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Abstract: This paper introduces a switchable, dual-antenna Wi-Fi tracker that is based on an ESP32-ROOM-DA chip and a BNO085 IMU. 
The tracker is intended to estimate object orientation in confined spaces by utilizing fingerprinting techniques and differences in RSSI values. 
The research aimed to provide an alternative that does not necessitate magnetometer calibration or intricate antenna arrays, thereby  
eliminating the constraints associated with expensive AoA systems and magnetometers that are susceptible to interference. Experiments 
were conducted in a 5 x 5 m test area of a sports hall, with seven randomly distributed access points (APs) within the sports hall. Five APs 
were in the LOS (line of sight) zone, and two others, which were available in the building, were in the NLOS (non-line-of-sight) zone.  
The measurements were performed by a DJI Robomaster S1 robot, which was equipped with the tracker. Training data were collected  
at 100 points; 14 randomly selected locations were used for testing, with eight distinct orientations for every measurement point. During  
the measurement, the RSSI from both antennas of individual APs, as well as their SSIDs, was recorded. Additionally, the IMU quaternions 
were mapped to the cardinal directions (N, W, S, E). Four classifiers were trained using the features gathered: k-NN, SVM, Random Forest, 
and MLP. The k-NN classifier achieved the best performance (MCC 0.23, F1 score 0.39). The dual-antenna system can distinguish  
the cardinal directions, as evidenced by the results. However, it is imperative to balance the training dataset and collect a greater number  
of samples to reduce the effect of multipath and NLOS conditions. With more research, it is possible to use an expanded multi-antenna 
system and the newest Wi-Fi standards. Furthermore, modifications to the measurement process are planned to guarantee a balanced 
training set. 
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1. INTRODUCTION 

Indoor location is a fundamental element of modern systems 
for intelligent buildings and enterprises, robotics, and the Internet 
of Things (IoT). There is a significant amount of interest in this sub-
ject, as evidenced by the number of publications that have been 
published in recent years [1,2]. 

Satellite navigation systems, including GPS, GLONASS, Gali-
leo, and BeiDou, do not apply to indoor location, despite their high 
accuracy in open spaces. This is primarily an effect of the limited 
propagation of radio signals through building structures, which ef-
fectively prevents location or significantly reduces its accuracy [3]. 

Due to their ubiquity, relatively low implementation costs, and 
the ability to adapt existing infrastructure, radio technologies are 
very popular in indoor environments. Examples of such technolo-
gies include Bluetooth, Wi-Fi, RFID, and UWB (Ultra-Wide Band) 
[3–7]. Although the accuracy of such solutions is still limited, con-
tinuous research and standards development are being conducted 
to make the solutions more usable. 

The majority of indoor location systems focus on determining 
the position of an object in two- or three-dimensional space. Fre-
quently, the orientation (angular position) of the object relative to a 
fixed reference frame is crucial information in addition to its posi-
tion. This enables the determination of the object's pose in a 6-de-
gree-of-freedom space. This is important in the context of industrial 

asset management systems, indoor navigation systems, and au-
tonomous robots [8]. 

Commonly, magnetometers are used as compasses to find the 
orientation of an object. This facilitates the determination of the ob-
ject's orientation in relation to the magnetic poles of the Earth. 
There are a lot of sources of soft iron and hard iron interference in 
the industrial environment, so this solution might not work there 
[9,10]. Additionally, these solutions necessitate periodic calibration 
[10]. 

 

