𝐶𝐿, lift 𝐶𝐷, and 

pitching moment 𝐶𝑚 are modeled as follows: 

𝐶𝐿 = 𝐶𝐿0 + 𝐶𝐿𝑉
𝑉

𝑉0
+ 𝐶𝐿𝛼𝛼                                                            (5) 

𝐶𝐷 = 𝐶𝐷0 + 𝐶𝐷𝑉
𝑉

𝑉0
+ 𝐶𝐷𝛼𝛼                                                        (6) 

𝐶𝑚 = 𝐶𝑚0 + 𝐶𝑚𝑉
𝑉

𝑉0
+ 𝐶𝑚𝛼𝛼 + 𝐶𝑚𝑞

𝑞𝑐

2𝑉0
+ 𝐶𝑚𝛿𝑒

𝛿𝑒                (7) 

Here, 𝑉̇, 𝛼̇, 𝜃̇, 𝑞̇ denote rates of parameters. The term 𝑞̄ is dy-

namic pressure, while 𝑚, 𝑆, and 𝐼𝑦 represent aircraft mass, wing 

area, and pitch-axis moment of inertia. Coefficients 𝐶𝐷, 𝐶𝐿, and 𝐶𝑚 
vary with 𝑉, 𝛼, and 𝑞, and depend on baseline velocity 𝑉0 and 
elevator deflection 𝛿𝑒.  

Additional parameters encompass gravitational acceleration 𝑔, 
engine thrust 𝐹𝑒, and thrust line offsets (𝜎𝑇, 𝑙𝑡𝑥, 𝑙𝑡𝑧), which define 
the thrust line orientation and its offset from the center of gravity. 
Throughout both simulations and flight tests, a constant thrust is 
used to maintain a steady cruising speed of 21 m/s, ensuring con-
sistency in the flight conditions. 

Initially, non-dimensional aerodynamic coefficients are calcu-
lated using XFLR5, a computational software engineered for eval-
uating airfoils, wings, and whole aircraft at low Reynolds num-
bers.[25]. Through panel methods and vortex lattice models, it es-
timates both aerodynamic coefficients and performance metrics 
[26].  

The output from XFLR5 serves as an initial parameter set for 
system identification, acting as a baseline from which real-flight be-
haviors can be refined [7].  Aerodynamic non-dimensional coeffi-
cients estimated from simulated data using XFLR5 software are de-
tailed in Table 1.  

 
Tab. 1. Aerodynamic non-dimensional coefficients  

ID Par. Value ID Par. Vale ID Par. Value 

1 CD0 0.0177 5 CLV -0.0025 9 Cmα -1.6173 

2 CDV 0.0136 6 CLα 4.2305 10 Cmq -8.0193 

3 CDα 0.1223 7 Cm0 0.0446 11 Cmδe -1.4830 

4 CL0 0.1518 8 CmV -0.0092 

3. FLIGHT TEST 

 In this study, a multi-stage process begins with data collection 
and analysis. The UAV is prepared for a series of flight tests and, 
to strengthen the overall dataset, these measurements are supple-
mented by simulated data as described previously. Together, these 
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sources yield a robust foundation for subsequent examination. This 
initial setup is crucial for gathering precise data that feeds into the 
subsequent phases of the study. 

Following data collection, the process transitions into the Data 
Preparation phase. During this stage, the collected data is cleaned 
and normalized to ensure its quality and reliability, which is essen-
tial for accurate modeling [10]. The refined data then moves into the 
Model Development and Implementation phase, where data is em-
ployed to construct models capable of accurately identifying UAV 
dynamics [8].  

