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Abstract: This work is focused on calculating entropy measures for signals in order to identify Portevin-Le Chatelier (PLC) effect types.
The PLC effect is a phenomenon occurring in metals, in particular steel and aluminum alloys, within a certain range of strain rates and
temperatures. It is characterized by serrations (repetitive changes from hardening to softening) visible in a load-displacement diagram and
associated strain rate bands moving through a sample. Three main PLC types are distinguished: A, B and C. Type A occurs in low
temperature and for high strain rate, strain rate bands then propagate continuously. Type B occurs for medium temperature and strain rate,
the bands then have a hopping character. Type C occurs in high temperature and for low strain rate, the bands then nucleate in a random
manner. The entropy analysis is used as a way to distinguish the types. The so-called Sample Entropy, Sample Entropy 2d and Multiscale
Sample Entropy are measures utilized in signal analysis to look for patterns in data. Sample Entropy takes into consideration only force
values which need to be sampled at equal intervals. Sample Entropy 2D, on the other hand, also accounts for the distances between points.
Multiscale Sample Entropy extends the standard approach by analyzing the signal across multiple time scales. For computations,
experimental results in the form of load-displacement diagrams for tensile tests performed on bone-shape samples are used.
The experimental tests have been performed in room temperature for three strain rates. The band types are first identified based on DIC
data by band movement observation. It is found that for a high strain rate we observe type A, for a medium strain rate first type A and then
type B and for a low strain rate type C. The Sample Entropy and Sample Entropy 2d measures for type C are low and for type A are high.
Different behavior of those two types is also visible for higher time scales. Itis also found that to assess type B of PLC effect more experiments
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are needed.

Key words: Portevin Le-Chatelier effect, Multiscale Sample Entropy, Sample Entropy 2d

1. INTRODUCTION

In some materials, in a certain range of strain rates and tem-
peratures, a propagative instability phenomenon called the Portevin
Le Chatelier (PLC) effect occurs, [1,2,3]. Materials which exhibit
such behavior are for example aluminum, [4], and steel, [5], where
the PLC effect is visible in room temperature and elevated temper-
ature, respectively. Other materials in which the phenomenon can
be observed are Ni-based super alloys [6] and metal-matrix com-
posited [7]. Characteristic for the PLC effect are serrations, repeti-
tive changes from hardening to softening, visible in load-displace-
ment diagram, and bands of plastic strain rate, associated with
them, which occur in the sample. The PLC effect is linked to so-
called Dynamic Strain Aging (DSA) and negative strain rate sensi-
tivity. DSA is explained by plastic dislocation movement which is
driven by plastic deformation. Dislocations can be stopped by de-
fects in crystal grid, causing the material to strengthen (hardening)
until the dislocations are freed and the stress drops (softening). The
PLC bands are commonly observed during tensile tests, see e.g.
[8], but also in shear [9,10]. More information about the micro-struc-
tural origin of this phenomenon can be found in [11] and in [12].

Three types of PLC effect are commonly distinguished: A, B
and C, see for example [13,14]. They occur for different strain rates
and temperatures, and are characterized by different behavior of
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propagating shear bands. Type A of PLC effect occurs in low tem-
perature and for a high strain rate, the bands then propagate con-
tinuously. Type B can be observed for medium temperature and
strain rate, the bands then have a tendency to hop. Type C occurs
in high temperature and for a low strain rate, the bands then nucle-
ate in a random manner. Sometimes different subtypes are distin-
guished, like types A1 and A2 in [15]. Authors of both [16] and [17]
proved that an entropy measure called Sample Entropy (SampEn)
can help recognize different PLC types, although their interpreta-
tions differ. In [16] SampEn for type A is high, for type B is medium
and for type C has a low value. In [17] the entropy value is the larg-
est for type B, lowest for type A and the value for type C is between
the values for A and B. All values are relative because the SampEn
measure depends on time step. A summary of these findings is pre-
sented in Tab. 1. The analysis of a similar entropy measure, namely
the Refined Composite Multiscale Sample Entropy (RCMSE) for
the PLC effect is provided in [18] and [19]. Although in [18] authors
did not focus on PLC types and in [19] they only observed type C
bands, they concluded that the Sample Entropy value is similar to
the one from [16]. In the RCMSE the sample entropy for the original
data is calculated in the same manner as the Sample Entropy in
this article, but the methods differ for higher scales.
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Tab. 1. PLC types considered in literature