 
Fig. 1. Graphical representation of the angle of arrival 

The Angle of Arrival (AoA) technique is one of the radio tech-
niques used to determine orientation.  It is a component of the Blue-
tooth standard called Direction Finding [11]. This solution is based 
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on the utilization of antenna arrays and the measurement of the 
phase difference of the received signal between individual anten-
nas of the array, the distance between which is already known (Fig-
ure 1). This solution is susceptible to multipath phenomena, has a 
high technological cost, and is subject to limitations in accuracy un-
der NLOS (Non-Line of Sight) conditions [12]. An alternative ap-
proach is the utilization of optical detectors, which enable the sim-
ultaneous precise positioning at 6.55 cm and orientation with an 
accuracy of 0.51° [13]. However, this solution necessitates a spe-
cialized infrastructure and is restricted to operation in Line of Sight 
(LOS) conditions. In addition, the literature provides angle of arrival 
estimations that are derived from RSSI (Received Signal Strength 
Indicator) measurements and a rotating antenna system. Finding 
signal minima in the spatial characteristics of the antennas is the 
foundation of the estimation process. The results showed that the 
mean absolute error was 4° when the test was done outside and 
6° when it was done inside a building [14]. This solution necessi-
tates a distinct mechanical structure and employs numerous radio 
receivers that must communicate with one another to process data 
from each one. 

This article discusses the proposed solution, which is a switch-
able dual-antenna system that estimates orientation using machine 
learning fingerprinting techniques and RSSI value differences. 

Cardinal directions (north, south, east, and west) were classi-
fied based on compass readings. The classification process em-
ployed the k-NN (k-Nearest Neighbors), SVM (Support Vector Ma-
chines), Random Forest (RNF), and Multi-Layer Perceptron (MLP) 
models. Sensitivity, precision, F1-score, and Matthews Correlation 
Coefficient (MCC) were determined to evaluate the quality of the 
models. 

In contrast to a multi-receiver system, the device design is sim-
plified by the use of a switchable dual-antenna system. In compar-
ison to a single-antenna system, it is feasible to acquire additional 
information by exploiting the anisotropy of the antennas' directional 
characteristics. This translates to the capacity to ascertain the di-
rection, analogous to the AoA method [14,15]. 

The subsequent sections of the article are structured as follows: 
Section 2 discusses the technical aspects of the approach and the 
methodology required to comprehend the work. Section 3 de-
scribes the process of evaluating the quality of the developed meth-
ods and their underlying principles. In Section 4, the results and an 
analysis of them for each model are shown. The conclusions are 
presented in Section 5. 

2. PROPOSED METHOD 

2.1. Site selection 

The experiment was conducted in the sports hall of the Bialystok 
University of Technology. Access points (APs) were randomly 
placed within the hall as shown in Figure 2. A total of seven access 
points were set up, two of which were located in the NLOS area. 
Four access points in the LOS zone were placed at a height of 
2.5 m, one at height of the 0.7 m (on the table). Access points in-
stalled in the building were also used. 

A picture of the experiment can be found in Figure 3. It illus-
trates the APs located in the LOS zone, the control station from 
which the entire experiment was managed, and the robot on which 
the tracker was mounted. One of the APs in the NLOS zone is de-
picted in Figure 4. 

 
Fig. 2. Equipment layout in the building 

 
Fig. 3. Equipment layout in 3D view 

 
Fig. 4. Wi-Fi router placed in the NLOS zone 

2.2. Hardware configuration 

RSSI measurements were conducted with a proprietary tracker 
(Figure 5). It contained an ESP32-WROOM-DA chip that enabled 
Wi-Fi and Bluetooth connectivity [16]. As illustrated in Figure 6, this 
chip features an antenna array that comprises two antennas that 
can alternately function through an integrated RF (Radio Fre-
quency) switch. The antennas are positioned at a 90-degree angle 
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relative to each other. The device was also equipped with a 
BNO085 inertial measurement unit (IMU) with a 3-axis accelerom-
eter, gyroscope, and magnetometer [17]. Furthermore, the chip 
was equipped with LEDs to indicate the operating status and a mi-
cro SD card slot, which enabled the storage of measurements on 
a memory card. 

 
Fig. 5. The tracker with the IMU orientation marked 

 
Fig. 6. The internal structure of the ESP32-WROOM-DA system [16] 

 
Fig. 7. ESP32 units used as APs 

The access points (APs) used were ESP32 devices and two 
TP-Link Wi-Fi routers. The ESP32 devices are shown in Figure 7. 
They were mounted on tripods. The test devices operated under 
the IEEE 802.11 b/g/n Wi-Fi standards. 