To facilitate data collection, a 2𝑘 experimental design is used. 
This method allows for the simultaneous measurement of multiple 
variables and their interactions, thus providing essential information 
with minimal testing—a benefit under operational constraints [27–
29].  In this setup, three key factors are selected due to their poten-
tial influence on flight performance: external air temperature, at-
mospheric pressure, and wind speed. With 𝑘 = 3  eight total tests 
are conducted to develop the dataset for system identification mod-
els. Flight tests were conducted at Lotnisko Modelarskie Zalesie, a 
short runway located approximately 20 km east of Warsaw, Poland, 
under near-zero-wind conditions, as shown in Figure 2. 

Figure 3 illustrates how each test flight is systematically con-
ducted to capture UAV’s aerodynamic responses. These flights in-
volve executing a carefully designed 3-2-1-1 elevator input se-
quence [8,20]. Each test begins with a manual takeoff, where the 
UAV climbs to a predefined altitude. Following the climb, the UAV 
reaches cruise altitude. During the cruise phase, the 3-2-1-1 multi-
step input signal is deployed by the elevator. This sequence starts 
with a significant deflection to sharply increase the pitch angle, fol-
lowed by a moderated deflection to slightly reduce the pitch, allow-
ing observations of the UAV’s damping and stability characteristics. 

For robust system identification, input signals must sufficiently 
excite all relevant flight modes to capture the full range of an air-
craft’s dynamic responses [30]. Prior research has highlighted the 
significance of multistep elevator inputs for analyzing longitudinal 
motion [31,32]. Incorporating frequencies above and below the nat-
ural frequency of the short-period mode is essential, since eigen-
frequencies are subject to uncertainty and can vary with flight con-
ditions. One effective way to achieve this coverage is by designing 
a series of evenly spaced pulse inputs that collectively produce a 
diverse power spectrum [8].  

The construction of these multistep inputs involves two main 

steps: initially, identifying the range of frequencies required for pre-
cise aerodynamic parameter estimation; second, creating a signal 
that spans these frequencies [33,34]. To identify the critical fre-
quencies, researchers often rely on Bode diagrams, which reveal 
how different terms in the force and moment equations respond to 
various input frequencies. The approach developed by Marchand 
[35] uses a linearized longitudinal model to illustrate how individual 
aerodynamic derivatives can be recognized when their frequency 
response surpasses roughly 10% of the maximum term [8].  

Figure 4 provides an example Bode plot based on coefficients 
from Table 1, indicating that the 0.1–10 rad/s range generally in-
cludes both short-period and phugoid modes. 

The significant frequency is chosen as 𝑓𝑐 = 0.468 rad/s, and 
the input time interval Δ𝑡 is selected so that this critical frequency 
is either centered or lies near the upper portion of the signal’s spec-
trum [8]. The final 60-second elevator deflection sequence, with 1 
degree amplitude and Δ𝑡 = 0.641s, successfully excites both 
short-period and phugoid responses within the targeted frequency 
range.  

Furthermore, the CubePilot autopilot system [36] was inte-
grated with Mission Planner [37] software to automate the creation 
and execution of multistep elevator inputs. By configuring a dedi-
cated flight model within Mission Planner, the UAV could consist-
ently perform the required step sequences—the 3-2-1-1 input—dur-
ing flight tests. This setup minimized pilot workload, ensured re-
peatable control deflections, and enhanced the overall reliability of 
the data collection process. 

 

 
Fig. 2. Flight Test in an R/C Model Runway 

 
Fig. 3. Flight Envelope for Tests Performed  
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Fig. 4. Bode magnitude plot of the pitching moment for optimum  

frequency range determination 

3.1. Data Requirements Analysis and Data Preparation    

This phase focuses on the collection and preparation of flight 
data, involving measurement and estimation of parameters during 
flight tests. These parameters, categorized as channels include el-
evator deflection (δe, rad), dynamic pressure (𝑞̄ , Pa), thrust (T, N), 
airspeed (V, m/s), angle of attack  (α, rad), pitch attitude (𝜃, rad), 
pitch rate (𝑞, rad/s), pitch Acceleration (𝑞̇, rad/s²), and longitudinal 
acceleration at center of gravity (𝑎𝑥, m/s²). As the input signals are 
executed, the UAV's onboard sensors within the CubePilot autopi-
lot system [36] capture parameters. The CubePilot features a high-
performance processor and triple-redundant IMU sensors, enabling 
precise data.  

