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Abstract: This paper introduces a switchable, dual-antenna Wi-Fi tracker that is based on an ESP32-ROOM-DA chip and a BNO085 IMU.
The tracker is intended to estimate object orientation in confined spaces by utilizing fingerprinting techniques and differences in RSSI values.
The research aimed to provide an alternative that does not necessitate magnetometer calibration or intricate antenna arrays, thereby
eliminating the constraints associated with expensive AoA systems and magnetometers that are susceptible to interference. Experiments
were conducted in a 5 x 5 m test area of a sports hall, with seven randomly distributed access points (APs) within the sports hall. Five APs
were in the LOS (line of sight) zone, and two others, which were available in the building, were in the NLOS (non-line-of-sight) zone.
The measurements were performed by a DJI Robomaster S1 robot, which was equipped with the tracker. Training data were collected
at 100 points; 14 randomly selected locations were used for testing, with eight distinct orientations for every measurement point. During
the measurement, the RSSI from both antennas of individual APs, as well as their SSIDs, was recorded. Additionally, the IMU quaternions
were mapped to the cardinal directions (N, W, S, E). Four classifiers were trained using the features gathered: k-NN, SVM, Random Forest,
and MLP. The k-NN classifier achieved the best performance (MCC 0.23, F1 score 0.39). The dual-antenna system can distinguish
the cardinal directions, as evidenced by the results. However, it is imperative to balance the training dataset and collect a greater number
of samples to reduce the effect of multipath and NLOS conditions. With more research, it is possible to use an expanded multi-antenna
system and the newest Wi-Fi standards. Furthermore, modifications to the measurement process are planned to guarantee a balanced

training set.
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1. INTRODUCTION

Indoor location is a fundamental element of modern systems
for intelligent buildings and enterprises, robotics, and the Internet
of Things (loT). There is a significant amount of interest in this sub-
ject, as evidenced by the number of publications that have been
published in recent years [1,2].

Satellite navigation systems, including GPS, GLONASS, Gali-
leo, and BeiDou, do not apply to indoor location, despite their high
accuracy in open spaces. This is primarily an effect of the limited
propagation of radio signals through building structures, which ef-
fectively prevents location or significantly reduces its accuracy [3].

Due to their ubiquity, relatively low implementation costs, and
the ability to adapt existing infrastructure, radio technologies are
very popular in indoor environments. Examples of such technolo-
gies include Bluetooth, Wi-Fi, RFID, and UWB (Ultra-Wide Band)
[3-7]. Although the accuracy of such solutions is still limited, con-
tinuous research and standards development are being conducted
to make the solutions more usable.

The majority of indoor location systems focus on determining
the position of an object in two- or three-dimensional space. Fre-
quently, the orientation (angular position) of the object relative to a
fixed reference frame is crucial information in addition to its posi-
tion. This enables the determination of the object's pose in a 6-de-
gree-of-freedom space. This is important in the context of industrial

asset management systems, indoor navigation systems, and au-
tonomous robots [8].

Commonly, magnetometers are used as compasses to find the
orientation of an object. This facilitates the determination of the ob-
ject's orientation in relation to the magnetic poles of the Earth.
There are a lot of sources of soft iron and hard iron interference in
the industrial environment, so this solution might not work there
[9,10]. Additionally, these solutions necessitate periodic calibration
[10].
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Fig. 1. Graphical representation of the angle of arrival

The Angle of Arrival (AoA) technique is one of the radio tech-
niques used to determine orientation. Itis a component of the Blue-
tooth standard called Direction Finding [11]. This solution is based
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on the utilization of antenna arrays and the measurement of the
phase difference of the received signal between individual anten-
nas of the array, the distance between which is already known (Fig-
ure 1). This solution is susceptible to multipath phenomena, has a
high technological cost, and is subject to limitations in accuracy un-
der NLOS (Non-Line of Sight) conditions [12]. An alternative ap-
proach is the utilization of optical detectors, which enable the sim-
ultaneous precise positioning at 6.55 cm and orientation with an
accuracy of 0.51° [13]. However, this solution necessitates a spe-
cialized infrastructure and is restricted to operation in Line of Sight
(LOS) conditions. In addition, the literature provides angle of arrival
estimations that are derived from RSSI (Received Signal Strength
Indicator) measurements and a rotating antenna system. Finding
signal minima in the spatial characteristics of the antennas is the
foundation of the estimation process. The results showed that the
mean absolute error was 4° when the test was done outside and
6° when it was done inside a building [14]. This solution necessi-
tates a distinct mechanical structure and employs numerous radio
receivers that must communicate with one another to process data
from each one.