A DJI Robomaster S1 mobile robot was used for the tests (Fig-
ure 8). A tracker was placed on the robot. This allowed for the au-
tomation of the measurement process and the most faithful repre-
sentation of the system's actual operating conditions. The robot's 
dimensions are 320 x 240 x 270 mm [18]. 

 
Fig. 8. Robomaster S1 robot with tracker mounted 

2.3. Measurements and data   

The data was collected in two sets by taking the measurements 
twice. To obtain training data, one set of data was gathered, and to 
obtain test data, another. The measurements were performed un-
der static conditions – the robot did not move during the measure-
ments. 

The following data was collected during the measurements and 
subsequently utilized to train the models: 

− a quaternion that shows the orientation in relation to the four 
cardinal directions from the BNO085 sensor, 

− the RSSI values for individual access points from each an-
tenna, as well as the SSID (Service Set Identifier) and the an-
tenna designation from which the measurement was collected.  

This data was saved in .csv format. 

 
Fig. 9. The measurement route of the training set with marked measure-

ment locations 

The training set was measured using a grid of 0.5 m spacing in 
a square measuring approximately 5 x 5 m (Figure 9). A total of 
100 points were measured. Each point was measured eight times. 
Each measurement was performed with the robot in a different ori-
entation, i.e., rotating approximately 45° around the Z axis. This 
resulted in approximately 10,000 unique raw data records. Test 
data was acquired by taking measurements at 14 randomly distrib-
uted locations within the test area (Figure 2). Eight measurements 
were taken at each location, with the mobile robot rotating between 
each. 
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Tab. 1. Quaternion mappings [17] 

BNO08X physical axis aligned Mapping quaternion 

X Y Z Qw Qx Qy Qz 

East North Up 1 0 0 0 

North West Up (√2)/2 0 0 (√2)/2 

West South Up 0 0 0 1 

South East Up (√2)/2 0 0 -(√2)/2 

 
According to Table 1 from the IMU manufacturer's documenta-

tion, the orientation expressed as a quaternion was mapped to the 
cardinal directions. These directions served as classification clas-
ses. 

The data was preprocessed to remove erroneous measure-
ments, particularly those with incorrect SSID encoding, which fre-
quently occurred when the RSSI was less than -80 dBm. Outliers 
(measurements with extremely inaccurate RRSI values) were also 
removed. Measurements with the RSSI of 0 dBm were partially re-
moved, suggesting that the antenna was unable to find the access 
point during that measurement. 

After removing the majority of erroneous records from the da-
tasets, they were grouped. The process of grouping involved com-
bining measurements from the same pose into a single record, 
which reduced data about RSSI values from various APs to a sin-
gle record. Both data processing stages resulted in a reduction of 
the training set to 736 records and the test set to 111 records. This 
corresponded to the number of poses in which measurements 
were taken (800 for the training set and 112 for the test set), ex-
cluding erroneous measurements. 

Subsequently, the datasets were substantially expanded to in-
corporate variations in RSSI values between antennas and individ-
ual APs. Furthermore, the sets were supplemented with infor-
mation regarding their position in relation to magnetic directions 
was also added. This information was used for classification. Four 
orientation classes were obtained as a result of the quaternion 
mapping process, as outlined in Table 1. 

Tab. 2. Number of classes in the training set and their percentage share 
in the set 

West East North South 

256 199 184 97 

34,8% 27,0% 25,0% 13,2% 

 
The distribution of class sizes in the training set is presented in 

Table 2. The unbalanced nature of the analyzed set is a critical 
factor in the assessment of model quality [19]. 

Tab. 3. Number of classes in the test set and their percentage share in the 
set 

West East North South 

39 28 29 15 

35,1% 25,2% 26,1% 13,5% 

The distribution of class frequencies in the test set is presented 
in Table 3. The percentages are about the same as they were in 
the training set. 

Despite the standardized data collection process, discrepan-
cies in class size may be attributable, among other factors, to the 
mobile robot's wheel slippage on the surface it was traversing. This 
contributed to the discrepancy between the specified rotation and 
the actual change in orientation. 

The data were normalized before the training process. 

