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Abstract: This study investigates the free vibration behaviour of piezoelectric multi-layered functionally graded nanocomposite beams  
reinforced with graphene platelets (GPLs) under combined thermal and electrical fields. Different GPLs distribution patterns are considered 
to enhance the mechanical performance of the material. The effective properties are estimated using the rule of mixtures and the modified 
Halpin–Tsai model. The equations of motion are derived within the quasi-3D beam theory, accounting for shear deformation and stretching 
effects. For the numerical solution, the Differential Quadrature Finite Element Method (DQ-FEM) is employed, offering high accuracy and 
computational efficiency. Results reveal that increasing temperature and applied electric potential reduce the structural stiffness and natural 
frequencies, with the effect becoming more pronounced at higher GPL contents and piezoelectric coefficients. A comprehensive parametric 
study demonstrates the influence of GPL distribution, volume fraction, beam geometry, number of layers, and boundary conditions  
on the vibration response, highlighting the strong coupling between thermal, electrical, and mechanical fields in such smart nanocomposite 
structures. 
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1. INTRODUCTION 

Composite nanomaterials, such as graphene sheets and car-
bon nanotube that have been used as reinforcement elements in 
various materials types, represent some of the most innovative re-
inforcement techniques available today. Graphene is a material 
characterized by its excellent electromechanical and thermal prop-
erties. Graphene exhibits a tensile strength of approximately 130.5 
GPa and an elastic modulus exceeding 1 TPa. Its electrical con-
ductivity surpasses that of copper by a factor of 1000 in terms of 
current carrying capacity. Graphene is composed by a fundamental 
structure that consists of carbon atoms are organized in a regular 
hexagonal structure, resembling graphite, but in a different form a 
single layer one atom thick. Additionally, graphene is exceptionally 
lightweight a sheet of one square meter has a weight of only 0.77 
mg. Due to its exceptional properties and success for enhancing 
materials, graphene has been employed by researchers in several 
studies[1],[2] and [3]. Particularly, a number of publications have 
investigated the use of this material to reinforce structures. The me-
chanical characteristics of epoxy nanocomposites strengthened 
with weight fraction 0.1% graphene Nano platelets (GPLs) and car-
bon nanotubes (CNTs), respectively, were studied and compared 
by Rafiee et al. [4]. They discovered that graphene nanocomposites 
had far greater tensile strength, Young's modulus, and fracture 
toughness are higher in pure epoxy compared to other materials, 
and that GPLs greatly surpass CNTs in terms of enhancing me-
chanical characteristics. Kundalwal et al. [5] reviewed various mi-
cromechanics models to predict the thermomechanical properties 