This article discusses the proposed solution, which is a switch-
able dual-antenna system that estimates orientation using machine
learning fingerprinting techniques and RSSI value differences.

Cardinal directions (north, south, east, and west) were classi-
fied based on compass readings. The classification process em-
ployed the k-NN (k-Nearest Neighbors), SVM (Support Vector Ma-
chines), Random Forest (RNF), and Multi-Layer Perceptron (MLP)
models. Sensitivity, precision, F1-score, and Matthews Correlation
Coefficient (MCC) were determined to evaluate the quality of the
models.

In contrast to a multi-receiver system, the device design is sim-
plified by the use of a switchable dual-antenna system. In compar-
ison to a single-antenna system, it is feasible to acquire additional
information by exploiting the anisotropy of the antennas' directional
characteristics. This translates to the capacity to ascertain the di-
rection, analogous to the AoA method [14,15].

The subsequent sections of the article are structured as follows:
Section 2 discusses the technical aspects of the approach and the
methodology required to comprehend the work. Section 3 de-
scribes the process of evaluating the quality of the developed meth-
ods and their underlying principles. In Section 4, the results and an
analysis of them for each model are shown. The conclusions are
presented in Section 5.

2. PROPOSED METHOD
2.1. Site selection

The experiment was conducted in the sports hall of the Bialystok
University of Technology. Access points (APs) were randomly
placed within the hall as shown in Figure 2. A total of seven access
points were set up, two of which were located in the NLOS area.
Four access points in the LOS zone were placed at a height of
2.5m, one at height of the 0.7 m (on the table). Access points in-
stalled in the building were also used.

A picture of the experiment can be found in Figure 3. It illus-
trates the APs located in the LOS zone, the control station from
which the entire experiment was managed, and the robot on which
the tracker was mounted. One of the APs in the NLOS zone is de-
picted in Figure 4.
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Fig. 4. Wi-Fi router placed in the NLOS zone

2.2. Hardware configuration

RSSI measurements were conducted with a proprietary tracker
(Figure 5). It contained an ESP32-WROOM-DA chip that enabled
Wi-Fi and Bluetooth connectivity [16]. As illustrated in Figure 6, this
chip features an antenna array that comprises two antennas that
can alternately function through an integrated RF (Radio Fre-
quency) switch. The antennas are positioned at a 90-degree angle
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relative to each other. The device was also equipped with a
BNOO85 inertial measurement unit (IMU) with a 3-axis accelerom-
eter, gyroscope, and magnetometer [17]. Furthermore, the chip
was equipped with LEDs to indicate the operating status and a mi-
cro SD card slot, which enabled the storage of measurements on
a memory card.
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Fig. 7. ESP32 units used as APs

The access points (APs) used were ESP32 devices and two
TP-Link Wi-Fi routers. The ESP32 devices are shown in Figure 7.
They were mounted on tripods. The test devices operated under
the IEEE 802.11 b/g/n Wi-Fi standards.

A DJI Robomaster S1 mobile robot was used for the tests (Fig-
ure 8). A tracker was placed on the robot. This allowed for the au-
tomation of the measurement process and the most faithful repre-
sentation of the system's actual operating conditions. The robot's
dimensions are 320 x 240 x 270 mm [18].
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Fig. 8. Robomaster S1 robot with tracker mounted
2.3. Measurements and data

The data was collected in two sets by taking the measurements
twice. To obtain training data, one set of data was gathered, and to
obtain test data, another. The measurements were performed un-
der static conditions — the robot did not move during the measure-
ments.

The following data was collected during the measurements and
subsequently utilized to train the models:

— aquaternion that shows the orientation in relation to the four
cardinal directions from the BNOO85 sensor,

— the RSSI values for individual access points from each an-
tenna, as well as the SSID (Service Set Identifier) and the an-
tenna designation from which the measurement was collected.