3. MODEL EVALUATION 

The classification models were characterized by metrics in or-
der to assess the results obtained using the developed models. 
Metrics such as precision, sensitivity, and F1 score were calcu-
lated. The analyzed problem is multi-class, and in addition to met-
rics for individual classes, micro- and macro-averages were also 
calculated [19–22].  

The precision of a given class C is expressed by formula (1), it 
defines the ratio of correctly classified TP observations to all ob-
servations classified as class C, both correctly and incorrectly [20]. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐶 =
𝑇𝑃𝐶

𝑇𝑃𝐶+𝐹𝑃𝐶
                                                              (1) 

where: 𝑇𝑃𝐶 – number of observations correctly classified into 

class C, 𝐹𝑃𝐶  – number of observations incorrectly classified as 
class C.  

The micro-average precision expressed by equation (2) is the 
ratio of the sum of all (in each class) observations correctly classi-
fied to the sum of all (in each class) observations classified to a 
given class [20]. Since the sums refer to all classes, ultimately, it is 
the ratio of all values correctly classified to all classifications. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑚𝑖𝑐𝑟𝑜 =

∑ 𝑇𝑃𝑘
𝐾
𝑘=1

∑ (𝑇𝑃𝑘+𝐹𝑃𝑘)𝐾
𝑘=1

=
∑ 𝑇𝑃𝑘

𝐾
𝑘=1

𝐺𝑟𝑎𝑛𝑑 𝑇𝑜𝑡𝑎𝑙
                       (2) 

The macro-average precision expressed by the relation (3) is 
the average of the precision of individual classes [20]. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑚𝑎𝑐𝑟𝑜 =

1

𝐾
∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑘

𝐾
𝑘=1                                    (3) 

The sensitivity of class C described by equation (4) defines the 
ratio of correct classifications to the sum of all classifications clas-
sified into class C [20]. It measures what fraction of true positive 
TP observations was detected. 

𝑅𝑒𝑐𝑎𝑙𝑙𝐶 =
𝑇𝑃𝐶

𝑇𝑃𝐶+𝐹𝑁𝐶
                                                                     (4) 

where:   𝑇𝑃𝐶 – number of observations correctly classified into 

class C, 𝐹𝑁𝐶  – number of observations belonging to class C but 
classified incorrectly. 

Analogously to micro-average precision, micro-average sensi-
tivity is expressed as the ratio of the sum of all (in each class) ob-
servations correctly classified to the sum of all (in each class) clas-
sifications classified into a given class. Therefore, the value of mi-
cro-average sensitivity and precision are given the same value (5) 
[20]. 

𝑅𝑒𝑐𝑎𝑙𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑚𝑖𝑐𝑟𝑜 = 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑚𝑖𝑐𝑟𝑜                                                (5) 

The macro-average sensitivity expressed by equation (6) is the av-
erage sensitivity of each class [20]. 

𝑅𝑒𝑐𝑎𝑙𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑚𝑎𝑐𝑟𝑜 =

1

𝐾
∑ 𝑅𝑒𝑐𝑎𝑙𝑙𝑘

𝐾
𝑘=1                                                   (6) 

The F1 score (7) is a metric that represents the harmonic mean 
of precision and sensitivity [20]. It can therefore be expressed for 
each class, as well as for the micro- and macro-average. This met-
ric provides a compromise between precision and sensitivity, es-
pecially in cases where both metrics have extreme values. To ob-
tain a high score, both metrics must be high. The F1 score ranges 
from 0 to 1, where 0 indicates poor model performance and 1 indi-
cates an ideal model. 
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𝐹1 =
2

1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
+

1

𝑅𝑒𝑐𝑎𝑙𝑙

                                                                      (7) 

 Because precision, sensitivity, and F1 scores are not unique to 
unbalanced sets, do not account for true negatives (TN), and are 
calculated for individual classes, the Matthews correlation coeffi-
cient (MCC) expressed by equation (8) [20,21,23] will also be cal-
culated. This coefficient takes into account the TP, TN, FP, and FN 
scores, and does not favor a dominant class, which translates into 
robustness to an unbalanced dataset. This coefficient always has 
a maximum value of 1, while the minimum value depends on the 
number and distribution of classes – this means that the minimum 
value will range from -1 to 0. 