Data preparation is executed beginning with the initial extrac-
tion of telemetry data from the autopilot logs of selected test flights. 
These flights are specifically chosen for their near-windless condi-
tions and optimal elevator deflection behavior, ensuring the capture 
of the most reliable data for analysis.  

To ensure analytical uniformity, the data is further subjected to 
a filtering process and resampled using interpolation to standardize 
the sampling frequency across all sensors to 50Hz, corresponding 
to a time step Δ𝑡 of 0.02 seconds over a total duration of 60 sec-
onds.  This frequency is chosen as optimal for system identification 
[38], this resampling is critical for synchronizing the data from vari-
ous sensors, as shown in Fig. 5. 

It is very important to highlight that despite advancements in 
computational modeling, significant challenges remain that can af-
fect the deployment and effectiveness of UAV systems [7,39,40]. A 
major issue is the dependency on large, representative datasets 
that accurately capture the UAV’s operational conditions, which are 
often difficult to obtain due to logistical and regulatory constraints 
on extensive flight testing [10].  Moreover, these models need to 
not only accurately predict dynamics but also be computationally 
efficient to operate in real-time within the limited processing capa-
bilities of UAV systems [41].  Recent studies are increasingly advo-
cating for the use of machine learning and artificial neural networks 
in UAV system identification, as these advanced methods excel at 
handling the complexities inherent in UAV systems by learning from 
extensive datasets [21,22]. 

 
Fig. 5. Longitudinal response dataset 

4. SYSTEM IDENTIFICATION METHODS 

System identification for UAVs can be approached from two 
complementary perspectives. On the one hand, the Output Error 
Method (OEM), enhanced through Maximum Likelihood Estimation 
(MLE), offers a time-domain framework that refines model parame-
ters by minimizing discrepancies between measured and predicted 
outputs under statistical assumptions. On the other hand, Artificial 
Neural Networks (ANNs) provide a data-centric, “black box” solu-
tion that learns complex, nonlinear input-output relationships di-
rectly from flight data—thereby reducing the reliance on a priori aer-
odynamic coefficients. The following subsections introduce these 
methods in detail, outlining their theoretical basis and practical ben-
efits for UAV dynamics modeling. 

4.1. Output Error Method (OEM) Enhanced by Maximum 
Likelihood Estimation (MLE)  

The Output Error Method (OEM) is a time-domain approach 
commonly used in flight vehicle system identification. Its primary 
goal is to refine a model’s parameters so that the gap between 
measured outputs and the model’s predicted outputs is minimized. 
In practice, one begins with a set of measured outputs 𝑦(𝑡) —for 
instance, pitch angle or velocity—recorded during a flight test. Next, 
a mathematical model, which depends on an unknown parameter 
set 𝜃, generates predicted outputs 𝑦̂(𝑡, 𝜃) based on the same in-
put commands and conditions observed during flight test. By apply-
ing the measured control deflections over time and iterating through 
different parameter values, the model generates a time-history of 
predicted states—such as pitch angle or velocity—that can be di-
rectly compared to real flight observations [8,16,42]. Figure 6 sum-
marizes inputs and outputs in each part of the method. 
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Fig. 6. Schematic of Output Error Method [8] 

By comparing 𝑦(𝑡) and 𝑦̂(𝑡, 𝜃), the output error is defined in 
Eq. (8): 

𝑒(𝑡) = 𝑦(𝑡) − 𝑦̂(𝑡, θ)                                                                      (8) 

By continuously refining the parameters θ, OEM attempts to 
make 𝑒(𝑡) as small as possible. This is typically done by summing 
the squared errors at each time step, as shown in Eq. 9, and em-
ploying an optimization algorithm (such as Gauss-Newton or Le-
venberg–Marquardt) to minimize𝐽(θ). 

