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Abstract: This work is focused on calculating entropy measures for signals in order to identify Portevin-Le Châtelier (PLC) effect types.  
The PLC effect is a phenomenon occurring in metals, in particular steel and aluminum alloys, within a certain range of strain rates and 
temperatures. It is characterized by serrations (repetitive changes from hardening to softening) visible in a load-displacement diagram and 
associated strain rate bands moving through a sample. Three main PLC types are distinguished: A, B and C. Type A occurs in low  
temperature and for high strain rate, strain rate bands then propagate continuously. Type B occurs for medium temperature and strain rate, 
the bands then have a hopping character. Type C occurs in high temperature and for low strain rate, the bands then nucleate in a random 
manner. The entropy analysis is used as a way to distinguish the types. The so-called Sample Entropy, Sample Entropy 2d and Multiscale 
Sample Entropy are measures utilized in signal analysis to look for patterns in data. Sample Entropy takes into consideration only force 
values which need to be sampled at equal intervals. Sample Entropy 2D, on the other hand, also accounts for the distances between points. 
Multiscale Sample Entropy extends the standard approach by analyzing the signal across multiple time scales. For computations,  
experimental results in the form of load-displacement diagrams for tensile tests performed on bone-shape samples are used.  
The experimental tests have been performed in room temperature for three strain rates. The band types are first identified based on DIC 
data by band movement observation. It is found that for a high strain rate we observe type A, for a medium strain rate first type A and then 
type B and for a low strain rate type C. The Sample Entropy and Sample Entropy 2d measures for type C are low and for type A are high. 
Different behavior of those two types is also visible for higher time scales. It is also found that to assess type B of PLC effect more experiments 
are needed. 
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1. INTRODUCTION 
 

In some materials, in a certain range of strain rates and tem-
peratures, a propagative instability phenomenon called the Portevin 
Le Chatelier (PLC) effect occurs, [1,2,3]. Materials which exhibit 
such behavior are for example aluminum, [4], and steel, [5], where 
the PLC effect is visible in room temperature and elevated temper-
ature, respectively. Other materials in which the phenomenon can 
be observed are Ni-based super alloys [6] and metal-matrix com-
posited [7]. Characteristic for the PLC effect are serrations, repeti-
tive changes from hardening to softening, visible in load-displace-
ment diagram, and bands of plastic strain rate, associated with 
them, which occur in the sample. The PLC effect is linked to so-
called Dynamic Strain Aging (DSA) and negative strain rate sensi-
tivity. DSA is explained by plastic dislocation movement which is 
driven by plastic deformation. Dislocations can be stopped by de-
fects in crystal grid, causing the material to strengthen (hardening) 
until the dislocations are freed and the stress drops (softening). The 
PLC bands are commonly observed during tensile tests, see e.g. 
[8], but also in shear [9,10]. More information about the micro-struc-
tural origin of this phenomenon can be found in [11] and in [12]. 

Three types of PLC effect are commonly distinguished: A, B 
and C, see for example [13,14]. They occur for different strain rates 
and temperatures, and are characterized by different behavior of 

propagating shear bands. Type A of PLC effect occurs in low tem-
perature and for a high strain rate, the bands then propagate con-
tinuously. Type B can be observed for medium temperature and 
strain rate, the bands then have a tendency to hop. Type C occurs 
in high temperature and for a low strain rate, the bands then nucle-
ate in a random manner. Sometimes different subtypes are distin-
guished, like types A1 and A2 in [15]. Authors of both [16] and [17] 
proved that an entropy measure called Sample Entropy  (SampEn) 
can help recognize different PLC types, although their interpreta-
tions differ. In [16] SampEn for type A is high, for type B is medium 
and for type C has a low value. In [17] the entropy value is the larg-
est for type B, lowest for type A and the value for type C is between 
the values for A and B. All values are relative because the SampEn 
measure depends on time step. A summary of these findings is pre-
sented in Tab. 1. The analysis of a similar entropy measure, namely 
the Refined Composite Multiscale Sample Entropy (RCMSE) for 
the PLC effect is provided in [18] and [19]. Although in [18] authors 
did not focus on PLC types and in [19] they only observed type C 
bands, they concluded that the Sample Entropy value is similar to 
the one from [16]. In the RCMSE the  sample entropy for the original 
data is calculated in the same manner as the Sample Entropy in 
this article, but the methods differ for higher scales. 
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Tab. 1.  PLC types considered in literature 

