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Abstract: One of the biometric methods is human recognition based on ground reaction forces (GRFs) generated during a person's gait. 
Conventional methodologies for gait recognition have relied on the manual extraction of features from measured GRF signals,  
in conjunction with the utilization of machine learning algorithms. Recently, convolutional neural networks (CNNs) have become  
increasingly popular due to their ability to automatically extract features from signal data. However, the CNNs don’t always produce optimal 
results for human recognition. In this study, we emphasize a novel aspect of the approach: the use of an ensemble of homogeneous CNN 
classifiers, all sharing the same architecture but trained on different combinations of GRF components. This strategy leverages diversity 
originating purely from data representation rather than architectural variation, demonstrating that even identical CNNs can complement each 
other when exposed to distinct training data. The objective of this paper is to design a biometric system that recognizes humans based on 
GRFs and an ensemble of classifiers, in which the base classifiers will be CNNs. The study utilized a dataset for a total of 5,980 gait cycles 
from 322 individuals. The architecture of the base classifiers was consistent, and all possible combinations of GRF components were used 
to train the base CNNs. The optimal results were obtained when all six GRF components were used for CNN training, achieving a recognition 
rate of 96.57%. Combining seventeen base classifiers into a homogeneous ensemble further improved the performance, yielding a 99.57% 
correct recognition rate. This demonstrates the effectiveness of ensemble learning with identical CNN architectures  
in enhancing gait-based biometric recognition. 

Key words:  Human gait recognition, Biometrics, Ground Reaction Forces, Convolutional Neural Networks, Ensemble Classifiers 

1. INTRODUCTION 

Biometrics, as a technique for the automatic recognition of peo-
ple based on their unique features, has gained significance in re-
cent years in the context of security and access control. The most 
frequently utilized biometric methods include those utilizing finger-
print [1], face [2], iris [3], voice [4], or hand vein analysis [1,5]. An-
other promising, although still relatively uncommonly used, bio-
metric method is the identification of a person by the way they walk 
[6]. Technologies gauging gait encompasses video analysis meth-
ods [7] as well as those making use of such devices as accelerom-
eters [8] or force plates [9]. Measurements performed with the em-
ployment of force plates register loads, so-called Ground Reaction 
Forces (GRFs), exerted by the foot on the surface during the stance 
phase. These forces are an expression of the dynamic attributes of 
gait biomechanics and generate a unique biomechanical signature 
based on a person’s body mass, anatomic structure, movement 
patterns, and motor skills. In contrast to solutions based on com-
puter vision, GRF analysis is not affected by changes in light levels, 
clothing, or angle of observation, with measurements done in real 
time without the necessity for silhouette recognition. It does, how-
ever, require that the test subject cleanly step onto the force plate. 
The GRF signature is exclusive to any given person, which makes 
it a valuable source of information for identification systems [10, 11].   

Traditional approaches to gait recognition are based on the 
manual extraction of characteristics from obtained GRF signals and 
the use of classical machine learning algorithms. Through the 

utilization of continuous wavelet transform and the SVM classifier, 
the authors of [12] were able to attain a high effectiveness of recog-
nition even with varying walking speeds or additional body loading. 
Based on GRF signals, Michałowska determined characteristics, 
separately for the left and the right leg, that were time-dependent 
(such as time of gait cycle) and force-dependent (including maxima 
of loading response phase for vertical component of GRF) [13]. In 
the work of [14], in turn, after the division of the GRF signal into 
individual components corresponding to human gait phases, utili-
zation of the Dynamic Time Warping (DTW) algorithm and the k-
nearest neighbours (kNN) classifier yielded over 97% correct 
recognition for a sample of 200 people.  

Recently, increasing popularity has been achieved by deep 
learning methods, including ones employing convolutional neural 
networks (CNNs) that, during learning, can automatically identify 
features from data expressed as a time series, eliminating the ne-
cessity of manual selection of traits that contribute to the greatest 
extent to the differentiation between classes. Moreover, the appli-
cation of CNNs often leads to superior classification performance 
compared with classical algorithms. One example of the use of 
CNNs is the work of [15], where a simple one-dimensional convo-
lutional network (1D-CNN) was proposed to classify GRF patterns 
to distinguish between healthy and impaired human gaits. The work 
of [16] also introduces a 1D-CNN, GaitRec-Net, which on a sample 
containing data concerning over 2,000 people had a task to auto-
matically differentiate between patients exhibiting impaired gait pat-
terns (such as people with hip, knee or foot injuries) and healthy 
individuals, was able to achieve 91.62% correct 
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classifications besting such classical machine learning meth-
ods as support vector machine (SVM), kNN and Naive Bayes.  