𝐽(θ) = ∑ [𝑦(𝑡) − 𝑦̂(𝑡, θ)]2𝑇
𝑡=1                                                   (9) 

The advantage of this approach is that it considers the entire 
time history of the system’s response, capturing how different 
states (pitch angle, velocity, etc.) evolve and interact from one mo-
ment to the next [8]. 

Furthermore, Maximum Likelihood Estimation (MLE) is a statis-
tical method for selecting the parameter values that are most likely 
to produce the observed data [8]. When incorporated into the OEM, 
the approach assumes that the errors 𝑒(𝑡)  follow a normal 
(Gaussian) distribution. Under this assumption, the goal is to deter-
mine the parameter set Θ that maximizes the probability of observ-
ing the collected data. 

Mathematically, this involves multiplying the likelihoods for 
each data point: 

𝑝(𝑧|Θ) = 𝑝(𝑧1|Θ) ⋅ 𝑝(𝑧2|Θ) ⋯ 𝑝(𝑧𝑁|Θ) = ∏ 𝑝(𝑧𝑘|Θ)𝑁
𝑘=1      

                                                                                                   (10) 

where 𝑧𝑘 is the measured output at a time step 𝑘. Additionally, the 
errors are assumed to be independent, meaning: 

𝐸[𝑣(𝑡𝑘)𝑇𝑣(𝑡l)] = 𝑅δ𝑘l                                                           (11) 

where, 𝛿𝑘l = 1 for 𝑘 = ℓ implies that the variance of the error at 

time 𝑡𝑘 is given by the diagonal elements of 𝑅, and 𝛿𝑘𝑙 = 0 for 
𝑘 ≠ ℓ indicates that there is no covariance between errors at dif-
ferent times. This setup results in the likelihood function being a 
product of individual Gaussian distributions for each time point, 
each with mean zero and variance specified by R. The expression 
for this likelihood function, considering the independence and 
Gaussian assumptions, is given in Eq. 10. Therefore, Eq. 11 ex-
presses this likelihood function in a condensed form, which is used 
in the optimization process to find the parameter vector Θ that min-
imizes the negative log-likelihood, thus maximizing the likelihood of 
observing the given data under the model assumptions [8].  By 
modeling measurement errors at each time instant as independent 
Gaussian random variables, this framework effectively treats 

sensor noise or modeling inaccuracies as unique events that do not 
propagate to other time steps. In practical scenarios, this assump-
tion often aligns with the fact that external disturbances (such as 
sensor noise, turbulence, or small changes in flight conditions) are 
uncorrelated across individual measurements. Consequently, each 
data point contributes a separate likelihood term, and combining 
them as a product yields a clear, statistically robust path to estimat-
ing the parameter vector Θ. 

This assumption enables the formulation of the likelihood func-
tion for an n-dimensional measurement vector across N discrete 
time points, utilizing a specified parameter vector Θ and a desig-
nated measurement error covariance matrix R, as detailed in Eq. 
12: 

𝐿(𝑧|Θ, 𝑅) =
1

2
∑ [𝑧(𝑡𝑘) − 𝑦(𝑡𝑘)]𝑇𝑅−1[𝑧(𝑡𝑘) − 𝑦(𝑡𝑘)]𝑁

𝑘=1 +
𝑁

2
ln(det(𝑅)) +

𝑁𝑛𝑦

2
ln(2π)                                                              (12) 

The optimization aims to find the parameter set Θ that mini-
mizes the negative log-likelihood, as specified in Eq. 13: 

Θ̂𝑀𝐿 = 𝑎𝑟𝑔 {min
Θ

ln 𝑝(𝑧|Θ)}                                                       (13) 

The process employs the Gauss-Newton method, described in 
Eq. 14, to ensure efficient convergence: 