PLC type A B C 

Temperature low medium high 

Strain rate high medium low 

Band movement propagative hopping nucleating 

Sarkar et al. 2010 [16] high medium low 

Xu et al. 2021 [17] low high medium 

 

The term entropy is used in many branches of science with 
many different definitions coming from the common concept of dis-
order measure. Here entropy is used for signal analysis, calculating 
how organized a signal is. The signal-type entropy was first intro-
duced by Shannon in 1948 in [20], it is called Shannon Entropy. 
Many different entropy measures devoted to signals have been de-
scribed since that time, see [21]. One of them is Sample Entropy 
(SampEn), see [22], and its extension Sample Entropy 2d 
(SampEn2d), see for example [23]. SampEn is a modification of 
Approximate Entropy [24] and can be used for shorter signals.  
These measures analyze patterns, looking for repetitiveness in 
data. A small value of entropy means that there are a lot of similar 
structures, as for a straight line or zig-zag, and a high value means 
that the data are chaotic. Entropy can be useful in different fields, 
for example in medicine [25,26], in image analysis [27] or even in 
stock market analysis [28]. 

A method proposed in [29] introduced a multiscale modification 
of entropy. It allows one to take into account different time scales 
for a complex time series. In the case of PLC effect it can provide 
additional information about serration and PLC type, see [16,17]. 

Entropy can also be a useful tool to improve material models 
by providing a way to compare experimental and numerical results 
in terms of load-displacement diagrams. It is not easy to say if two 
sets of serrations are similar, but having one value characterizing 
them can be helpful in this respect. Many models have been pro-
posed to simulate the PLC-type behavior, for example the Estrin-
McCormick model [30,31,32], the model created by Wang [33] or 
the model based on thermodynamic features [34]. 

The goal of this article is to verify the results from [16] and [17]. 
Moreover, the article includes a comprehensive analysis of the 
sample entropy calculation for the PLC effect, along with a detailed 
discussion of its drawbacks, and a description of the algorithms 
used with new experimental data for different strain rates. Moreo-
ver, a different method is proposed, which is not sensitive to time 
step. 

The present article is structured as follows. Section 2 outlines 
the used methods with examples, namely the Sample Entropy, 
Sample Entropy 2d and Multiscale Sample Entropy. Section 3 con-
tains the results of experiments of the Portevin-Le Chatelier effect. 
Chapter 4 provides a summary and conclusions. 

2. ENTROPY 

In this section the algorithms of calculating entropy measures 
are introduced. First the Sample Entropy [22], then Sample Entropy 
2d [23], and finally Multiscale Sample Entropy [29] are outlined. All 
methods are focused on patterns, the first one uses one-dimen-
sional data in equal intervals and the second one employs two-di-
mensional data, the third is an extension of Sample Entropy. For 
SampEn and SampEn2d the description boxes with algorithms are 
provided in Appendix 1, and for all measures some example calcu-
lations are performed. 

Example calculations are performed for data generated numer-
ically for a white, pink or brown noise, which are frequently used to 
present the Sample Entropy method. If not stated otherwise, 1000 
data points are generated. 
 
2.1. Sample Entropy 
 

Sample Entropy [22] is an algorithm focused on finding patterns 
in a time series. First, time series 𝑋 in equal intervals is divided into 
m-elements and m+1-elements vectors, 𝑌𝑖

𝑚 =

(𝑥𝑖 , 𝑥𝑖+1, … , 𝑥𝑖+𝑚−1). Parameter m is called an embedded dimen-
sion and is usually equal to 2. The next step is to calculate a maxi-
mum norm of the distance between vectors and compare it with 
tolerance 𝑟. The tolerance is a percentage of standard deviation, 
usually around 20 % (in the case of this article the tolerance is set 
to 15 %). The events when the maximum norm is smaller than the 
tolerance have to be counted and stored in variable 𝑛𝑚. Next, the 
steps are repeated for 𝑚 + 1 and variable 𝑛𝑚+1 is the result. The 
sample entropy is equal to natural logarithm of the fraction of 𝑛𝑚 

divided by 𝑛𝑚+1. Calculating the Sample Entropy is summarized in 
Alg. 1 in Appendix 1. 