𝑀𝐶𝐶 =  
𝑐∙𝑠−∑ 𝑝𝑘∙𝑡𝑘

𝐾
𝑘

√(𝑠2−∑ 𝑝𝑘
2𝐾

𝑘 )∙(𝑠2−∑ 𝑡𝑘
2𝐾

𝑘 )

                                                   (8) 

where: 𝑐 – total number of samples correctly classified, 𝑠 – total 
number of classifications, 𝑝𝑘 – number of times class k has been 
predicted, 𝑡𝑘 – number of times class k actually occurred. 

4. RESULTS 

Four classification algorithms were used to process the col-
lected data: k-NN, SVM (SVC - Support Vector Classifier), Random 
Forest, and MLP neural network. Each model was trained using 
training data collected offline. For each model, it was necessary to 
select model hyperparameters. The hyperparameters were se-
lected using a grid search method, which involves examining all 
combinations according to a predefined list of parameter variants 
[24]. The models were implemented in Python using the scikit-learn 
package.  

In the case of the SVM and Random Forest classifiers, due to 
their sensitivity to unbalanced training data sets, a weight correction 
was applied, expressed by equation (9) [25,26]. 

𝐶𝑙𝑎𝑠𝑠𝑤𝑒𝑖𝑔ℎ𝑡 =
𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑛𝑢𝑚

𝑐𝑙𝑎𝑠𝑠𝑐𝑜𝑢𝑛𝑡∙𝑐𝑙𝑎𝑠𝑠𝑓𝑟𝑒𝑞
                                             (9) 

where: 𝐶𝑙𝑎𝑠𝑠𝑤𝑒𝑖𝑔ℎ𝑡 – class weight, 𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑛𝑢𝑚 – the number 

of all class elements, 𝑐𝑙𝑎𝑠𝑠𝑐𝑜𝑢𝑛𝑡 – number of all classes, 
𝑐𝑙𝑎𝑠𝑠𝑓𝑟𝑒𝑞- class frequency. 

This correction is inversely proportional to the frequency of occur-
rence of a given class in the training data set [27,28]. 

4.1. k-NN 

The following hyperparameters were selected for the k-NN 
model [29]: 

− weights = 'uniform' – weight function used during prediction, all 
points are treated equally, 

− neighbors = 15 – number of neighbors taken into account, 

− algorithm = ‘auto’ – automatic selection of the algorithm for 
searching for nearest neighbors. 

Tab. 4. Metrics of individual classes for the k-NN model  

Class Recall Precision F1 

‘East’ 0.46 0.41 0.43 

‘North’ 0.34 0.43 0.38 

‘South’ 0.13 0.33 0.19 

‘West’ 0.64 0.50 0.56 

 

Table 4 presents the precision, sensitivity, and F1 score for 
each k-NN class. The best-detected direction was west, containing 
39 samples, representing 35.1% of the test set. It achieved the 
highest sensitivity of 0.64, meaning that 64% of the true west ori-
entations were correctly identified. A precision of 50% means that 
half of the cases were false positives. The F1 score indicates that 
the relationship between sensitivity and precision is balanced. 

The south class achieved the worst result, achieving a sensitiv-
ity of 13%. This class contained 15 samples, representing 13.5% 
of the test set. Precision, on the other hand, was 33%. 

The north and east directions achieved moderate performance, 
with the east direction achieving slightly better results. 

Tab. 5. Metrics for the k-NN model  

Precision 

macro 

Recall 

macro 

F1  

macro 
Micro score MCC 

0.42 0.40 0.39 0.45 0.23 

 
Table 5 presents the global metrics of the classifier. All macro-

averages and micro-averages indicate moderate classifier perfor-
mance. The classifier achieved an accuracy (micro score) of 0.45. 
The MCC coefficient reached a value of 0.23, indicating poor clas-
sifier performance. 

 
Fig. 10. Confusion matrix for the k-NN model 

The confusion matrix presented in Figure 10 shows that all di-
rections are most frequently confused with west. East and north 
were each classified as west nine times, while south was classified 
as west seven times. An asymmetry in errors between south and 
west is visible. South was classified as west seven times, while 
west was never classified as south. 