of fiber and Nano reinforced composites, highlighting their applica-
bility to advanced materials such as graphene based systems. 
More recently, studies have shown that graphene not only improves 
the mechanical performance of nanocomposites but also exhibits 
piezoelectric behavior due to pores, curvature, and flexoelectric ef-
fects. Analytical, numerical, and molecular dynamics models con-
firm that these effects significantly influence the electromechanical 
response, making graphene reinforced nanocomposites highly 
promising for developing lightweight sensors, actuators, and other 
smart devices. Wu et al. [6] explored the dynamic instability of func-
tionally graded nanocomposite beams reinforced with graphene 
platelets (GPLs) under thermal loading and periodic axial forces. 
By combining the Halpin Tsai model with the differential quadrature 
method, they showed that placing more GPLs near the outer sur-
faces increases the natural frequencies and improves stability. 
Their results also highlighted that higher temperature and axial 
compression reduce stiffness and enlarge the instability region. Qa-
deri et al. [7] studied the free vibration of multilayer graphene plate-
let reinforced composite (GPLRC) beams resting on a viscoelastic 
foundation. Using the Halpin Tsai model and higher-order shear de-
formation theory with Navier’s solution, they examined the influence 
of GPL distribution, foundation parameters, and damping. The re-
sults showed that adding GPLs and increasing the Pasternak foun-
dation stiffness significantly improve the natural frequencies, while 
higher damping reduces them. The nonlinear bending behavior of 
multilayer polymer nanocomposite beams reinforced with graphene 
platelets (GPLs) is investigated by Feng et al. [8]. The analysis is 
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developed within the framework of Timoshenko beam theory com-
bined with the von Kármán nonlinear strain displacement relation, 
while the effective properties are estimated using a modified Halpin 
Tsai model. By employing the Ritz method, the authors conduct a 
detailed parametric study to assess the effects of GPL distribution, 
geometry, weight fraction, size, and number of layers. The results 
highlight that even a small amount of GPLs can considerably en-
hance stiffness and reduce deflections, with the most effective re-
inforcement achieved by dispersing square-shaped GPLs near the 
beam’s top and bottom surfaces. Barati and Zenkour [9] examines 
the post-buckling behavior of porous nanocomposite beams rein-
forced with graphene platelets (GPLs) and sup-ported by a nonlin-
ear hardening foundation. The beam model incorporates shear de-
formation effects without the need for correction factors, while the 
material properties are determined using the Halpin Tsai microme-
chanics model. The authors investigate the combined influences of 
porosity distribution, GPL distribution, weight fraction, geometrical 
imperfections, and foundation stiffness on the nonlinear buckling 
response. Results reveal that porosity and GPL reinforcement play 
a decisive role in the stability of both perfect and imperfect beams, 
with symmetric distributions of porosity and GPLs providing the 
highest post-buckling load capacity. In contrast, uniform porosity 
weakens structural performance. Moreover, stronger foundation 
parameters enhance post-buckling resistance, whereas initial im-
perfections significantly affect the deformation path near critical 
loading. Mitao et al. [10] analyze the free and forced vibration be-
havior of functionally graded multilayer graphene platelet 
(GPL)/polymer composite plates using first order shear deformation 
theory. The material properties are determined through the modi-
fied Halpin Tsai model and the rule of mixtures, while the governing 
equations are solved via a Navier based approach for simply sup-
ported plates under dynamic loading. A detailed parametric study 
highlights the effects of GPL distribution, weight fraction, geometry, 
size, and number of layers on the vibrational performance. Findings 
show that even a small addition of GPLs can significantly enhance 
natural frequencies and suppress dynamic deflections. The most 
effective reinforcement is obtained when square-shaped GPLs with 
fewer graphene layers are concentrated near the top and bottom 
surfaces. Furthermore, adopting a multilayer configuration with 
about 10–15 layers provides a reliable approximation of the graded 
profile while maintaining low manufacturing costs. Zhou et al. [11] 
investigated the free vibratory answer of functional graded porous 
nanocomposite rectangular plates structure via the general differ-
ential quadrature method (GDQM) and series solution. The inner 
porosity and graphene platelets (GPLs) are dispersed inside the 
matrix in three distinct arrangements, either uniformly or non-uni-
formly. Sobhy et zankour [12] based on shell theory with four vari-
ables for shear deformation. An investigation is conducted on the 
free vibration behavior of composite shallow shells with dual curva-
ture and elastic foundations that are strengthened by functional 
graded graphene platelets. The Hamiltonian approach is employed 
to derive the system equations of motion, which are subsequently 
tackled analytically. Ganapathi et al. [13] utilized higher order trigo-
nometric shear deformation law to examine the dynamic motion be-
havior of FG-GPLs reinforced porous curved beams while taking 
thickness stretching into account. Mazari et al. [14],[15] have re-
cently conducted complementary studies on the vibrational behav-
ior of graphene platelet reinforced compo-site (GPLRC) beams un-
der distinct external fields. In the first study, the vibration of a nano-
composite beam subjected to a uniform thermal effect was ana-
lyzed using a semi-analytical Galarkin solution in combination with 
a linear regression machine learning model. In the second study, 