It is worth noting that deep learning networks do not always 
produce the best human recognition results. In the work of [10], it 
has been shown that, using GRFs data, the SVM classifier 
achieved 99.3% effectiveness in the identification of 671 people, 
while CNN reached 95.8%. In the paper of [17], in turn, it has been 
demonstrated that traditional algorithms like Scale-Invariant Fea-
ture Transform (SIFT) may attain better results than CNNs in situa-
tions where data is limited or in scenarios in which the network has 
not been trained using test classifications such as Open-World 
mode. It is necessary to point out, however, that such studies are 
rather the exception, and usually CNNs allow the realization of bet-
ter results.  

Literature concerning machine learning has repeatedly shown 
that ensemble learning allows the achievement of better classifica-
tion results than the utilization of a single classifier [18, 19, 20]. 
Studies in gait biometrics, including the author’s previous work, 
similarly indicate that assembling even simple classifiers into en-
sembles often yields substantial improvements in accuracy and ro-
bustness. Many previous studies employing ensemble of classifiers 
combine models of different types, but such a strategy increases 
design complexity and computational cost [21]. In contrast, homo-
geneous ensembles that generate diversity at the data level offer a 
simpler and more practical solution that preserves implementation 
uniformity while still benefiting from ensemble effects. The present 
work aims to address gaps in literature related to the subject of hu-
man gait recognition. Its main objective is to present of a method 
for recognizing individuals based on their manner of walking, using 
Ground Reaction Forces (GRFs) and a homogenous ensemble of 
base classifiers where each base classifier is a convolutional neural 
network. 

The main contributions of this work are specified below: 

− Empirical demonstration of the effectiveness of a homogene-
ous ensemble classifier composed of convolutional neural net-
works (CNNs) for human recognition based on ground reaction 
forces (GRFs). 

− Comprehensive testing and comparison of models trained on 
all relevant combinations of the six GRF components, leading 
to the identification of configurations that yield the highest 
recognition performance. 

− Evaluation of the impact of both the number and recognition 
accuracy of the base classifiers on the overall performance of 
the ensemble, providing insights into the optimal ensemble 
structure. 

− Validation of the proposed human recognition algorithm on a 
large dataset collected by the author, which represents one of 
the most extensive GRF-based databases described in the lit-
erature. 

2. MATERIAL AND METHODS 

Data: The present work utilized a set of data presented in [22]. 
It contains GRF components for both feet for 5,980 gait cycles gath-
ered from 322 people, including 139 women and 183 men. The 
measurements were made at the Institute of Biomedical Engineer-
ing of the Bialystok University of Technology. During the testing, the 
participants were asked to walk at their own pace through a testing 
path concealing two 60 cm x 40 cm Kistler force plates registering 
data with a frequency of 960 Hz. Movement was initiated at a signal 

from the person conducting the measurement. If the walker did not 
cleanly step on either platform, the transition was not recorded, and 
the starting point was slightly adjusted. Each person traversed the 
testing path several times wearing their own sports shoes. To avoid 
fatigue, a one to two-minute rest was observed after every ten trials. 
GRFs obtained by individual force plates included three compo-
nents: medial/lateral, anterior/posterior, and vertical (Figure 1).  
 

 
Fig. 1.  Components of GRF in: medial/lateral—FML; vertical—FV; ante-

rior/posterior—FAP direction of the left lower limb (blue line) and of 
the right one (red line) in sport shoes. The graph shows a dozen 
steps of a woman aged 21 years with a weight of 48.8kg and 
height of 164.6cm 

Registered GRFs were presented as time series x1, x2, …, xN, 
where N is the number of samples. Generally, the duration time of 
the support phase of a person’s gait depends on several factors 
and varies so N is variable. To facilitate the comparison of two dif-
fering gait cycles, the number of the longest gait cycle samples was 
established, with the remaining, shorter cycles filled in with 0. 
Thanks to that, a data set with an even number of samples with 
N=1,643 was attained. Subsequently, these data vectors were used 
in the study without normalizing the obtained GRFs. 