This data was saved in .csv format.
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Fig. 9. The measurement route of the training set with marked measure-
ment locations

The training set was measured using a grid of 0.5 m spacing in
a square measuring approximately 5 x 5 m (Figure 9). A total of
100 points were measured. Each point was measured eight times.
Each measurement was performed with the robot in a different ori-
entation, i.e., rotating approximately 45° around the Z axis. This
resulted in approximately 10,000 unique raw data records. Test
data was acquired by taking measurements at 14 randomly distrib-
uted locations within the test area (Figure 2). Eight measurements
were taken at each location, with the mobile robot rotating between
each.
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Tab. 1. Quaternion mappings [17]

BNOO08X physical axis aligned Mapping quaternion
X Y z Qw | Qx| Qy Qz
East North Up 1 0 0 0
North | West Up (N2 | o 0 (2)12
West South Up 0 0 0 1
South East Up (22| 0 0 -(\N2)12

According to Table 1 from the IMU manufacturer's documenta-
tion, the orientation expressed as a quaternion was mapped to the
cardinal directions. These directions served as classification clas-
ses.

The data was preprocessed to remove erroneous measure-
ments, particularly those with incorrect SSID encoding, which fre-
quently occurred when the RSSI was less than -80 dBm. Outliers
(measurements with extremely inaccurate RRSI values) were also
removed. Measurements with the RSSI of 0 dBm were partially re-
moved, suggesting that the antenna was unable to find the access
point during that measurement.

After removing the majority of erroneous records from the da-
tasets, they were grouped. The process of grouping involved com-
bining measurements from the same pose into a single record,
which reduced data about RSSI values from various APs to a sin-
gle record. Both data processing stages resulted in a reduction of
the training set to 736 records and the test set to 111 records. This
corresponded to the number of poses in which measurements
were taken (800 for the training set and 112 for the test set), ex-
cluding erroneous measurements.

Subsequently, the datasets were substantially expanded to in-
corporate variations in RSSI values between antennas and individ-
ual APs. Furthermore, the sets were supplemented with infor-
mation regarding their position in relation to magnetic directions
was also added. This information was used for classification. Four
orientation classes were obtained as a result of the quaternion
mapping process, as outlined in Table 1.

Tab. 2. Number of classes in the training set and their percentage share

in the set
West East North South
256 199 184 97
34,8% 27,0% 25,0% 13,2%

The distribution of class sizes in the training set is presented in
Table 2. The unbalanced nature of the analyzed set is a critical
factor in the assessment of model quality [19].

Tab. 3. Number of classes in the test set and their percentage share in the

set
West East North South
39 28 29 15
35,1% 25,2% 26,1% 13,5%

The distribution of class frequencies in the test set is presented
in Table 3. The percentages are about the same as they were in
the training set.

Despite the standardized data collection process, discrepan-
cies in class size may be attributable, among other factors, to the
mobile robot's wheel slippage on the surface it was traversing. This
contributed to the discrepancy between the specified rotation and
the actual change in orientation.
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The data were normalized before the training process.
3. MODEL EVALUATION

The classification models were characterized by metrics in or-
der to assess the results obtained using the developed models.
Metrics such as precision, sensitivity, and F1 score were calcu-
lated. The analyzed problem is multi-class, and in addition to met-
rics for individual classes, micro- and macro-averages were also
calculated [19-22].

The precision of a given class C is expressed by formula (1), it
defines the ratio of correctly classified TP observations to all ob-
servations classified as class C, both correctly and incorrectly [20].
TP¢ (1)

TPc+FPc

Precision, =

where: TP, — number of observations correctly classified into
class C, FP; — number of observations incorrectly classified as
class C.

The micro-average precision expressed by equation (2) is the
ratio of the sum of all (in each class) observations correctly classi-
fied to the sum of all (in each class) observations classified to a
given class [20]. Since the sums refer to all classes, ultimately, it is
the ratio of all values correctly classified to all classifications.

Tk=1 TPk _ The1 TPk 2)
YK _(TP+FPy)  Grand Total

The macro-average precision expressed by the relation (3) is
the average of the precision of individual classes [20].