PLC type A B c
Temperature low medium high
Strain rate high medium low
Band movement propagative hopping nucleating
Sarkar et al. 2010 [16] high medium low
Xu et al. 2021 [17] low high medium

The term entropy is used in many branches of science with
many different definitions coming from the common concept of dis-
order measure. Here entropy is used for signal analysis, calculating
how organized a signal is. The signal-type entropy was first intro-
duced by Shannon in 1948 in [20], it is called Shannon Entropy.
Many different entropy measures devoted to signals have been de-
scribed since that time, see [21]. One of them is Sample Entropy
(SampEn), see [22], and its extension Sample Entropy 2d
(SampEn2d), see for example [23]. SampEn is a modification of
Approximate Entropy [24] and can be used for shorter signals.
These measures analyze patterns, looking for repetitiveness in
data. A small value of entropy means that there are a lot of similar
structures, as for a straight line or zig-zag, and a high value means
that the data are chaotic. Entropy can be useful in different fields,
for example in medicine [25,26], in image analysis [27] or even in
stock market analysis [28].

A method proposed in [29] introduced a multiscale modification
of entropy. It allows one to take into account different time scales
for a complex time series. In the case of PLC effect it can provide
additional information about serration and PLC type, see [16,17].

Entropy can also be a useful tool to improve material models
by providing a way to compare experimental and numerical results
in terms of load-displacement diagrams. It is not easy to say if two
sets of serrations are similar, but having one value characterizing
them can be helpful in this respect. Many models have been pro-
posed to simulate the PLC-type behavior, for example the Estrin-
McCormick model [30,31,32], the model created by Wang [33] or
the model based on thermodynamic features [34].

The goal of this article is to verify the results from [16] and [17].
Moreover, the article includes a comprehensive analysis of the
sample entropy calculation for the PLC effect, along with a detailed
discussion of its drawbacks, and a description of the algorithms
used with new experimental data for different strain rates. Moreo-
ver, a different method is proposed, which is not sensitive to time
step.

The present article is structured as follows. Section 2 outlines
the used methods with examples, namely the Sample Entropy,
Sample Entropy 2d and Multiscale Sample Entropy. Section 3 con-
tains the results of experiments of the Portevin-Le Chatelier effect.
Chapter 4 provides a summary and conclusions.

2. ENTROPY

In this section the algorithms of calculating entropy measures
are introduced. First the Sample Entropy [22], then Sample Entropy
2d [23], and finally Multiscale Sample Entropy [29] are outlined. All
methods are focused on patterns, the first one uses one-dimen-
sional data in equal intervals and the second one employs two-di-
mensional data, the third is an extension of Sample Entropy. For
SampEn and SampEn2d the description boxes with algorithms are
provided in Appendix 1, and for all measures some example calcu-
lations are performed.
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Example calculations are performed for data generated numer-
ically for a white, pink or brown noise, which are frequently used to
present the Sample Entropy method. If not stated otherwise, 1000
data points are generated.

2.1. Sample Entropy

Sample Entropy [22] is an algorithm focused on finding patterns
in a time series. First, time series X in equal intervals is divided into
m-elements and m+1-elements vectors, Y=
(X X410 ) Xi4m—1). Parameter mis called an embedded dimen-
sion and is usually equal to 2. The next step is to calculate a maxi-
mum norm of the distance between vectors and compare it with
tolerance r. The tolerance is a percentage of standard deviation,
usually around 20 % (in the case of this article the tolerance is set
to 15 %). The events when the maximum norm is smaller than the
tolerance have to be counted and stored in variable n,,. Next, the
steps are repeated for m + 1 and variable n,, ., is the result. The
sample entropy is equal to natural logarithm of the fraction of n,,
divided by n,,,,. Calculating the Sample Entropy is summarized in
Alg. 1in Appendix 1.

To assess the Sample Entropy measure some calculations for
a white noise are provided. The first task is to check how many
points are required to obtain reliable results. Files with different
numbers of points are generated and the calculation of Sample En-
tropy is performed. For each case 100 files are generated (with the
exception of 10000 points where only 10 files are generated) and
four values are provided, maximum, minimum, mean and standard
deviation. The results are summarized in Tab. 2. Based on the cal-
culations of standard deviation, it can be seen that the results for
800 points are reliable for Sample Entropy calculation which is con-
sistent with the value reported in [22].