2.1. Base classifiers 

The principal part of any biometric system is the module that as-
signs the considered biometric signature to a particular person rep-
resented within the database. This designation is realized through 
the utilization of classifiers. As mentioned above, the present work 
employed an ensemble of classifiers that used CNNs as base clas-
sifiers. Each CNN possessed the same general architecture, pre-
sented in Figure 2 and Table 1. A certain 
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difference between the utilized CNNs was constituted in the num-
ber of channels (e.g. time series) representing components of 
GRFs fed into the CNNs' input. The character of data used, of 
course, caused the number of channels to fall within the range of 1 
÷ 6. The number of classes (Fig. 2 – person ID) corresponds to the 
number of individuals included in the dataset, that is, 322. 

 

Fig. 2. Architecture and signal processing of CNN base classifier 

Tab. 1. The summary of architecture of convolution neural network 

No 
of 

layer 

No. of  

Conv 
Block 

Type of 
layer 

Kernel 
size 

No of 
ker-
nels 

Output 
size 

1 - Input - - 1643 x 
channels 

2 
 

1 
Conv1D 5 64 1639 x 64 

4 Max Pooling 2 - 819 x 64 

5 
 

2 
Conv1D 3 128 817x128 

7 Max Pooling 2 - 408x128 

8 
 

3 
Conv1D 3 256 406x256 

10 Max Pooling 2 - 203x256 

11 
 

4 
Conv1D 3 512 201x512 

13 Max Pooling 2 - 100x512 

14 
 

5 
Conv1D 3 1024 98x1024 

15 Max Pooling 2  49x1024 

16 - Flatten - - 50 176 

17 - Fully-Con-
nected1 

- 1000 
neu-
rons 

1000 

18 - Fully-Con-
nected2 

- 700 
neu-
rons 

700 

19 - Output - 322 
neu-
rons 

322 

 
CNNs are well known for their effectiveness in applications con-
nected to the classification of images [23]. This work employs ar-
chitecture of a CNN to identify characteristics within time series de-
scribing GRFs. A CNN consists of several layers, and each one of 
those has a strictly defined task.   
  A one-dimensional convolutional layer (Conv1D) detects 
local patterns along a time series. The convolutional operation is 
defined as:  

(𝑓 ∗ 𝑔)[𝑛] = ∑ 𝑓[𝑛] ⋅ 𝑔[𝑛 − 𝑘]                           𝑘=∞
𝑘=−∞           (1) 

 
where: f represents the input time series and g is the convolutional 
filter or kernel.  

Every filter moves along the input sequence and „learns” to 
identify characteristic featuress such as edges or trend changes. 
The number of filters determines how many different patterns a 
layer can recognize simultaneously. The kernel size resolves the 
range of an individual filter. In subsequent layers, the number of 
filters grows, allowing the model to recognize more complex and 
abstract features.  
An activation function is applied after each convolution layer, most 
often (including the present work), it is a Rectified Linear Unit 
(ReLU) defined as: 

ReLU(x)=max (0, x)                                                       (2) 

where x is an activation of neuron. 
One-dimensional MaxPooling reduces sequence length by se-

lecting the greatest value within a window (in this paper, it is every 
two elements). It is a form of downsampling that reduces the size 
of data and the number of calculations in subsequent layers. At the 
same time, it enhances the most relevant signal traits because it 
retains the strongest activations. Pooling also adds a slight transla-
tional invariance, so minor signal shifts do not change the result 
significantly.  

Additionally, after every convolutional layer in CNN, Batch Nor-
malization (BN) is used. This equalizes output values from previous 
layers so that their average is zero while their variance is one. This 
stabilizes the learning process and allows for the use of larger 
learning coefficients. Thanks to that, the gradients are better dis-
tributed, preventing the vanishing or explosion of gradients in deep 
learning neural networks. During learning, the values of two other 
parameters, scale and shift, are added, allowing the restoration of 
the right range of values if it is beneficial. In practice, BN often ac-
celerates learning and improves precision.  