Precisionjcro =

- — 1 K . .
PreciStongero = EZk:l Precision, (3)

The sensitivity of class C described by equation (4) defines the
ratio of correct classifications to the sum of all classifications clas-
sified into class C [20]. It measures what fraction of true positive
TP observations was detected.

_ TPc
Recall, = TPotFNG (4)
where: TP, — number of observations correctly classified into

class C, FN. — number of observations belonging to class C but
classified incorrectly.

Analogously to micro-average precision, micro-average sensi-
tivity is expressed as the ratio of the sum of all (in each class) ob-
servations correctly classified to the sum of all (in each class) clas-
sifications classified into a given class. Therefore, the value of mi-
cro-average sensitivity and precision are given the same value (5)
[20].

Recall;cro = Precisionicro (5)

The macro-average sensitivity expressed by equation (6) is the av-
erage sensitivity of each class [20].

Recallgero = %Zle Recall,, (6)

The F1 score (7) is a metric that represents the harmonic mean
of precision and sensitivity [20]. It can therefore be expressed for
each class, as well as for the micro- and macro-average. This met-
ric provides a compromise between precision and sensitivity, es-
pecially in cases where both metrics have extreme values. To ob-
tain a high score, both metrics must be high. The F1 score ranges
from 0 to 1, where 0 indicates poor model performance and 1 indi-
cates an ideal model.
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F = —_— (7

Precision | Recall

Because precision, sensitivity, and F1 scores are not unique to
unbalanced sets, do not account for true negatives (TN), and are
calculated for individual classes, the Matthews correlation coeffi-
cient (MCC) expressed by equation (8) [20,21,23] will also be cal-
culated. This coefficient takes into account the TP, TN, FP, and FN
scores, and does not favor a dominant class, which translates into
robustness to an unbalanced dataset. This coefficient always has
a maximum value of 1, while the minimum value depends on the
number and distribution of classes — this means that the minimum
value will range from -1 to 0.

C'S—Z]prk'tk (8)
[z pay 25k 1)
where: ¢ — total number of samples correctly classified, s — total

number of classifications, p;, — number of times class k has been
predicted, t;,, — number of times class k actually occurred.

MCC =

4. RESULTS

Four classification algorithms were used to process the col-
lected data: k-NN, SVM (SVC - Support Vector Classifier), Random
Forest, and MLP neural network. Each model was trained using
training data collected offline. For each model, it was necessary to
select model hyperparameters. The hyperparameters were se-
lected using a grid search method, which involves examining all
combinations according to a predefined list of parameter variants
[24]. The models were implemented in Python using the scikit-learn
package.

In the case of the SVM and Random Forest classifiers, due to
their sensitivity to unbalanced training data sets, a weight correction
was applied, expressed by equation (9) [25,26].

samplespym (9)

Classyeight =
weight claSSCount‘Classf‘feq

where: Classeign: — class weight, samplesy,,,, - the number
of all class elements, class.,un: — number of all classes,
classgy.qq- class frequency.

This correction is inversely proportional to the frequency of occur-
rence of a given class in the training data set [27,28].

4.1. k-NN

The following hyperparameters were selected for the k-NN

model [29]:

— weights = 'uniform' — weight function used during prediction, all
points are treated equally,

— neighbors = 15 - number of neighbors taken into account,

— algorithm = ‘auto’ — automatic selection of the algorithm for
searching for nearest neighbors.

Tab. 4. Metrics of individual classes for the k-NN model

Class Recall Precision F1

‘East’ 0.46 0.41 0.43
‘North’ 0.34 043 0.38
‘South’ 0.13 0.33 0.19
‘West’ 0.64 0.50 0.56

acta mechanica et automatica, vol.19 no.4 (2025)

Table 4 presents the precision, sensitivity, and F1 score for
each k-NN class. The best-detected direction was west, containing
39 samples, representing 35.1% of the test set. It achieved the
highest sensitivity of 0.64, meaning that 64% of the true west ori-
entations were correctly identified. A precision of 50% means that
half of the cases were false positives. The F1 score indicates that
the relationship between sensitivity and precision is balanced.

The south class achieved the worst result, achieving a sensitiv-
ity of 13%. This class contained 15 samples, representing 13.5%
of the test set. Precision, on the other hand, was 33%.