Tab. 2. Sample Entropy for White Noise

No. of Mean Std. dev Min Max
points
100 258 0.59 1.49 3.81
300 2.51 0.19 2.13 2.94
500 247 0.12 2.22 2.79
600 2.49 0.10 2.25 2.70
700 247 0.09 2.29 2.72
800 249 0.066 2.34 2.65
900 248 0.059 2.35 2.61
1000 248 0.055 2.35 2.62
2000 247 0.033 2.37 2.57
10000 247 0.0069 2.46 2.49

Sample Entropy, however, has some limitations which have to
be addressed. First of all the data need to be in equal intervals,
which impedes using data from computations with an adaptive time
step. Another issue is sensitivity to the step size, since only the val-
ues calculated for the same steps can be compared with each
other. To illustrate this, let us calculate SampEn for a white noise.
The white noise can be generated using normal Gauss distribution,
in this case 1000 points are generated. The sample entropy value
for the white noise oscillates around 2.5 and for this particular cal-
culation it is equal to 2.59. Let us interpolate between existing val-
ues, now SampEn is equal to 0.58. Another problem is data with a
trend. Now, function x? is added to the previously used white noise.
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Let us assume that the distance between data points is one. The
Sample Entropy for the data with the trend is equal to 0.00347. In
the case of different time steps the solution is interpolation and the
trend can be removed by fitting a suitable function. This however
means that apart from additional work some information can be lost
in the process. Sample Entropy calculations are also time consum-
ing. All of method characteristics make it impossible to formulate
objective ranges for different PLC types.

2.2. Sample Entropy 2d for normalized data

To avoid some problems characteristic for the Sample Entropy
another method is used. The algorithm called Sample Entropy 2d
[23] is very similar to the Sample Entropy, but calculations are per-
formed for a two-dimensional time series (X,Y), see Appendix 1
Alg. 2. The tolerance r is now set as

r=p /S§+S§

where p is usually equal to 0.3, [23] and the geometric mean of the
standard deviations for the x and y values is used.

To avoid problems with one dimension dominating, which hap-
pens for the values of X, some additional steps are proposed. Only
the values for local extremes are selected and the values of Y are
moved to the beginning of the coordinate system (Y becomes a set
of distances between extremes). Next the data are normalized us-
ing the equations:

(1)

Yi~Ymin

Ymax—Ymin

e @

The normalized data are used for calculating Sample Entropy
2d. All steps are presented in Appendix 1, Alg. 2.

Similarly to Sample Entropy, the calculations of Sample En-
tropy 2d are performed for a white noise and summarized in Tab.
3. One hundred sets of data are generated for each case (with the
exception of 10000 points where 10 files are generated).

Tab. 3. Sample Entropy 2d for white noise

1 i
1 i

1 T i i+T
1 T

Fig. 1. Visualization of coarse-grain method
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No. of points Mean Std. dev Min Max
100 0.84 0.22 0.47 1.88

300 0.76 0.10 0.54 1.05

500 0.77 0.093 0.54 1.02

700 0.76 0.078 0.58 0.94

800 0.74 0.072 0.61 0.95

900 0.75 0.06 0.59 0.88
1000 0.76 0.06 0.59 0.9
2000 0.75 0.047 0.65 0.87
10000 0.75 0.028 0.72 0.8

2.3. Multiscale Sample Entropy

Multiscale Sample Entropy (MSE) [29] provides additional in-
sight into different time scales for a complex time series. This mod-
ification introduces time scale factor z. The original time series X =
{x1, %5, ..., x5} With N values needs recalculation using a so-called
coarse-grain method, see Fig. 1.
ve=3l 1< SN-T+1 (3)

Multiscale Sample Entropy for different scale factors is calcu-
lated exactly like Sample Entropy in 2.1, but for the time series ob-
tained from Eq. 3. When t is equal to 1, the time series is equal to
the original times series X. The coarse-grain method works as fol-
lows. Time series X = {1,2,3,4,5,6,7,8,9,10} is given. For T = 2,
the new time series is equal to ¥2 = (==, 22,22 T2 20 —
{1.5,3.5,5.5,7.5,9.5}.