The flatten layer modifies multidimensional data ([sequence, fil-
ters]) to a one-dimensional vector. Thanks to this, convolutional lay-
ers can be joined with fully-connected (Dense) layers. In a fully-
connected layer, every neuron is connected to every neuron of the 
previous layer. It allows the model to learn the global relationships 
between all input characteristics. Dense layers are often utilized to 
connect and interpret complex representations extracted by previ-
ous convolutional layers. The activation function (ReLU) 
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determines how the neurons react to a signal. 
The last Dense layer with the softmax activation function cre-

ates a probability distribution over classes, and the number of neu-
rons in this layer is equal to the number of recognized people.   

The model was compiled using the well-known Adam optimizer 
and CNNs were trained using categorical cross-entropy as the loss 
function [24]. Accuracy was used as the primary evaluation metrics. 
Learning was mostly done with parameters with standard values, 
with the number of epochs set to 50 and the batch size set to 64. 
Additionally, during learning, in order to minimize the possibility of 
overfitting, a dropout equal to 0.1 has been utilized.  

2.2. Ensemble Decision Aggregation 

Within the presented solution the weighted vote with weight based 
on rank order technique for combining classifier decisions was uti-
lized. The author is aware of the existence of several other methods 
for the combining of base classifier decisions; however, a choice to 
use this relatively simple method which most likely will result in un-
derestimated results of classification has been made. 
 

 
Fig. 3. Flowchart of the proposed method  

In this case the weighted value connected to every label de-
pends on rank R, which has been determined based on the accu-
racy of all base classifiers. The final decision was the class label 
with the largest total of weights: 

𝑃𝑒𝑟𝑠𝑜𝑛_𝐼𝐷 = arg max (∑ 𝑤𝑗
𝑘
𝑗=1 · 𝑑𝑗,𝑖)                                  (3) 

where: Person_ID - class label; k - the number of base classifiers, 
dj,i - decision (class) of the j-th classifier, dj,i ∈ {0, 1}, if j-th classifier 
chooses class i then dj,i = 1 otherwise dj,i = 0, wj = [w1, …, wR, …, 
wk] - weights, which are calculated from the following formula: 

𝑤𝑅 =
𝑘+1−𝑅

𝑘
                           (4) 

where: R - indicates the rank for j-th classifier, R = {1, 2, …, k}. In 
the event of a draw, the class indicated by a greater number of base 
classifiers was chosen. A schematic of the entire process has been 
shown in Figure 3.  

Every base classifier was trained using 10-fold cross-validation. 
Each time the same division of data into folds was utilized thanks 
to which results obtained by different classifiers were comparable. 
The quality of every classifier was determined by its accuracy. This 
represents the proportion of true positive results (both true positive 
as well as true negative) in the selected population: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
∙ 100%           (5) 

where TP, TN, FP and FN denote: true positive, true negative, false 
positive and false negative. 

3. RESULTS AND DISCUSSION 

Accuracy of selected base classifiers has been presented in 
Table 2. The results indicate that the accuracy of human recogni-
tion for CNNs working based on 1 element of GRF oscillates be-
tween 85% to 94.3%. It can be noticed that signals recorded for the 
left leg (the first force plate) have greater accuracy. This difference 
may be a consequence of a slight variance in the type of the em-
ployed Kistler’s force plates, with the first force plate being a model 
9286AA and the second model 9286AA-A. Disappointing are the 
recognition results of the base classifier ID6, which worked using 
the vertical GRF component of the right leg, since it allowed the 
achievement of only 88.09% of correct identification. This result for 
the left leg is consistent with information presented earlier in the 
literature, where it has been ascertained that the vertical compo-
nent exhibits the greatest potential in differentiating between indi-
vidual people [10, 11]. The use of both force plates, analogous to 
the configuration applied for the left lower limb, should therefore 
provide higher human recognition accuracy than that presented in 
this study. 