4.2. SVM 

Class corrections were applied to the SVM (SVC) model as 
described in section 4. The selected hyperparameters were [27]: 

− Kernel = ‘poly’ – type of kernel used for calculations, 

− Regularization = 10 – the value of parameter C affecting the 
objective function, it limits overfitting, 

− Gamma = 1 – kernel function factor, 

− Degree = 4 – degree of the polynomial of the ‘poly’ kernel. 
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Tab. 6. Metrics of individual classes for the SVC model  

Class Recall Precision F1 

‘East’ 0.46 0.42 0.44 

‘North’ 0.31 0.38 0.34  

‘South’ 0.27 0.22 0.24 

‘West’ 0.44 0.45 0.44 

 

Table 6 presents the metric results for the SVC model. The 
classifier best classified the west and east directions. Both classes 
achieved the F1 score of 0.44. The east direction achieved a sen-
sitivity of 0.46, meaning that 46% of actual cases for this orientation 
were correctly classified. For the west direction, this was 44%. Pre-
cision was also similar in both cases, reaching 0.42 for the east 
direction and 0.45 for the west direction, respectively. This means 
that in over 50% of cases, these directions were incorrectly classi-
fied. The south direction achieved the worst performance. Sensi-
tivity was 0.27 and precision 0.22. For the north direction, sensitiv-
ity was 0.31 and precision 0.38. 

Tab. 7. Metrics for the SVC model  

Precision 
macro 

Recall 
macro 

F1  
macro 

Micro score MCC 

0.37 0.37 0.37 0.39 0.16 

Table 7 presents the global metrics of the classifier. All macro-
averages and micro-averages indicate moderate performance of 
the classifier. The classifier achieved an accuracy of 0.39. Despite 
the moderate metric values, the MCC coefficient reaches a value 
of 0.16, indicating poor performance of the classifier. 

 
Fig. 11. Confusion matrix for the SVM model  

Analyzing the confusion matrix in Figure 11 demonstrates that 
the east and south directions were most frequently misclassified as 
west. In the north direction, the errors were evenly distributed 
among the classes. The direction of the west was most frequently 
misclassified as north. 

4.3. Random Forest 

Similarly to the SVM model, weight correction was applied. 
The model parameters were determined as follows [28]: 

− max_depth = None – maximum tree depth, none means no 

limit, 

− min_samples_leaf = 4 – minimum required number of samples 
to constitute a leaf node,  

− min_samples_split = 10 – minimum number of samples re-
quired to split an internal node,  

− n_estimators = 50 – number of trees in the forest. 
Due to the operation of the algorithm, in order to achieve determin-
istic behavior of the model, the seed in a random number generator 
was also selected and was set to 3013327208. 

Tab. 8. Class metrics for Random Forest Classifier 

Class Recall Precision F1 

‘East’ 0.50 0.37 0.42 

‘North’ 0.24 0.39 0.30 

‘South’ 0.00 0.00 0.00 

‘West’ 0.62 0.47 0.53 

 

Table 8 presents the metrics for the Random Forest model. The 
west direction had the best sensitivity of 0.62. This means that 62% 
of actual cases of this orientation were correctly classified. More 
than 50% of cases classified as west were incorrect, with precision 
of 0.47. The east direction is distinguished by a precision of 0.37 
and a sensitivity of 0.50, resulting in the F1 score of 0.42. This indi-
cates moderate performance for this class. Sensitivity was inferior 
to precision in the north class. The south class received zero re-
sults, indicating that it was never properly identified. 

Tab. 9. Class metrics for Random Forest Classifier 

Precision 
macro 

Recall 
macro 

F1  
macro 

Micro score MCC 

0.31 0.34 0.31 0.41 0.16 

The global metrics presented in Table 9 show moderate clas-
sifier performance. The low MCC value of 0.16 indicates poor clas-
sifier performance. 