Calculations for a white noise, brown noise and pink noise are
provided in Fig. 2. It can be observed that each noise has its char-
acteristic MSE behavior. SampEn for the white noise drops when
the scale parameter grows — complexity for higher time scales
drops, SampEn for the pink noise is approximately constant — the
same complexity for all time scales considered and SampEn for the
brown noise rises — complexity also increases.

i

N-

N-2
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Fig. 2. Sample Entropy for different scale parameters

3. RESULTS FOR PLC EFFECT

In this section calculations for the Portevin-Le Chatelier effect
using data published previously in [35] are shown. First, the exper-
imental results are introduced with additional observations made
for DIC images. Next, the computations of Sample Entropy, Sam-
ple Entropy 2d and Multiscale Sample Entropy are outlined simi-
larly to the previous section. Contrary to the white noise data, the
experimental data have a trend, hence the first step is to fit function
f(x) = a+ b e* to the time series and subtract the fitted values
from the experimental ones. The prepared data are then used for
SampEn, SampEn2d and MSE computations.

3.1. Experimental data

In Fig. 3 plots of the sum of reactions vs. time are shown for
different strain rates and room temperature. For visibility reason
the lines are shifted by 3 MPa. Experiments are performed for
bone shape samples with active zone dimensions: 102 mm length,
25 mm width and 2 mm thickness. Nine samples are used, three
for each strain rate. Samples number 1, 2 and 3 are stretched with
strain rate equal to 4.3 x 10~* (low strain rate), samples 4, 5
and 6 with strain rate equal to 4.3 x 10~3 (medium strain rate)
and samples 7, 8, 9 with strain rate equal to 4.3 x 1072 (high
strain rate).

Strain rate bands appearing during loading are characteristic
for particular PLC types. For different PLC types different band
movement is observed. The A type bands travel/propagate, type
B bands jump/hop and C type bands nucleate randomly. Based on
DIC observations PLC types are assigned to every set of experi-
ments, see Tab. 4. For the low strain rate (experiments 1,2,3) the
bands were nucleating which indicated type C, for the medium
strain rate the bands were first traveling/propagating continuously
which indicated the first type A and then they were hopping which
indicated type B. For the high strain rate the bands were propagat-
ing, which again indicated type A. In Fig. 3 for the medium strain
rate the point where the type changed from A to B is visible around
time 18 s, see Fig. 3 d. The process has a transient character when
serration change shape and size.
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Fig. 3. Sum of reactions vs. time for low strain rate (a), medium strain
rate (b), high strain rate (c), zoomed-in view of the selected area
for medium strain rate (d)
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Tab. 4. Observation summary of DIC data

Strain rate Bands behavior PLC type
Low nucleating C
Medium travelling and hopping A+B
High travelling A
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3.2. Results for Sample Entropy

The results for Sample Entropy are summarized in two tables.
In Tab. 5 the results for SampEn measure for the range marked
by black lines in Fig. 3 are displayed. The samples number 1 to 3
are for the low strain rate, the samples number 4 to 6 are for the
medium strain rate, and 7 to 9 for the high strain rate. In Tab. 6 the
results for the medium strain rate for two sets of data ranging from
3 s to 13 s (SampEnA) and from 32 s to 42 s (SampEnB) are
shown. The distinction is made to check if the values of Sample
Entropy differ and are consistent with DIC observation (first type A
and then B). The results are summarized in Fig. 4.

The PLC classification is known from the DIC data (see Tab.
4). For the low strain rate (samples 1,2,3) we observe type C, for
which entropy is the lowest. The low entropy value indicates that
serrations are more organized than for the other samples. In the
case of high strain rate (samples 7,8,9) SampEn has the highest
value, serrations are more chaotic than for the other samples. For
the medium strain rate (samples 5,6,7) the movement of bands
changes during the process. First type A bands are visible, then
type B. The values of SampEnB are similar to the values of
SampEn calculated for the range 3 s to 42 s, but the values of
SampEnA are closer to the values for samples 1,2,3 (where type
C can be spotted) than to the values for type A. The experiments
where only B type is visible are needed to verify results. The re-
sults are summarized in Fig. 4.

These results are consistent with [16], where type A bands
have the highest SampEn, type C the lowest, and type B values
are in between. In [17], type A bands have the lowest SampEn,
type B the highest, and type C values are intermediate.