θ𝑛+1 = θ𝑛 − [𝐽′′(θ𝑛)]−1𝐽′(θ𝑛)                                               (14) 

Hence, MLE with OEM parameters are refined within a time-
domain and probabilistic framework. This interaction—sometimes 
called only the Output Error Method—is especially advantageous 
in UAV dynamics, where nonlinearities and uncertainties can be 
significant. The combined approach yields a robust parameter esti-
mation procedure capable of accommodating complex aerody-
namic behaviors while still providing a statistically meaningful inter-
pretation of model–data discrepancies. 

4.2. Artificial Neural Networks (ANNs) 

ANNs embody a methodology for system identification, partic-
ularly adept at handling the nonlinear dynamics inherent in UAV 
systems. These networks differ markedly from traditional linear 
models in their capacity to learn complex behaviors from extensive 
datasets [43–45]. 

Artificial Neural Networks (ANNs) provide a data-centric ap-
proach to modeling UAV flight dynamics without needing explicit 
aerodynamic equations or a priori parameter estimates, as XFLR5 
data that was previously described. This “black box” philosophy al-
lows the network to learn underlying relationships directly from in-
put-output data rather than relying on an initial guess of aerody-
namic coefficients. Using the experimental-simulated data set of el-
evator deflection, pitch angle, velocity, and other sensor data the 
ANN can discern the complex mapping from these inputs to the air-
craft’s actual response. In contrast, a traditional model might re-
quire carefully chosen initial values for aerodynamic derivatives, 
which can be potentially inaccurate or difficult to obtain, especially 
under varied flight conditions. Instead, an ANN recognizes patterns 
by processing the data through interconnected layers of artificial 
neurons, each layer typically containing nonlinear activation func-
tions [43–45]. Consequently, even if the exact form of the aerody-
namic forces and moments remains unknown, the network can ap-
proximate the function that governs the UAV’s behavior, as shown 
in Figure 7. 
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Fig. 7.   Schematic of Neural Network Training for Aerodynamic Coeffi-

cient Prediction 
 

 A typical setup begins with an input layer accepting measured 
variables such as elevator deflection, pitch angle, or velocity; the 
signals then propagate through one or more hidden layers, captur-
ing subtle interactions that may elude conventional linear models 
[21]. Figure 8 illustrates the schematic of a single neuron. In the 
final output layer, the network produces predictions such as aero-
dynamic coefficients or states of motion, all without needing a pre-
defined analytical description of the aircraft. This capacity to learn 
from data alone makes ANNs highly suitable for UAV scenarios 
where flight conditions, vehicle configurations, or sensor accuracy 
may vary, ensuring that the system identification process remains 
robust and adaptable over time.  

 
Fig. 8. Schematic of a single Neuron in ANNs 

 
The relationship between neurons is determined by weights 

that adjust during the training phase to optimize network perfor-
mance, governed by Eq. (15): 

𝑦 = 𝑓(𝑊 ⋅ 𝑥 + 𝑏)                                                                    (15) 

Where 𝑥 denotes the neuron’s input vector, 𝑊 represents a 
matrix of weights, 𝑏 is a bias term, and 𝑓(⋅) is the activation func-
tion. ANN training proceeds through forward propagation, where 
the measured input passes through the network to generate an out-
put 𝑦̂𝑖. A loss function, often the mean squared error (MSE), then 

quantifies the discrepancy between 𝑦̂𝑖 and the measured output 𝑦𝑖 
as stated in Eq 16. 