the beam was investigated under a non-uniform magnetic field us-
ing the same semi-analytical solution method coupled with other 
machine learning techniques. Together, these works demonstrated 
that GPL distribution patterns, slenderness ratio (L/H), and external 
field intensity play a decisive role in governing the natural frequen-
cies and overall dynamic response of GPLRC beams. Piezoelectric 
components have been widely employed in several essential indus-
trial models and intelligent infrastructures. As a result, they have 
the ability to transform mechanical energy into electrical energy and 
vice versa. These special qualities are utilized in many different ap-
plications, including sensors, actuators, and power devices [16] and 
[17]. El Harti et al. [18] investigate the active vibration control of a 
porous functionally graded (FGM) beam operating in a thermal en-
vironment using piezoelectric sensors and actuators. The model is 
developed using the finite element method and Euler Bernoulli 
beam theory, with the equations of motion derived from Hamilton’s 
principle. Material properties vary through the thickness following a 
power law, and the study examines the effects of temperature, po-
rosity, and sensor placement. Results show that increasing the 
power law exponent lowers the natural frequencies due to reduced 
stiffness, while porosity and temperature amplify vibration ampli-
tudes. Sensor location significantly affects control performance: 
placing sensors near the free end leads to larger vibration ampli-
tudes and reduces the effectiveness of active control. Zenkour and 
Aljadani [19] analyze the electro-mechanical buckling of function-
ally graded piezoelectric  plates using a quasi-3D refined plate the-
ory that incorporates thickness stretching effects. The governing 
equations are derived from the total potential energy principle, and 
an exact solution is obtained for simply supported rectangular 
plates with material properties graded through the thickness ac-
cording to a power law. Results show that including thickness-
stretching leads to lower critical buckling loads compared to models 
that neglect it. Increasing the material exponent reduces stiffness 
and decreases the buckling load, while the sign and magnitude of 
applied electric voltage have a strong influence on buckling behav-
ior. The findings provide valuable insights for the design and opti-
mization of FGP plate devices under combined mechanical and 
electrical loading. Alazwari et al. [20] employed the Differential 
Quadrature Method (DQM) is utilized to examine the crucial buck-
ling temperature of piezoelectric circular Nano plates that are 
strengthened with evenly dispersed graphene platelets (GPLs). 
The Nano plates are positioned on a flexible substrate and exposed 
to an external electric field. The results showed that increasing gra-
phene content, elastic foundation stiffness, and electric field en-
hances buckling resistance, while moisture reduces it. The influ-
ence of boundary conditions and nonlocal effects was also high-
lighted. Qingqing Chen et al. [21] Examine the impact of flexoelec-
tricity upon the vibration behavior of a sandwich Nano beam made 
of spatially graded porous piezoelectric material and enhanced with 
graphene platelets (GPLs) using the differential quadrature 
method. This numerical analysis demonstrates that porosity, GPLs, 
and flexoelectricity play a crucial role in governing the vibration be-
havior of Nano beams. Sobhhy and Mukahal [22] investigated the 
natural oscillation of piezo electromagnetic plates enhanced by FG 
graphene Nano sheets (FG-GNSs) under the influence of outer 
electric and magnetic potentials. The results show that the funda-
mental frequency increases with higher graphene content, mag-
netic potential, and foundation stiffness, while it decreases with 
larger electric potential, aspect ratio, side to thickness ratio, and 
power-law index. Mao and Zhang [23] investigated the buckling and 
post-buckling behavior of a piezoelectric plate strengthened with 
functionally graded graphene. The plate was subjected to electric 
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potential and axial pressures. The researchers employed the differ-
ential quadrature technique and the first order shear distortion plate 
theory to analyze the plate's response. Liang et al. [24] developed 
linear and nonlinear isogeometric finite element models for axially 
functionally graded graphene platelet reinforced compo-site (AFG-
GPLRC) curved beams within the framework of third order shear 
deformation theory and von Kármán’s nonlinearity. Using the mod-
ified Halpin Tsai model and rule of mixture to predict effective ma-
terial properties, and solving the governing equations via an isoge-
ometric analysis (IGA) approach, they validated their framework 
against available results. Their parametric study demonstrated the 
significant influence of geometric parameters, boundary conditions, 
and GPL distribution patterns on the nonlinear bending and vibra-
tion responses of AFG-GPLRC curved beams. Zhang et al. [25] in-
vestigated the nonlinear free vibration and static bending of func-
tionally graded porous graphene platelet reinforced composite 
plates with integrated piezoelectric patches, incorporating the flex-
oelectric effect for the first time. Using the Halpin Tsai model, rule 
of mixture, and GRF scheme to evaluate effective material proper-
ties, they developed an isogeometric analysis framework based on 
FSDT and von Kármán nonlinearity. Their results highlighted the 
significant influence of porosity, GPL distribution, and weight frac-
tion on the mechanical response, showing that the flexoelectric ef-
fect introduces a stiffness hardening mechanism in piezoelectric 
smart structures.  Results show that GPLs, especially when con-
centrated near the surface, significantly improve strength, negative 
electric voltage enhances stability, and uniaxial loading provides 
nearly twice the resistance of biaxial loading. No research has yet 
examined the free vibration behavior of multilayer piezoelectric 
nanocomposite beams reinforced with functionally graded gra-
phene platelets, under the combined influence of an external elec-
tric voltage, a uniform temperature change, and different boundary 
conditions. This paper addresses this gap by employing a quasi-3D 
beam theory with stretching effects. The equations of motion are 
derived using Lagrange’s principle and solved through a robust nu-
merical approach specifically, the differential quadrature finite ele-
ment method (DQ-FEM), which integrates the finite element 
method with the differential quadrature method and has been re-
cently applied in this study [26]. The effects of graphene platelet 
weight fraction, distribution patterns, length to thickness ratio, and 
number of layers, external electric voltage, temperature variation, 
and boundary conditions on the natural frequencies of multilayer 
functionally graded graphene platelet reinforced nanocomposite 
beams are systematically investigated. 