Tab. 5. Sample Entropy for PLC effect and equal time steps (0.001s)

Sumple no. SampEn

1 0.01967
0.01475
0.01448
0.12021
0.12062
0.12557
0.23605
0.25310
0.29345

O|lo|Noojo | lw (N

Tab. 6. Sample Entropy for medium strain rate, equal time steps
(0.001s), range 3 s to 13 s (SampEnA) and range of 32 s to 42

s (SampEnB)
Sumple no. SampEnA SampEnB
4 0.05232 0.12640
5 0.04391 0.11078
6 0.06010 0.13207
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Fig. 4. Sample Entropy for PLC effect and equal time steps (0.001s).
Summary for Tabs. 5 and 6

3.3. Results for Sample Entropy 2d and normalized data

The values of Sample Entropy 2d are summarized in Tab. 7
and Fig. 5. The results for low and medium strain rates are on the
same level, between 0.5 and 1.5, and for the high strain rate
around 3.0-3.5. It indicates a similar tendency as for Sample En-
tropy. There is not enough data to calculate SampEn2d for two
intervals as for SampEn.

Tab. 7. Sample Entropy 2d for PLC effect

Sumple no. SampEn
1 1.09861
2 0.68253
3 0.72350
4 0.91049
5 0.97507
6 1.29142
7 3.84859
8 3.00294
9 X
N - .
4.5 @ low %;tr'cun ra‘te
e medium strain rate
3 | |®@high strain rate °
2.5

SampEn2d
(Sw]

1 2 3 4 5 6 7 8
sample number
Fig. 5. Sample Entropy 2d for PLC effect
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3.4. Results for Multiscale Sample Entropy

Multiscale Sample Entropy reflects the complexity of a signal
at higher time scales. In Fig. 6 the results for MSE and different
strain rates are drawn. In the case of low strain rate SampEn rises
linearly in a steady manner when the scale parameter grows. The
complexity of the signal is higher for higher time scales. For the
medium strain rate SampEn first rises linearly and the diagram is
steeper than the low strain rate line. When parameter 7 is close to
20 the diagram starts to drop slightly and then slowly rises again
when the scaling parameter is close to 60. The signal complexity
changes, for smaller scales itis more complex and then it is almost
stable. For the high strain rate SampEn rises with almost the same
tangent as for the medium strain rate but the diagram is strongly
non-linear. After T reaches 20 the SampEn values start to jump, it
can be caused by too little data since when = grows the number of
data decreases. This is also the reason why not all values are
available for a high scaling parameter. Additional computations
are carried out for partial data for the medium strain rate, namely
from 3 s to 13 s (called A) and from 32 s to 42 s (called B). This
shows different serration types, see Tab. 4. In case A the Sample
Entropy values rise similarly to case B and full data. Around
equal to 10 the inclination of the diagram starts to decrease and
around 30 the values of SampEn start to jump. In case B the
SampEn values rise with a similar tangent as for full data, then
around  equal to 25 the diagram starts to drop and around 40 the
values start to jump. All strain rates show similar trends, the com-
plexity of the time series rises at the beginning.

medium strain rate
medium strain rate B

—— low strain rate
medium strain rate A
—&—  high strain rate

25
2 ]M

|
q 15 Rt
B At N
£ 1 <
-

20 40 60 80 100 120

scale par;‘unotcr T
Fig. 6. Sample Entropy for different scale parameters

In the case of [16] MSE for C type bands behaves in a similar
way to low strain rate (also identified as C type bands) when the
complexity slightly rises (note that the authors of [16] calculated
MSE for a scale factor below 21). In [16] for B type bands MSE
first rises then drops and for A type bands MSE first drops then
rises with some fluctuations. The B type behavior is similar to me-
dium strain rate from this article without fluctuations. Different be-
havior for A type bands (in this article line is rising) can be caused
by different frequency with which the signal is saved.

In [17] MSE for A type bands behaves in a similar way as for
the low strain rate (here C type bands) — the complexity of time
series steadily rises, although much slower than for other PLC
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types. In [17] for B and C type bands MSE first rises then drops
and saturates. In this article a similar behavior is observed for me-
dium strain rate with a mix of A and B type bands and “medium
strain rate B” without fluctuations. However, in [17] the drop is
more significant comparing to the medium strain rate from this ar-
ticle.

Based on the MSE analysis we can clearly distinguish be-
tween type C (as suggested by DIC images) for the low strain rate
and types A and B for the high and medium strain rates. It is more
difficult to separate types A and B. The band C serrations are less
chaotic then B and A for all scales. More tests with bands of those
types are needed.