𝐿   =   
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛

𝑖=1
                                                       (16) 

Where 𝑛 is the total number of observations. Minimizing 𝐿 in-
volves backpropagation, which calculates the influence of each 
weight and bias on the observed error, followed by a gradient-
based optimization algorithm such as gradient descent that updates 
the parameters: 

𝑊new = 𝑊old − 𝛼∇𝑊𝐿 ,                                                          (17) 

𝑏new = 𝑏old 𝛼∇𝑏𝐿                                                                    (18) 

Equations (17) and (18), illustrate how the learning rate 𝛼 de-
termines the step size for each gradient descent update of the 
weights and biases. A larger 𝛼 can accelerate training but risks 
overshooting minima, whereas a smaller 𝛼 typically produces more 
stable, albeit slower, convergence. In addition to adjusting the 
learning rate 𝛼, the selection of the number of hidden layers and 
the number of neurons within each layer is important for optimizing 
network performance and preventing overfitting. Employing regu-
larization techniques, including dropout and weight decay, further 
boosts the model’s capacity to generalize effectively across varied 
data scenarios by reducing the likelihood of the network memoriz-
ing the training data. 

Thanks to this adaptive capability, ANNs prove especially ad-
vantageous for UAV system identification, where complex aerody-
namic effects, uncertain sensor behavior, and rapidly changing 
flight conditions demand models capable of capturing intricate, non-
linear dynamics [17]. As they learn relationships directly from data, 
neural networks provide an additional layer of flexibility and resili-
ence compared to more conventional linear models, ultimately en-
hancing both the accuracy and robustness of UAV dynamic model-
ing. 

5. MODELS’ DEVELOPMENT AND IMPLEMENTATION  

The model development and implementation for system identi-
fication started with the integration of the OEM and Maximum Like-
lihood parameter estimation. This combination effectively handles 
noisy measurements and ensures robust parameter estimation. 
The initial setup involved defining a global time step variable (dt), 
to synchronize the numerical integration process throughout the 
simulation, ensuring consistency in the temporal aspects of the 
model the following initial conditions were set:  

𝑥0 = [𝑉0, 𝛼0, 𝜃0, ] = [20.26, 0.022, 0.0089, −0.0022]  (19) 

For numerical integration, various orders of the Runge-Kutta 
method are utilized, influencing the accuracy and stability of the 
simulations.  At the core of the system identification process is an 
iterative optimization loop where system parameters are refined by 
minimizing a cost function.  After seven iterations, convergence is 
achieved on parameter estimation. 

Figure 9 shows measured and estimated data; the red line 
shows the system identified, while the blue line represents the input 
data. The subsequent section will discuss specific values, errors, 
and standard deviations. 
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Fig. 9.Time histories of measured (blue line) and estimated parameters (red line), using OEM method

The study advances by modeling the ANNs, specifically utilizing 
Feed-Forward Neural Networks (FFNNs) for system identification. 
These networks, recommended by numerous researchers 
[21,46,47]. FFNNs are specifically utilized due to their proficiency 
in environments where only input-output relationships are observa-
ble and internal system dynamics remain unknown. 

The system's architecture is deliberately designed with a 
streamlined, unidirectional data flow that progresses through multi-
ple layers from input to output, without recursive connections, be-
cause it facilitates precise simulation of the causal relationships be-
tween elevator deflection and flight states, significantly enhancing 
the accuracy with which the resulting aerodynamic forces and mo-
ments are calculated. By avoiding recursive connections, the model 
avoids the complexities of feedback loops, thereby simplifying the 
learning process and increasing the model’s output reliability as 
they pertain directly to UAV dynamics.  

The training of the FFNNs is conducted using a backpropaga-
tion algorithm that fine-tunes weights in response to discrepancies 
between the predictions and the actual data, facilitating precise 
learning. Additionally, the FFNNs are enhanced with variants of 
Kalman gain, which are integrated to increase the efficiency and 
accuracy of the learning process. [8]. Also, hyperparameter tuning 
is utilized to refine the network’s training process, involving adjust-
ments to critical parameters such as the learning rate, the number 
of hidden layers and neurons, batch size, and training cycles.  