2. GPLRC BEAM MODEL 

In this study, we consider a multilayer piezoelectric nanocom-
posite beam reinforced with functionally graded graphene platelets, 
with dimensions L, b, and ℎ. 

 

Fig. 1.   Dimensions of a GPLRC beam (a),  
different types of distributions (b) 

As seen in Figure 1(a). Throughout the cross sections are de-
fined four different types of reinforcement considered in the current 
research. The beam has NL layers of uniform thickness for each 
layer of thickness h/NL, as indicated in Figure 1(b).In the FG-X type 
GPLRC beam distribution, the surface layers contain more GPL, 
whereas in the FG-O GPLRC type, the mid layers are enriched with 
GPLs. Conversely, in the FG-A GPLRC arrangement, GPL content 
steadily rises from the uppermost to the lowermost layer. Notably, 
in a UD GPLRC beam, GPL content remains consistent across all 
layers. Evidently, the FG-A GPLRC has asymmetry, but the remain-
ing three distributions display symmetry with respect to the mid-
plane [6], [27], [28] and [29]. 

This study investigates structurally graded GPLRC layered 
beams with an even number of layers. The calculation of the vol-

ume fractions 𝑣𝐺𝑃𝐿 of the 𝑘𝑡ℎ layer are obtained for each of the 
four distribution patterns as see in Figure 1 by: 

𝑈 − 𝐺𝑃𝐿𝑅𝐶: 𝑉𝐺𝑃𝐿
(𝐾)
= 𝑉𝐺𝑃𝐿
∗                                                           (1) 

𝑋 − 𝐺𝑃𝐿𝑅𝐶: 𝑉𝐺𝑃𝐿
(𝐾)
= 2𝑉𝐺𝑃𝐿

∗ |2𝐾 − 𝑁𝐿 − 1|/𝑁𝐿                     (2) 