To assess the Sample Entropy measure some calculations for 
a white noise are provided. The first task is to check how many 
points are required to obtain reliable results. Files with different 
numbers of points are generated and the calculation of Sample En-
tropy is performed. For each case 100 files are generated (with the 
exception of 10000 points where only 10 files are generated) and 
four values are provided, maximum, minimum, mean and standard 
deviation. The results are summarized in Tab. 2. Based on the cal-
culations of standard deviation, it can be seen that the results for 
800 points are reliable for Sample Entropy calculation which is con-
sistent with the value reported in [22]. 

Tab. 2.  Sample Entropy for White Noise 

No. of 
points 

Mean Std. dev Min Max 

100 2.58 0.59 1.49 3.81 

300 2.51 0.19 2.13 2.94 

500 2.47 0.12 2.22 2.79 

600 2.49 0.10 2.25 2.70 

700 2.47 0.09 2.29 2.72 

800 2.49 0.066 2.34 2.65 

900 2.48 0.059 2.35 2.61 

1000 2.48 0.055 2.35 2.62 

2000 2.47 0.033 2.37 2.57 

10000 2.47 0.0069 2.46 2.49 

Sample Entropy, however, has some limitations which have to 
be addressed. First of all the data need to be in equal intervals, 
which impedes using data from computations with an adaptive time 
step. Another issue is sensitivity to the step size, since only the val-
ues calculated for the same steps can be compared with each 
other. To illustrate this, let us calculate SampEn for a white noise. 
The white noise can be generated using normal Gauss distribution, 
in this case 1000 points are generated. The sample entropy value 
for the white noise oscillates around 2.5 and for this particular cal-
culation it is equal to 2.59. Let us interpolate between existing val-
ues, now SampEn is equal to 0.58. Another problem is data with a 
trend. Now, function x2 is added to the previously used white noise. 
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Let us assume that the distance between data points is one. The 
Sample Entropy for the data with the trend is equal to 0.00347. In 
the case of different time steps the solution is interpolation and the 
trend can be removed by fitting a suitable function. This however 
means that apart from additional work some information can be lost 
in the process. Sample Entropy calculations are also time consum-
ing. All of method characteristics make it impossible to formulate 
objective ranges for different PLC types. 

2.2. Sample Entropy 2d for normalized data 

To avoid some problems characteristic for the Sample Entropy 
another method is used. The algorithm called Sample Entropy 2d 
[23] is very similar to the Sample Entropy, but calculations are per-
formed for a two-dimensional time series (𝑋, 𝑌), see Appendix 1 
Alg. 2. The tolerance 𝑟 is now set as 

𝑟 = 𝑝√𝑆𝑥
2 + 𝑆𝑦

2                                                                                        (1)                                                                                                                                                                                                                     

where p is usually equal to 0.3, [23] and the geometric mean of the 
standard deviations for the x and y values is used.  

To avoid problems with one dimension dominating, which hap-
pens for the values of 𝑋, some additional steps are proposed. Only 
the values for local extremes are selected and the values of 𝑌 are 
moved to the beginning of the coordinate system (𝑌 becomes a set 
of distances between extremes). Next the data are normalized us-
ing the equations: 

𝑥 =
𝑥𝑖−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
,        𝑦 =

𝑦𝑖−𝑦𝑚𝑖𝑛

𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛
                                                       (2)                                                                                                                                                                                 

The normalized data are used for calculating Sample Entropy 
2d. All steps are presented in Appendix 1, Alg. 2. 

Similarly to Sample Entropy, the calculations of Sample En-
tropy 2d are performed for a white noise and summarized in Tab. 
3. One hundred sets of data are generated for each case (with the 
exception of 10000 points where 10 files are generated). 
Tab. 3.  Sample Entropy 2d for white noise 

No. of points Mean Std. dev Min Max 

100 0.84 0.22 0.47 1.88 

300 0.76 0.10 0.54 1.05 

500 0.77 0.093 0.54 1.02 

700 0.76 0.078 0.58 0.94 

800 0.74 0.072 0.61 0.95 

900 0.75 0.06 0.59 0.88 

1000 0.76 0.06 0.59 0.9 

2000 0.75 0.047 0.65 0.87 

10000 0.75 0.028 0.72 0.8 

2.3. Multiscale Sample Entropy 

Multiscale Sample Entropy (MSE) [29] provides additional in-
sight into different time scales for a complex time series. This mod-
ification introduces time scale factor 𝜏. The original time series 𝑋 =

{𝑥1, 𝑥2, … , 𝑥𝑁}  with N values needs recalculation using a so-called 
coarse-grain method, see Fig. 1. 