In addition, a specialized function is used to address potential 
biases in measured angular rates and accelerations to correct scale 
factors in angles of attack. This function also calculates essential 
aerodynamic coefficients, providing a comprehensive understand-
ing of the UAV’s aerodynamics based on corrected flight data. The 
FFNNs are trained using preprocessed flight data, with the desired 
outputs being aerodynamic forces and moments. Initial weights are 
assigned randomly, which hinders the ability to precisely replicate 
results. However, multiple trials consistently produced a compara-
ble level of model quality, demonstrating consistent alignment 

between measured data and predicted responses.[8].  
The training's effectiveness is continuously monitored by track-

ing reductions in the loss function, reflecting the increasing accu-
racy of the network in modeling UAV dynamics. When setting up 
the neural network, fine-tuning several parameters is crucial to op-
timizing the learning process. 

In the FFNN designed for aerodynamic modeling, the network 
architecture comprises three layers: an input layer, a single hidden 
layer, and an output layer. This hidden layer is equipped with six 
neurons, selected through a hyperparameter tuning process. This 
process involved experimental adjustments based on heuristic ap-
proaches [8,46,47], specifically using the square root of the sum of 
the neurons in the input and output layers to establish the optimal 
number of neurons. 

Scaling was not applied to the input data prior to feeding it into 
the network, to preserve the original measurement scales. The ac-
tivation function used was the Rectified Linear Unit (ReLU), which 
was chosen for its efficiency in handling non-linear data without in-
troducing negative values, thus maintaining the integrity of the non-
linear relationships within the aerodynamic data being modeled. 
The FFNN’s training was characterized by repeated data pro-
cessing cycles, output computation, and weight adjustment. This 
regimen was maintained across 2000 iterations to meet the stand-
ards of similar studies [8,17], ensuring consistency and reliability.  

A key aspect of this phase was employing a modified backprop-
agation algorithm enhanced with Kalman gain, which played an im-
portant role in refining the learning process. Finally, the computa-
tion of total aerodynamic coefficients used the derivatives as out-
lined in Table 1, computed according to the equations specified 
from Eq. 5 to 7. As a result, Fig. 10 shows time histories between 
measured and estimated data of Aerodynamic Lift Coefficient  𝐶𝐿, 

Drag Coefficient  𝐶𝐷 and 𝐶𝑚 moment coefficient as estimated pa-
rameters of the prediction cycle.
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Fig. 10. Time History of Estimated parameters: ANNs Prediction Cycle 

6. RESULTS AND MODELS EVALUATION 

The evaluation of system identification techniques underscored 
the effectiveness of both the OEM and ANNs methods, with their 
performance detailed in Table 2, Fig. 9 and Fig.10.  

The OEM method showcased robust results, particularly for the 
zero-lift lift coefficient (CL₀) and the lift coefficient due to the angle 
of attack (CLα). These results highlight the precision of the OEM 
approach in modeling aerodynamic forces accurately.  

In contrast, the lift coefficient due to velocity (CLᵥ) under the 
OEM method exhibited a significant relative error of 40.80%, re-
flecting potential uncertainties in modeling. Meanwhile, the ANNs 
method demonstrated a notable improvement in managing this pa-
rameter, reducing the relative error to 24%.  

The ANN approach significantly improved the estimation accu-
racy for the parameter Cmq , reducing the relative error from -
13.07% (OEM) to 1.20%. Additionally, the ANN achieved a slight 
improvement in the estimation of Cmδe, lowering its relative error to 
0.61%. These improvements indicate that ANNs are effective in 

modeling dynamic behaviors, surpassing the traditional OEM in 
capturing certain aerodynamic characteristics. 

Moreover, to further validate the data presented in Fig. 10, the 
coefficients  𝐶𝐿,  𝐶𝐷 and 𝐶𝑚 were evaluated using parameters es-
timated from OEM.  

The comparison between the OEM and ANNs for aerodynamic 
coefficients  𝐶𝐿,  𝐶𝐷 and 𝐶𝑚, as shown in Fig. 11, highlights varied 
deviation patterns throughout the evaluation. 