The north and east directions achieved moderate performance,
with the east direction achieving slightly better results.

Tab. 5. Metrics for the k-NN model

Precision Recall F1 Micro score Mee
macro macro macro
0.42 0.40 0.39 0.45 0.23

Table 5 presents the global metrics of the classifier. All macro-
averages and micro-averages indicate moderate classifier perfor-
mance. The classifier achieved an accuracy (micro score) of 0.45.
The MCC coefficient reached a value of 0.23, indicating poor clas-
sifier performance.

Confusion Matrix
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Fig. 10. Confusion matrix for the k-NN model

The confusion matrix presented in Figure 10 shows that all di-
rections are most frequently confused with west. East and north
were each classified as west nine times, while south was classified
as west seven times. An asymmetry in errors between south and
west is visible. South was classified as west seven times, while
west was never classified as south.

4.2. SVM

Class corrections were applied to the SVM (SVC) model as
described in section 4. The selected hyperparameters were [27]:
— Kemnel = ‘poly’ — type of kernel used for calculations,

— Regularization = 10 — the value of parameter C affecting the
objective function, it limits overfitting,

— Gamma = 1 - kernel function factor,

— Degree = 4 — degree of the polynomial of the ‘poly’ kernel.
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Tab. 6. Metrics of individual classes for the SVC model

Class Recall Precision F1

‘East’ 0.46 0.42 0.44
‘North’ 0.31 0.38 0.34
‘South’ 0.27 0.22 0.24
‘West’ 0.44 0.45 0.44

limit,

— min_samples_leaf = 4 — minimum required number of samples
to constitute a leaf node,

— min_samples_split = 10 — minimum number of samples re-
quired to split an internal node,

— n_estimators = 50 — number of trees in the forest.

Due to the operation of the algorithm, in order to achieve determin-

istic behavior of the model, the seed in a random number generator

Table 6 presents the metric results for the SVC model. The
classifier best classified the west and east directions. Both classes
achieved the F1 score of 0.44. The east direction achieved a sen-
sitivity of 0.46, meaning that 46% of actual cases for this orientation
were correctly classified. For the west direction, this was 44%. Pre-
cision was also similar in both cases, reaching 0.42 for the east
direction and 0.45 for the west direction, respectively. This means
that in over 50% of cases, these directions were incorrectly classi-
fied. The south direction achieved the worst performance. Sensi-
tivity was 0.27 and precision 0.22. For the north direction, sensitiv-

was also selected and was set to 3013327208.

Tab. 8. Class metrics for Random Forest Classifier

Class Recall Precision F1

‘East’ 0.50 0.37 0.42
‘North’ 0.24 0.39 0.30
‘South’ 0.00 0.00 0.00
‘West’ 0.62 0.47 0.53

ity was 0.31 and precision 0.38.

Tab. 7. Metrics for the SVC model

Precision Recall F1 Micro score Mce
macro macro macro
0.37 0.37 0.37 0.39 0.16

Table 7 presents the global metrics of the classifier. All macro-
averages and micro-averages indicate moderate performance of
the classifier. The classifier achieved an accuracy of 0.39. Despite
the moderate metric values, the MCC coefficient reaches a value
of 0.16, indicating poor performance of the classifier.

Confusion Matrix
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Fig. 11. Confusion matrix for the SVM model

Analyzing the confusion matrix in Figure 11 demonstrates that
the east and south directions were most frequently misclassified as
west. In the north direction, the errors were evenly distributed
among the classes. The direction of the west was most frequently
misclassified as north.

4.3. Random Forest

Similarly to the SVM model, weight correction was applied.
The model parameters were determined as follows [28]:
— max_depth = None — maximum tree depth, none means no
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Table 8 presents the metrics for the Random Forest model. The
west direction had the best sensitivity of 0.62. This means that 62%
of actual cases of this orientation were correctly classified. More
than 50% of cases classified as west were incorrect, with precision
of 0.47. The east direction is distinguished by a precision of 0.37
and a sensitivity of 0.50, resulting in the F1 score of 0.42. This indi-
cates moderate performance for this class. Sensitivity was inferior
to precision in the north class. The south class received zero re-
sults, indicating that it was never properly identified.