𝑌𝜏 =
1

𝜏
∑ 𝑥𝑖

𝑗+𝜏−1
𝑖=𝑗 , 1 ≤ 𝑗 ≤ 𝑁 − 𝜏 + 1                                                    (3) 

Multiscale Sample Entropy for different scale factors is calcu-
lated exactly like Sample Entropy in 2.1, but for the time series ob-
tained from Eq. 3. When 𝜏 is equal to 1, the time series is equal to 
the original times series 𝑋. The coarse-grain method works as fol-
lows. Time series 𝑋 = {1,2,3,4,5,6,7,8,9,10} is given. For 𝜏 = 2, 

the new time series is equal to 𝑌2 = {
1+2

2
,

3+4

2
,

5+6

2
,

7+8

2
,

9+10

2
} =

{1.5,3.5,5.5,7.5,9.5}. 
Calculations for a white noise, brown noise and pink noise are 

provided in Fig. 2. It can be observed that each noise has its char-
acteristic MSE behavior. SampEn for the white noise drops when 
the scale parameter grows – complexity for higher time scales 
drops, SampEn for the pink noise is approximately constant – the 
same complexity for all time scales considered and SampEn for the 
brown noise rises  – complexity also increases. 
 

 

 
Fig. 1.  Visualization of coarse-grain method 
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Fig. 2. Sample Entropy for different scale parameters 

 
 

3. RESULTS FOR PLC EFFECT 
 

In this section calculations for the Portevin-Le Chatelier effect 
using data published previously in [35] are shown. First, the exper-
imental results are introduced with additional observations made 
for DIC images. Next, the computations of Sample Entropy, Sam-
ple Entropy 2d and Multiscale Sample Entropy are outlined simi-
larly to the previous section. Contrary to the white noise data, the 
experimental data have a trend, hence the first step is to fit function 

𝑓(𝑥) = 𝑎 + 𝑏 𝑒−𝑥 to the time series and subtract the fitted values 
from the experimental ones. The prepared data are then used for 
SampEn, SampEn2d and MSE computations. 
 

3.1. Experimental data 
 

In Fig. 3 plots of the sum of reactions vs. time are shown for 
different strain rates and room temperature. For visibility reason 
the lines are shifted by 3 MPa. Experiments are performed for 
bone shape samples with active zone dimensions: 102 mm length, 
25 mm width and 2 mm thickness. Nine samples are used, three 
for each strain rate. Samples number 1, 2 and 3 are stretched with 
strain rate equal to 4.3 × 10−4  (low strain rate), samples 4, 5 

and 6 with strain rate equal to 4.3 × 10−3 (medium strain rate) 

and samples 7, 8, 9 with strain rate equal to 4.3 × 10−2  (high 
strain rate). 

Strain rate bands appearing during loading are characteristic 
for particular PLC types. For different PLC types different band 
movement is observed. The A type bands travel/propagate, type 
B bands jump/hop and C type bands nucleate randomly. Based on 
DIC observations PLC types are assigned to every set of experi-
ments, see Tab. 4. For the low strain rate (experiments 1,2,3) the 
bands were nucleating which indicated type C, for the medium 
strain rate the bands were first traveling/propagating continuously 
which indicated the first type A and then they were hopping which 
indicated type B. For the high strain rate the bands were propagat-
ing, which again indicated type A. In Fig. 3 for the medium strain 
rate the point where the type changed from A to B is visible around 
time 18 s, see Fig. 3 d. The process has a transient character when 
serration change shape and size. 
 