The drag coefficient  𝐶𝐷 error remains tightly narrowed, peak-
ing just above 0.002, which indicates a consistent performance in 
drag estimation by both methods. The lift coefficient  𝐶𝐿 error con-
sistently stays close to zero with occasional spikes up to 0.04. 
Therefore, lift is accurately estimated even amid the complexities 
of aerodynamic modeling.  

Conversely, the pitching moment coefficient 𝐶𝑚 shows wider 
error fluctuations up to about 0.01, revealing more pronounced dis-
crepancies and suggesting that 𝐶𝑚 estimation may be more sensi-
tive to the modeling techniques used, reflecting potential chal-
lenges in capturing dynamic aerodynamic behaviors accurately. 

Tab. 2. Aerodynamic non-dimensional coefficients comparison  

ID Parameter Estimated value OEM Relative error OEM Estimated value ANNs Relative error ANNs 

1 CD0 0.0176 0.62% 0.018 0.56% 

2 CDV 0.0131 4.04% 0.013 2.94% 

3 CDα 0.1217 0.50% 0.123 0.25% 

4 CL0 0.1524 0.42% 0.153 0.46% 

5 CLV -0.0035 40.80% -0.003 24.00% 

6 CLα 4.2509 0.48% 4.233 0.05% 

7 Cm0 0.0443 0.61% 0.045 1.12% 

8 CmV -0.0095 2.83% -0.010 10.87% 

9 Cmα -1.5681 3.04% -1.619 0.09% 

10 Cmq -6.9714 13.07% -7.923 1.20% 

11 Cmδe -1.4163 4.50% -1.492 0.61% 
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Fig. 11. Comparison of  𝐶𝐿,  𝐶𝐷 and 𝐶𝑚 between OEM and ANN

7. CONCLUSION    

This study successfully used the Output Error Method (OEM), 
Maximum Likelihood Estimation (MLE), and Artificial Neural Net-
works (ANNs) to analyze the longitudinal dynamics of the Multiplex 
FunCub UAV. Through the application of the Gauss-Newton 
method, the OEM/MLE technique provided highly accurate param-
eter estimates, as demonstrated by the precise calculation of the 
drag coefficient with remarkably low relative errors. Concurrently, 
the Feed-Forward Neural Network (FFNN), refined with sophisti-
cated optimization methods, effectively modeled the intricate rela-
tionships between control inputs and aerodynamic responses, val-
idating its proficiency in predicting essential UAV dynamics. 

Comprehensive data preprocessing and the strategic synergy 
of OEM/MLE with ANNs maximize the strengths of both ap-
proaches, enhancing the efficiency and accuracy of UAV system 
identification. This analysis demonstrated significant time and cost 
savings and the capability of ANNs to predict solely from experi-
mental data, without a priori values.  

However, the analysis identified greater sensitivity in the pitch-
ing moment coefficient, compared to Lift and Drag coefficients, in-
dicating potential variances due to flight data quality and sensor ac-
curacy. Addressing these challenges, methods like wavelet decom-
position could further refine data preprocessing, improving the reli-
ability of ANNs predictions and the overall accuracy of aerodynamic 
behavior modeling. This approach, as detailed in previous works 
[15,39], ensures more dependable input for system identification, 
enhancing the robustness of UAV dynamic models.  

Finally, it is worth emphasizing that accurate system identifica-
tion boosts the development of modern flight-control systems as 
well as the stability and control design of new aircraft. By applying 
ANN- and OEM-based identification techniques to small R/C air-
craft, advanced aerodynamic models can still be obtained even 
when only inexpensive, low-cost sensors are available. Therefore, 
this capability is highly relevant for future fixed-wing UAV concepts, 
where accurate aerodynamic models are a prerequisite for design-
ing robust, high-performance control architectures. 
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