Tab. 9. Class metrics for Random Forest Classifier

Precision Recall F1 Micro score MCC
macro macro macro
0.31 0.34 0.31 0.41 0.16

The global metrics presented in Table 9 show moderate clas-
sifier performance. The low MCC value of 0.16 indicates poor clas-
sifier performance.

Confusion Matrix
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Fig. 12. Confusion matrix for the Random Forest model

The confusion matrix (Figure 12) indicates that the most fre-
quently confused directions were west and east. South was not
correctly classified even once. There is a visible asymmetry in er-
rors between the south and other classes. South was classified as
east 7 times, east as south 0 times, south was classified as west 7
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times, and west as south 2 times.
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Fig. 12. Confusion matrix for the Random Forest model
4.4. MLP Classifier

The hyperparameters of the MLP classifier were determined
as follows [30]:
— solver = 'adam' — optimizer,
— activation = relu’ - activation function,
— hidden_layers_size = (150, 75) — structure of the neural net-

work,

— max_iter = 50000 — maximum number of epochs.
Again, due to the operation of the algorithm, in order to achieve
deterministic behavior of the model, the seed in a random number
generator was also selected and was set to 496680515.

Tab. 10. Class metrics for MLP Classifier

Class Recall Precision Fi

‘East’ 0.54 0.39 0.45
‘North’ 0.34 0.40 0.37
‘South’ 0.13 0.20 0.16
‘West’ 0.46 0.47 0.47

Table 10 demonstrates the MLP classifier metrics. The highest
sensitivity was achieved for the east direction, at 0.54. This means
that 54% of actual cases for this orientation were correctly classi-
fied. The precision for the east direction was 0.38, resulting in a
combined F+ score of 0.45. The west direction achieved a sensitivity
of 0.46 and a precision of 0.47, resulting in the F1 score of 0.47,
thus better than the east direction. The south direction achieved the
worst metrics, with a sensitivity of 13%, a precision of 0.20, and the
F1 score of 0.16. The north direction had a sensitivity of 0.34, a
precision of 0.40, and a combined F1 score of 0.37.

Tab. 11. Class metrics for MLP Classifier

Precision Recall Fi Micro score Mce
macro macro macro
0.37 0.37 0.36 0.41 0.18

The overall model metrics are presented in Table 11. The

macro-average sensitivity and precision were 0.37, and the F+
score was 0.36. These results indicate moderate classifier perfor-

acta mechanica et automatica, vol.19 no.4 (2025)

mance. A low MCC value indicates overall poor classifier perfor-
mance.

Confusion Matrix
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Fig. 13. Confusion matrix for the MLP Classifier model

The confusion matrix of the MLP classifier shown in Figure 13
indicates that the most frequently confused directions were east
and west. The south direction was correctly classified in two cases,
most often as east. The north direction was classified eight times
each as west and east.

4.5. Results discussion

The k-NN model achieved the highest values for all metrics.
The MLP and SVM models performed similarly, with the MLP clas-
sifier marginally better in terms of micro-averages and the MCC
coefficient. The SVM classifier's metrics are balanced. Although
the Random Forest classifier generally performs worse than the
other classifiers, its micro-score is comparable to that of the MLP
neural network due to its high sensitivity to the west direction. This
model's metrics are underestimated due to the classifier's zero per-
formance in the south direction.

The east, north, and south directions are classified as west by
all models, which is consistent with the predominant position of this
class in the training dataset, as illustrated in Table 2. Subsequently,
each classifier achieved the most favorable metrics in the west di-
rection. SVC is an exception, achieving the F1 score of 0.44 in both
the east and west directions.

The west direction is evidently favored by the k-NN and Ran-
dom Forest classifiers. This corresponds to a good F1 score of 0.56
for k-NN and 0.53 for Random Forest.

The asymmetries in the error distributions are most noticeable
in the south direction. Among other factors, this is attributable to
the imbalance of the training set and the limited number of samples
from this direction in the test set (13.5% of the set size).

The poor performance of the classifiers in relation to the South
class is due to the imbalance of the training set, even though the
imbalance is compensated by weight correction in the case of the
SVM and Random Forest classifiers.