𝑂 − 𝐺𝑃𝐿𝑅𝐶:  𝑉𝐺𝑃𝐿
(𝐾)
= 2𝑉𝐺𝑃𝐿

∗ (1 − |2𝐾 −𝑁𝐿 − 1|/𝑁𝐿)          (3) 

𝐴 − 𝐺𝑃𝐿𝑅𝐶: 𝑉𝐺𝑃𝐿
(𝐾)
= 2𝑉𝐺𝑃𝐿

∗ (2𝐾 − 1)/𝑁𝐿                              (4) 

where NL represent is the entire count of layers in the composite 
beam and k = 1, 2…NL is the kth layer. The overall volume fraction 
of GPLs is determined using: 

𝑉𝐺𝑃𝐿
∗ =

𝑊𝐺𝑃𝐿

𝑊𝐺𝑃𝐿+(𝜌𝐺𝑃𝐿/𝜌𝑚)(1−𝑊𝐺𝑃𝐿)
                                               (5) 

with  

𝑤𝐺𝑃𝐿: the weight fraction of GPLs, 

𝜌𝐺𝑃𝐿: density of graphene platelets, 

𝜌𝑚: polymer matrix beam density. 
To calculate the appropriate efficient Young's modulus E of the 

beam, the enhanced Halpin-Tsai law is utilized, which considers the 
impacts and size of GPL geometry. 

𝐸 =
3

8

1+𝜁𝐿𝜂𝐿𝑉𝐺𝑃𝐿

1−𝜂𝐿𝑉𝐺𝑃𝐿
× 𝐸𝑚 +

5

8

1+𝜁𝑇𝜂𝑇𝑉𝐺𝑃𝐿

1−𝜂𝑇𝑉𝐺𝑃𝐿
× 𝐸𝑚                           (6) 

where 

𝜁𝐿 = 2(𝑎𝐺𝑃𝐿/𝑏𝐺𝑃𝐿), 𝜁𝑇 = 2(𝑏𝐺𝑃𝐿/𝑡𝐺𝑃𝐿)                              (7) 

𝜂𝐿 =
(𝐸𝐺𝑃𝐿/𝐸𝑚)−1

(𝐸𝐺𝑃𝐿/𝐸𝑚)+𝜁𝐿
,  𝜂𝑇 =

(𝐸𝐺𝑃𝐿/𝐸𝑚)−1

(𝐸𝐺𝑃𝐿/𝐸𝑚)+𝜁𝑇
                                  (8) 

𝐿𝐺𝑃𝐿 ,𝑎𝐺𝑃𝐿  and ℎ𝐺𝑃𝐿   represent the nominal length, depth, and 
thickness related to graphene, correspondingly, while 𝐸𝑀 and 𝐸𝐺𝑃𝐿 
are the Young's moduli of the piezoelectric matrix and GPLs. 
The determination of the following physical parameters, effective 
linear thermal expansion coefficient α, mass density ρ, Poisson's 
ratio v, and electrical properties 𝐴𝑖𝑗has been done according to the 

rule of mixtures as: 

𝜌 = 𝜌𝐺𝑃𝐿𝑉𝐺𝑃𝐿 + 𝜌𝑀𝑉𝑀                                                              (9) 

𝜐 = 𝜐𝐺𝑃𝐿  𝑉𝐺𝑃𝐿 + 𝜐𝑀𝑉𝑀                                                            (10) 

𝛼 = 𝛼𝐺𝑃𝐿𝑉𝐺𝑃𝐿 + 𝛼𝑀𝑉𝑀                                                            (11) 

𝐴 = 𝐴𝐺𝑃𝐿𝑉𝐺𝑃𝐿 +𝐴𝑀𝑉𝑀                                                            (12) 