Tab. 2.  Mean accuracy of person identification depending on the number 
of channels and types of signals used 

ID of base 
classifier 

Components of 
GRFs used for 

learning 

 

Accuracy ± SD[%] 

1 FL_ML 89,4314 ± 2.4037 

2 FL_AP 91,8562 ± 2.8214 

3 FL_V  94,3144 ± 1.5766 

4 FR_ML  85,0836 ± 2.7157 

5 FR_AP 90,0502 ± 1.9168 

6 FR_V  88,0936 ± 3.2901  

7 FL_ML, FR_ML  93,1271 ± 1.3641 

8 FL_AP, FR_AP  91,3712 ± 2.8435 

9 FL_V, FR_V  94,6488 ± 1.3025 

10 FL_AP, FL_V  95.4849 ± 2.0797 

11 FR_AP, FR_V  92.6756 ± 2.8579 

12 FL_ML, FL_AP, FL_V 96,2876 ±1.2359 

13 FR_ML, FR_AP, FR_V 94,2642 ±1.1316 

14 FL_ML, FL_AP, 
FR_ML, FR_AP 

95.5686 ±1.2014 

15 FL_AP, FL_V,  

FR_AP, FR_V 

96.2709 ±1.4558  

16 FL_ML, FL_AP,  

FR_AP, FR_V  

96.3378 ±1.2819 

17 All  96,5719 ± 1.1403 

Base classifiers that learned through the use of data containing 
time series describing two components of GRFs (ID of base classi-
fiers 7-11) most often attained higher recognition rates than CNNs 
working on one channel. The sole exception is the ID8 classifier, 
which, despite the fact that it worked utilizing the same signals as 
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classifiers ID2 and ID5, achieved only an accuracy of 91.3712% 
while the results of classifier ID2 reached a level of 91.8562% of 
correct recognitions. These kinds of exceptions are not seen in 
CNNs, which have a greater number of channels (from 3 to 6). It is 
also clear that as the number of channels grows, so does the accu-
racy of recognition, reaching 96.57% correct identification for a con-
volutional network employing all GRF elements. This signifies that 
when it comes to recognizing a person, full information of a phe-
nomenon provides greater possibilities for differentiating between 
particular people.  

Similar results have been presented in [10], where a linear clas-
sifier SVM achieved greater precision for signals representing GRF 
elements of both legs than for a single lower extremity. Additionally, 
Horst et. al presented classification values with the use of all GRF 
elements for both legs, which is the same as that for classifier ID17 
from Table 2. The CNN classifier achieved 95.8% of correct classi-
fications while the SVM classifier attained a precision on the level 
of 99.3%, greatly exceeding the results of that study.  

Comparing conclusions from Table 2 with the results of the 
study [19], where, among others, seven varying ensembles of char-
acteristics were analyzed, it can be seen that only one set of pa-
rameters allowed a base classifier to reach a better result (99.46%). 
As mentioned before, both studies work with the same data set. 

Tab. 3. Mean accuracy of person identification depending on the base  
classifiers used 

ID ID of base classifiers Accuracy ±SD [%] 