 
Fig. 12. Confusion matrix for the Random Forest model 

The confusion matrix (Figure 12) indicates that the most fre-
quently confused directions were west and east. South was not 
correctly classified even once. There is a visible asymmetry in er-
rors between the south and other classes. South was classified as 
east 7 times, east as south 0 times, south was classified as west 7 
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times, and west as south 2 times. 

 
Fig. 12. Confusion matrix for the Random Forest model 

4.4. MLP Classifier 

The hyperparameters of the MLP classifier were determined 
as follows [30]: 

− solver = 'adam' – optimizer, 

− activation = 'relu' – activation function, 

− hidden_layers_size = (150, 75) – structure of the neural net-
work,  

− max_iter = 50000 – maximum number of epochs. 
Again, due to the operation of the algorithm, in order to achieve 
deterministic behavior of the model, the seed in a random number 
generator was also selected and was set to 496680515.  

Tab. 10. Class metrics for MLP Classifier 

Class Recall Precision F1 

‘East’ 0.54 0.39 0.45 

‘North’ 0.34 0.40 0.37 

‘South’ 0.13 0.20 0.16 

‘West’ 0.46 0.47 0.47 

 
Table 10 demonstrates the MLP classifier metrics. The highest 

sensitivity was achieved for the east direction, at 0.54. This means 
that 54% of actual cases for this orientation were correctly classi-
fied. The precision for the east direction was 0.38, resulting in a 
combined F1 score of 0.45. The west direction achieved a sensitivity 
of 0.46 and a precision of 0.47, resulting in the F1 score of 0.47, 
thus better than the east direction. The south direction achieved the 
worst metrics, with a sensitivity of 13%, a precision of 0.20, and the 
F1 score of 0.16. The north direction had a sensitivity of 0.34, a 
precision of 0.40, and a combined F1 score of 0.37. 

Tab. 11. Class metrics for MLP Classifier 

Precision 

macro 

Recall 

macro 

F1  

macro 
Micro score MCC 

0.37 0.37 0.36 0.41 0.18 

The overall model metrics are presented in Table 11. The 
macro-average sensitivity and precision were 0.37, and the F1 
score was 0.36. These results indicate moderate classifier perfor-

mance. A low MCC value indicates overall poor classifier perfor-
mance. 

 
Fig. 13. Confusion matrix for the MLP Classifier model 

The confusion matrix of the MLP classifier shown in Figure 13 
indicates that the most frequently confused directions were east 
and west. The south direction was correctly classified in two cases, 
most often as east. The north direction was classified eight times 
each as west and east. 

4.5. Results discussion  

The k-NN model achieved the highest values for all metrics. 
The MLP and SVM models performed similarly, with the MLP clas-
sifier marginally better in terms of micro-averages and the MCC 
coefficient. The SVM classifier's metrics are balanced. Although 
the Random Forest classifier generally performs worse than the 
other classifiers, its micro-score is comparable to that of the MLP 
neural network due to its high sensitivity to the west direction. This 
model's metrics are underestimated due to the classifier's zero per-
formance in the south direction. 

The east, north, and south directions are classified as west by 
all models, which is consistent with the predominant position of this 
class in the training dataset, as illustrated in Table 2. Subsequently, 
each classifier achieved the most favorable metrics in the west di-
rection. SVC is an exception, achieving the F1 score of 0.44 in both 
the east and west directions. 

The west direction is evidently favored by the k-NN and Ran-
dom Forest classifiers. This corresponds to a good F1 score of 0.56 
for k-NN and 0.53 for Random Forest. 

The asymmetries in the error distributions are most noticeable 
in the south direction. Among other factors, this is attributable to 
the imbalance of the training set and the limited number of samples 
from this direction in the test set (13.5% of the set size). 
The poor performance of the classifiers in relation to the South 
class is due to the imbalance of the training set, even though the 
imbalance is compensated by weight correction in the case of the 
SVM and Random Forest classifiers. 

5. FURTHER RESEARCH 

Further research is planned to enhance the quality of estimation 
by expanding the switchable multi-antenna system. The imple-
mented dual-antenna switched array is characterized by simple de-
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sign, low cost, and easy scalability. Increasing the number of an-
tennas enables greater exploitation of spatial diversity through in-
formation multiplication, while avoiding unnecessary system com-
plexity or cost increases in implementation. 