5. FURTHER RESEARCH
Further research is planned to enhance the quality of estimation

by expanding the switchable multi-antenna system. The imple-
mented dual-antenna switched array is characterized by simple de-
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sign, low cost, and easy scalability. Increasing the number of an-
tennas enables greater exploitation of spatial diversity through in-
formation multiplication, while avoiding unnecessary system com-
plexity or cost increases in implementation.

To fully utilize the benefits resulting from the switchable multi-
antenna array, work will also be conducted on increasing the sam-
pling frequency of signal measurements. Furthermore, increased
sampling will enable effective estimation of the orientation of a
moving object. This is intended to be achieved through the use of
newer Wi-Fi standards and a redesign of the measurement infra-
structure. Preliminary simulation studies have shown that sampling
of 15 samples per location allows for a reduction of MAE value by
more than a factor of 3 [31].

Tab. 12. Sample results of localization based on dual antenna RSSI

readouts
Classifier MAE [m] RMSE [m] Stdev [m]
k-NN 1.53 1.90 1.30
MLP Classifier 1.46 1.82 1.06
Random Forest 1.63 1.94 1.35
SVM Classifier 1.54 1.90 1.25

Tab. 13. Sample results of localization based on single antenna RSSI

readouts
Classifier MAE [m] RMSE [m] Stdev [m]
k-NN 1.61 2.00 1.38
MLP Classifier 1.64 1.99 1.10
Random Forest 1.65 1.97 1.47
SVM Classifier 1.55 1.98 143

The results presented in Table 12 show exemplary results of
location estimation based on RSSI measurements using selected
classifiers. For each classifier, mean absolute errors (MAE), root
mean square errors (RMSE), and standard deviations (Stdev) were
calculated. Analysis of the results shows that it is possible to
achieve MAE at the level of even 1.46 m, RMSE of 1.82 m and
Stdev of 1.06 m when using an MLP network. This means that lo-
cation estimation with moderate accuracy is possible, which can be
applied in sector-based localization. The values presented in the
table are slightly higher than similar studies performed in publica-
tions [32] (MAE = 0.50 m, RMSE = 0.76 m) and [33] (RMSE =
0.247 m). In well-controlled indoor environments (good anchor ge-
ometry, minimal multipath/obstruction) error on the order of 0.2 — 1
m is possible. In more realistic or cluttered indoor environments,
errors of a few metres (2-4 m) are common.

The results presented in Table 13 show the outcomes obtained
for estimation with the use of a single antenna. It is evident that the
application of data from both antennas results in improved results
in all considered cases. For the MLP Classifier, a MAE difference
of 0.18 m, RMS of 0.17 m, and a Stdev reduction of 0.04 m were
obtained.

Further work anticipates a comprehensive estimation of both
orientation and location of the tracked object based on received
signal strength measurements.

6. CONCLUSIONS

The outcomes of experimental research on a mobile robot’s ori-
entation estimation are presented in this article. The objective of
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the investigation was to evaluate the feasibility of determining ori-
entation in relation to the cardinal directions (N, W, S, E) by ana-
lyzing the difference in RSSI values in a dual-antenna tracker that
employs the Wi-Fi standard and machine learning fingerprinting
techniques.

The results of the studies that have been presented indicate
that it is feasible to determine orientation and location with moder-
ate precision. The results obtained are significantly influenced by
the imbalance of the training set, which results in differentiating the
performance of the model among individual classes. The quality of
the developed models can be enhanced by giving training data col-
lection extra attention to guarantee that the final set is as balanced
as possible.

Simulation studies [31] have shown that the performance of
classifiers can be enhanced by increasing the number of signal
samples measured at a specific location. However, this is con-
strained by the speed of RSSI measurement and the number of
hardware resources available. Furthermore, this approach has the
potential to mitigate the effects of interfering phenomena.

Further research is planned to enhance the quality of estimation
and facilitate dynamic object tracking by expanding the switchable
multi-antenna system and implementing the most recent Wi-Fi
standards. The use of a multi-antenna switchable array allows
maintaining low implementation cost and maximizing the benefits
of antenna spatial diversity — more antennas enable obtaining more
data correlated with orientation and location.
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