EC_1 1+2+3+4+5+6 98.7793 ± 0.4321 

EC_2 1+2+3+4+5+6+17 99.2140 ± 0.2736 

EC_3 7+8+9 97.8930 ± 0.8162 

EC_4 7+8+9+17 98.7625 ± 0.6217 

EC_5 1+2+3+4+5+6+7+8+9 99.1973 ± 0.3326 

EC_6 1+2+3+4+5+6+7+8+9+17 99.4147 ± 0.2398 

EC_7 7+8+9+10+11 98.8127 ± 0.5196 

EC_8 7+8+9+10+11+17 99.1639 ± 0.3053 

EC_9 12+13+17 98.4114 ± 0.6884 

EC_10 1+2+3+4+5+6+7+8+9+10+11 99.3645 ± 0.2708 

EC_11 1+2+3+4+5+6+7+8+9+10+11+17 99.4482 ± 0.2848 

EC_12 1+2+3+4+5+6+7+8+9+10+11+12+13 99.3478 ± 0.2423 

EC_13 1+2+3+4+5+6+7+8+9+10+11+12+13+17 99.4314 ± 0.2518 

EC_14 14+15+16 98.1940 ± 0.4303 

EC_15 14+15+16+17 98.7625 ± 0.3629 

EC_16 1+2+3+4+5+6+7+8+9+10+11+12+13+14+ 

15+16 

99.5317 ± 0.2238 

EC_17 All base classifiers 99.5652 ± 0.2257 

EC_18 2+3+5+7+8+9+10+11+12+13+14+15+ 

16+17 

99.4816 ± 0.2548 

EC_19 10+12+14+15+16+17 99.0635 ± 0.3797 

Table 3 presents the results of the work of the ensemble clas-
sifiers. In this event, the main premise was that this set of classifiers 
would consist of a minimum of 3 base classifiers, and the maximum 
number of classifiers would be 17. Additionally, it was assumed that 
one of the combinations tested would contain base classifiers 
whose accuracy reached over 90% (EC_18) or over 95% (EC_19). 
The analysis of results presented in Table 3 shows that the least 
accurate ensemble classifier correctly recognizes a much greater 

number of gait cycles than the best base classifier (97.893% vs 
96.5719%).  

Figure 4 shows the accuracy of the ensemble classifier depend-
ing on the base classifiers. When testing more than one combina-
tion of base classifiers whose the same number (e.g., EC_3 and 
EC_9), the average value is marked. This graph shows that accu-
racy increases with the number of base classifiers used. According 
to the conclusions of other authors [25], this rise is at first relatively 
large, but the addition of another base classifier only slightly im-
proves the quality of recognition. In situations where a base classi-
fier of a lower quality than those used thus far, it may even lead to 
a slight decrease in accuracy. This type of occurrence can be seen 
in the case of a classifier consisting of 10 base classifiers (EC_6) 
where the removal of the base classifier ID17 from the set and the 
addition of classifiers ID10 and ID11 instead(EC_10), despite the 
rise in the number of base classifiers, resulted in the reduction in 
classification quality from 99.4147% to 99.3645%. 

 
Fig. 4.  The average accuracy of the ensemble  classifier depends on the 

number of base classifiers 

It is also worth drawing attention to the fact that the quality of a 
set of classifiers depends on the quality of base classifiers. Thus, 
the utilization of the best base classifier (ID17) always improves the 
accuracy of classification, e.g. the accuracy of EC_1 is equal to 
98.7793% whereas the accuracy of EC_2 is 99.214%. The combi-
nation of these two factors is significant since the use of only the 
best base classifiers (EC_18 and EC_19) results in a lower quality 
of a classifier ensemble than EC_17 with their smaller number.  

The best classification result was achieved for an ensemble of 
classifiers that employed all base classifiers (EC_17). The attained 
accuracy (99.5652%) is one of the highest that has so far been pre-
sented in literature. A better result has only been produced in a 
study [19] where recognition of people on the basis of GRF signals 
generated during walking was correct with respect to 99.65% of 
strides. It must be highlighted that this greater accuracy [19] was 
reached through the use of an ensemble of heterogeneous classi-
fiers, while the result utilizing an ensemble of homogeneous classi-
fiers was a bit lower than the one from the present study (99.55%). 

4.  CONCLUSION 

The paper presents the working of a biometric system for the 
recognition of a person on the basis of GRFs recorded during walk-
ing. The realization of this task was achieved through the use of an 
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ensemble of homogeneous base classifiers, being convolutional 
neural networks. Generally, the attained results for the recognition 
of people are very good and confirm the considerable possibilities 
for the application of gait as a biometric. The analysis of the out-
comes confirmed that the quality of the ensemble of classifiers im-
proves along with increase in the number of base classifiers, as well 
as with greater accuracy of recognition of individual base classifi-
ers. The utilization, in turn, of the optimal set of features allows for 
the achievement of better classification results than with respect to 
the employment of CNNs, where the selection of significant attrib-
utes occurs during learning.  

Further work in this area can be carried out in three directions. 
First, other algorithms based on deep learning for the constructing 
of base classifiers should be tested, and their impact on the result 
should be evaluated. Second, the robustness of the ensemble of 
classifiers to changes in the patterns of movement of people sub-
jected to the procedure of recognition, caused, for example, by var-
ying types of footwear or asymmetrical loading, should be scruti-
nized. Third, the resilience of such a system to deliberate attempts 
at impersonation should be investigated. 
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