To fully utilize the benefits resulting from the switchable multi-
antenna array, work will also be conducted on increasing the sam-
pling frequency of signal measurements. Furthermore, increased 
sampling will enable effective estimation of the orientation of a 
moving object. This is intended to be achieved through the use of 
newer Wi-Fi standards and a redesign of the measurement infra-
structure. Preliminary simulation studies have shown that sampling 
of 15 samples per location allows for a reduction of MAE value by 
more than a factor of 3 [31]. 

Tab. 12.  Sample results of localization based on dual antenna RSSI 
readouts 

Classifier MAE [m] RMSE [m] Stdev [m] 

k-NN 1.53 1.90 1.30 

MLP Classifier 1.46 1.82 1.06 

Random Forest 1.63 1.94 1.35 

SVM Classifier 1.54 1.90 1.25 

Tab. 13.  Sample results of localization based on single antenna RSSI 
readouts 

Classifier MAE [m] RMSE [m] Stdev [m] 

k-NN 1.61 2.00 1.38 

MLP Classifier 1.64 1.99 1.10 

Random Forest 1.65 1.97 1.47 

SVM Classifier 1.55 1.98 1.43 

 
The results presented in Table 12 show exemplary results of 

location estimation based on RSSI measurements using selected 
classifiers. For each classifier, mean absolute errors (MAE), root 
mean square errors (RMSE), and standard deviations (Stdev) were 
calculated. Analysis of the results shows that it is possible to 
achieve MAE at the level of even 1.46 m, RMSE of 1.82 m and 
Stdev of 1.06 m when using an MLP network. This means that lo-
cation estimation with moderate accuracy is possible, which can be 
applied in sector-based localization. The values presented in the 
table are slightly higher than similar studies performed in publica-
tions [32] (MAE ≈ 0.50 m, RMSE ≈ 0.76 m) and [33] (RMSE ≈ 
0.247 m). In well-controlled indoor environments (good anchor ge-
ometry, minimal multipath/obstruction) error on the order of 0.2 – 1 
m is possible. In more realistic or cluttered indoor environments, 
errors of a few metres (2–4 m) are common. 

The results presented in Table 13 show the outcomes obtained 
for estimation with the use of a single antenna. It is evident that the 
application of data from both antennas results in improved results 
in all considered cases. For the MLP Classifier, a MAE difference 
of 0.18 m, RMS of 0.17 m, and a Stdev reduction of 0.04 m were 
obtained. 

Further work anticipates a comprehensive estimation of both 
orientation and location of the tracked object based on received 
signal strength measurements. 

6. CONCLUSIONS 

The outcomes of experimental research on a mobile robot’s ori-
entation estimation are presented in this article. The objective of 

the investigation was to evaluate the feasibility of determining ori-
entation in relation to the cardinal directions (N, W, S, E) by ana-
lyzing the difference in RSSI values in a dual-antenna tracker that 
employs the Wi-Fi standard and machine learning fingerprinting 
techniques. 

The results of the studies that have been presented indicate 
that it is feasible to determine orientation and location with moder-
ate precision. The results obtained are significantly influenced by 
the imbalance of the training set, which results in differentiating the 
performance of the model among individual classes. The quality of 
the developed models can be enhanced by giving training data col-
lection extra attention to guarantee that the final set is as balanced 
as possible.  

Simulation studies [31] have shown that the performance of 
classifiers can be enhanced by increasing the number of signal 
samples measured at a specific location. However, this is con-
strained by the speed of RSSI measurement and the number of 
hardware resources available. Furthermore, this approach has the 
potential to mitigate the effects of interfering phenomena.  

Further research is planned to enhance the quality of estimation 
and facilitate dynamic object tracking by expanding the switchable 
multi-antenna system and implementing the most recent Wi-Fi 
standards. The use of a multi-antenna switchable array allows 
maintaining low implementation cost and maximizing the benefits 
of antenna spatial diversity – more antennas enable obtaining more 
data correlated with orientation and location. 
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