4, CONCLUSIONS

This article deals with the calculation of entropy measures to
distinguish between different PLC band types on the basis of load-
displacement data. The data have been taken from experiments
on bone-shape samples in tension, which were made for three
strain rates (low, medium and high). Three sets of entropy compu-
tations have been performed using three measures: Sample En-
tropy, Sample Entropy 2d and Multiscale Sample Entropy. Based
on DIC results and strain rate band movement it can be stated that
for the low strain rate shear bands of type C are observed, for the
medium strain rate first of type A and then type B, and for the high
strain rate bands of type A are noticed. It has been found that Sam-
ple Entropy and Sample Entropy 2d are low for the low strain rate,
indicating that serrations are more organized than for the other
strain rates. For the high strain rate the entropy measures are high,
which shows that the serrations are more chaotic than for the me-
dium and low strain rates. The Sample Entropy for the medium
strain rate is between the values for the low and high strain rate,
but the DIC data show that two band types are visible, so addi-
tional computations are carried out for the data at the beginning
and at the end of the loading process. The values from the begin-
ning are close to the values for type C bands, however DIC shows
type A bands. The values from the end of the process are similar
to the values for the whole process. The value of Sample Entropy
2d for the medium strain rate is close to the values for the low
strain rate. The results for bands of type A and C are consistent
with those presented in [16]. The values of Multiscale Sample En-
tropy show a clear difference between the low strain rate (type C)
on one hand and the medium and high strain rates (types A and
B) on the other hand. The MSE for type C bands and, to a lesser
extent, for type B bands also presents a similar behavior to the
one from [16]. It is hard to find a clear difference between types A
and B on the basis of those computations. It is also possible that
the classification based on DIC data is not precise enough except
for type C bands, hence more experiments showing clearly types
A and B are needed. The results are summarized in Tab. 8.

Tab. 8. Results summary for PLC types

PLC type A B C
Temperature low medium high
Strain rate high medium low
Band movement propagative hopping nucleating
Sarkar et al. 2010 [16] high medium low
Xu et al. 2021 [17] low high medium
SampEn high medium low
SampEn2d high - low
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Appendix 1
This appendix contains Algorithms for Sample Entropy (Alg. 1) and Sample Entropy 2d (Alg. 2).

Alg. 1. Sample Entropy Algorithm
Require: time series data X = {1, z2, ..., 2y}, embedded dimension m = 2, tolerance r = 0.15 Sx
1: Initialize n, < 0,n3 + 0
2: fori=1to N —m+ 1do
3 Compute m-dimensional vectors: Y2(:, i) = (2, z;+1)
4: end for
5: fori=1to N—m —1do
6: forj=i+1to N —mdo
7 Compute max norm d = max Y2, ; — Y2, ;|
8 if d < r then
9: N9 4— no + 1
10: end if

11: end for
12: end for

13 m+—m+1

14: fori=1to N —m+ 1 do

15: Compute m-dimensional vectors: Y3(:, i) = (2, 2i11, Tiq2)
16: end for

17: fori =1to N —m — 1 do

18: forj=i+1to N —mdo

19: Compute max norm d = max |Y'3.; — Y3, ;|
20: if d < r then

21: ng < nsy+ 1

22: end if

23: end for

24: end for

25: Compute SampEn < In 2

Alg. 2. Sample Entropy 2d Algorithm for normalized data

Require: time series data (X.Y) = {{z1.nn}. {z2, 02}, ..., {zn.yn}}, embedded dimension m = 2, tolerance
r=0.3/8% + 5%
I: Move Y value to the beginning of coordinate system
2: fori =2t N do
¥ =i — Yo
: end for
: Normalize data
s fori= 110 N do

Ti—X

[

- RV R

TLATE

Tni =
iyt Tmax =TFmin
¥ ]

. — _YMi—¥min
R' .”J'?.J: - n'—l

Vma
9: end for
10: Initialize ng < O.ng + 0

v
12~ Vmin
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19:
20:

fori=1to N —m+ 1do
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Compute m-dimensional vectors: Y2(:.¢) = ({z, ;. Uni b A Tnit1. Univ1 })

: end for

fori=1to N —m— 1do
forj=i+1to N —mdo

Compute max norm d = max Y2, ; — Y2 ;|

if o/ < r then
fa +— na + 1
end if
end for

: end for
cmie—m+1
cfori=1to N —m <+ 1do

Compute m-dimensional vectors: Y'3(:.7) = ({Zp.i. Yni b {Tnit 1. Ynit1 b {Tniv2. Yniva })

: end for

26: fori=1toN —m— 1do

forj=i+1to N —mdo

Compute max norm d = max |Y'3.; — V3. ;|

if d < r then
ng +— ng + 1
end if
end for

: end for
: Compute SampEn + In 22

L
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