 
 

 
 

 
 

 
Fig. 3.  Sum of reactions vs. time for low strain rate (a), medium strain 

rate (b), high strain rate (c), zoomed-in view of the selected area 
for medium strain rate (d) 
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Tab. 4.  Observation summary of DIC data 

Strain rate Bands behavior PLC type 

Low nucleating C 

Medium travelling and hopping A+B 

High travelling A 

3.2. Results for Sample Entropy 

The results for Sample Entropy are summarized in two tables. 
In Tab. 5 the results for SampEn measure for the range marked 
by black lines in Fig. 3 are displayed. The samples number 1 to 3 
are for the low strain rate, the samples number 4 to 6 are for the 
medium strain rate, and 7 to 9 for the high strain rate. In Tab. 6 the  
results for the medium strain rate for two sets of data ranging from 
3 s to 13 s (SampEnA) and from 32 s to 42 s (SampEnB) are 
shown. The distinction is made to check if the values of Sample 
Entropy differ and are consistent with DIC observation (first type A 
and then B). The results are summarized in Fig. 4. 

The PLC classification is known from the DIC data (see Tab. 
4). For the low strain rate (samples 1,2,3) we observe type C, for 
which entropy is the lowest. The low entropy value indicates that 
serrations are more organized than for the other samples. In the 
case of high strain rate (samples 7,8,9) SampEn has the highest 
value, serrations are more chaotic than for the other samples. For 
the medium strain rate (samples 5,6,7) the movement of bands 
changes during the process. First type A bands are visible, then 
type B. The values of SampEnB are similar to the values of 
SampEn calculated for the range 3 s to 42 s, but the values of 
SampEnA are closer to the values for samples 1,2,3 (where type 
C can be spotted) than to the values for type A. The experiments 
where only B type is visible are needed to verify results. The re-
sults are summarized in Fig. 4. 

These results are consistent with [16], where type A bands 
have the highest SampEn, type C the lowest, and type B values 
are in between. In [17], type A bands have the lowest SampEn, 
type B the highest, and type C values are intermediate. 

Tab. 5. Sample Entropy for PLC effect and equal time steps (0.001s) 

Sumple no. SampEn 

1 0.01967 

2 0.01475 

3 0.01448 

4 0.12021 

5 0.12062 

6 0.12557 

7 0.23605 

8 0.25310 

9 0.29345 

 
 
Tab. 6.  Sample Entropy for medium strain rate, equal time steps 

(0.001s), range 3 s to 13 s (SampEnA) and range of 32 s to 42 
s (SampEnB) 

Sumple no. SampEnA SampEnB 

4 0.05232 0.12640 

5 0.04391 0.11078 

6 0.06010 0.13207 

 

 
Fig. 4.  Sample Entropy for PLC effect and equal time steps (0.001s). 

Summary for Tabs. 5 and 6 

3.3. Results for Sample Entropy 2d and normalized data 

The values of Sample Entropy 2d are summarized in Tab. 7 
and Fig. 5. The results for low and medium strain rates are on the 
same level, between 0.5 and 1.5, and for the high strain rate 
around 3.0-3.5. It indicates a similar tendency as for Sample En-
tropy. There is not enough data to calculate SampEn2d for two 
intervals as for SampEn. 
 
Tab. 7. Sample Entropy 2d for PLC effect 

Sumple no. SampEn 

1 1.09861 

2 0.68253 

3 0.72350 

4 0.91049 

5 0.97507 

6 1.29142 

7 3.84859 

8 3.00294 

9 x 

 

 
Fig. 5. Sample Entropy 2d for PLC effect 
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3.4. Results for Multiscale Sample Entropy 
 

Multiscale Sample Entropy reflects the complexity of a signal 
at higher time scales. In Fig. 6 the results for MSE and different 
strain rates are drawn. In the case of low strain rate SampEn rises 
linearly in a steady manner when the scale parameter grows. The 
complexity of the signal is higher for higher time scales. For the 
medium strain rate SampEn first rises linearly and the diagram is 
steeper than the low strain rate line. When parameter 𝜏 is close to 
20 the diagram starts to drop slightly and then slowly rises again 
when the scaling parameter is close to 60. The signal complexity 
changes, for smaller scales it is more complex and then it is almost 
stable. For the high strain rate SampEn rises with almost the same 
tangent as for the medium strain rate but the diagram is strongly 
non-linear. After 𝜏 reaches 20 the SampEn values start to jump, it 
can be caused by too little data since when 𝜏 grows the number of 
data decreases. This is also the reason why not all values are 
available for a high scaling parameter. Additional computations 
are carried out for partial data for the medium strain rate, namely 
from 3 s to 13 s (called A) and from 32 s to 42 s (called B). This 
shows different serration types, see Tab. 4. In case A the Sample 
Entropy values rise similarly to case B and full data. Around 𝜏 
equal to 10 the inclination of the diagram starts to decrease and 
around 30 the values of SampEn start to jump. In case B the 
SampEn values rise with a similar tangent as for full data, then 
around 𝜏 equal to 25 the diagram starts to drop and around 40 the 
values start to jump. All strain rates show similar trends, the com-
plexity of the time series rises at the beginning.  

 
Fig. 6.  Sample Entropy for different scale parameters 

 
In the case of [16] MSE for C type bands behaves in a similar 

way to low strain rate (also identified as C type bands) when the 
complexity slightly rises (note that the authors of [16] calculated 
MSE for a scale factor below 21). In [16] for B type bands MSE 
first rises then drops and for A type bands MSE first drops then 
rises with some fluctuations. The B type behavior is similar to me-
dium strain rate from this article without fluctuations. Different be-
havior for A type bands (in this article line is rising) can be caused 
by different frequency with which the signal is saved.  

In [17] MSE for A type bands behaves in a similar way as for 
the low strain rate (here C type bands) – the complexity of time 
series steadily rises, although much slower than for other PLC 

types. In [17] for B and C type bands MSE first rises then drops 
and saturates. In this article a similar behavior is observed for me-
dium strain rate with a mix of A and B type bands and “medium 
strain rate B” without fluctuations. However, in [17] the drop is 
more significant comparing to the medium strain rate from this ar-
ticle.  

Based on the MSE analysis we can clearly distinguish be-
tween type C (as suggested by DIC images) for the low strain rate 
and types A and B for the high and medium strain rates. It is more 
difficult to separate types A and B. The band C serrations are less 
chaotic then B and A for all scales. More tests with bands of those 
types are needed. 

4. CONCLUSIONS 

This article deals with the calculation of entropy measures to 
distinguish between different PLC band types on the basis of load-
displacement data. The data have been taken from experiments 
on bone-shape samples in tension, which were made for three 
strain rates (low, medium and high). Three sets of entropy compu-
tations have been performed using three measures: Sample En-
tropy, Sample Entropy 2d and Multiscale Sample Entropy. Based 
on DIC results and strain rate band movement it can be stated that 
for the low strain rate shear bands of type C are observed, for the 
medium strain rate first of type A and then type B, and for the high 
strain rate bands of type A are noticed. It has been found that Sam-
ple Entropy and Sample Entropy 2d are low for the low strain rate, 
indicating that serrations are more organized than for the other 
strain rates. For the high strain rate the entropy measures are high, 
which shows that the serrations are more chaotic than for the me-
dium and low strain rates. The Sample Entropy for the medium 
strain rate is between the values for the low and high strain rate, 
but the DIC data show that two band types are visible, so addi-
tional computations are carried out for the data at the beginning 
and at the end of the loading process. The values from the begin-
ning are close to the values for type C bands, however DIC shows 
type A bands. The values from the end of the process are similar 
to the values for the whole process. The value of Sample Entropy 
2d for the medium strain rate is close to the values for the low 
strain rate. The results for bands of type A and C are consistent 
with those presented in [16]. The values of Multiscale Sample En-
tropy show a clear difference between the low strain rate (type C) 
on one hand and the medium and high strain rates (types A and 

B) on the other hand. The MSE for type C bands and, to a lesser 
extent, for type B bands also presents a similar behavior to the 
one from [16]. It is hard to find a clear difference between types A 
and B on the basis of those computations. It is also possible that 
the classification based on DIC data is not precise enough except 
for type C bands, hence more experiments showing clearly types 
A and B are needed. The results are summarized in Tab. 8. 
 
Tab. 8.  Results summary for PLC types 

PLC type A B C 

Temperature low medium high 

Strain rate high medium low 

Band movement propagative hopping nucleating 

Sarkar et al. 2010 [16] high medium low 

Xu et al. 2021 [17] low high medium 

SampEn high medium low 

SampEn2d high - low 
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Appendix 1 

This appendix contains Algorithms for Sample Entropy (Alg. 1) and Sample Entropy 2d (Alg. 2).

Alg. 1. Sample Entropy Algorithm 

 
 
Alg. 2.  Sample Entropy 2d Algorithm for normalized data 
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