In which 𝑉𝑚 +𝑉𝐺𝑃𝐿 = 1 indicates the connection within the 
volume fractions of the GPL and piezoelectric matrix, 𝑉𝐺𝑃𝐿  and 𝑉𝑚 . 
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3. EQUATIONS OF MOTION 

In which 𝑉𝑚 +𝑉𝐺𝑃𝐿 = 1 indicates the connection within the 
volume fractions of the GPL and piezoelectric matrix, 𝑉𝐺𝑃𝐿  and 𝑉𝑚 . 
The quasi-3D theory is employed in this study to establish the kine-
matic relationships of the beam. A key advantage of this theory lies 
in its ability to account for thickness stretching, which is essential 
for accurately analyzing thermal vibrations. The displacement 
expressions associated with the beam’s kinematics are given as 
[30]-[31] and [32]: 

𝑢(𝑥, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑡) − 𝑧
𝑑𝑤𝑏

𝑑𝑥
− 𝑓(𝑧)

𝑑𝑤𝑠

𝑑𝑥
               

𝑤(𝑥, 𝑧, 𝑡) = 𝑤𝑏(𝑥, 𝑡) + 𝑤𝑠(𝑥, 𝑡) + 𝑔(𝑧)𝑤𝑧(𝑥, 𝑡)
              (13) 

Here, 𝑢0 represents the axial displacement of the mid-plane, 
while the transverse deflection W is decomposed into three compo-
nents: 𝑤𝑏, 𝑤𝑠, and  𝑤𝑧. The first two components correspond to 
the bending and shear displacements, whereas 𝑤𝑧 (x) accounts for 
the stretching contribution. 

The warping function f(z) mention in equation (13) is used to 
describe how both crosswise shear strain and shear stress vary 
across the thickness of a composite beam. 

𝑓(𝑧) =
4𝑧3

3ℎ2
                                                                                  (14) 

𝑔(𝑧) = 1 −
𝑑𝑓(𝑧)

𝑑𝑧
                                                                        (15) 

Based on the quasi-3D displacement field, strain relations are 
expressed as follows: 

{
 
 

 
 𝜀11 =

𝑑𝑈

𝑑𝑥
=
𝑑𝑢0

𝑑𝑥
− 𝑧
𝑑2𝑤𝑏

𝑑𝑥2
− 𝑓(𝑧)

𝑑2𝑤𝑠

𝑑𝑥2

𝜀33 =
𝑑𝑊

𝑑𝑧
=
𝑑𝑔(𝑧)

𝑑𝑧
𝑤𝑧(𝑥, 𝑡)

𝜀13 =
𝑑𝑈

𝑑𝑧
+
𝑑𝑊

𝑑𝑥
= 𝑔(𝑧) (

𝑑𝑤𝑠

𝑑𝑥
+
𝑑𝑤𝑧

𝑑𝑥
)

                                    (16) 

This is the constitutive relationship for the stresses compo-
nents, according to the piezo elasticity theory [33]: 

{

𝜎11
𝜎33
𝜎13
} = [
𝑄11 𝑄13 0
𝑄13 𝑄33 0
0 0 𝑄55

] {
𝜀11 − 𝛼𝑇
𝜀33 −𝛼𝑇
𝜀13

} − [
0 𝐴31
0 𝐴33
𝐴15 0

] {
𝐸̂1
𝐸̂3
}        (17) 

By which the 𝑄𝑖𝑗 denote the elastic coefficients of the beam 

that can be stated as: 

𝑄11 = 𝑄33 =
𝐸

1−𝜐2
,  𝑄13 =

𝐸𝜐

1−𝜐2
, 𝑄55 =

𝐸

2(1+𝜐)
                                  (18) 

In addition, T is the applied temperature. 

𝑇(𝑥, 𝑦, 𝑧) = 𝑇0 + 𝛥𝑇,                                                              (19) 

In which, 𝑇0  represent the ambient room temperature and ∆T 
is the constant temperature variation. 

Moreover, the electric displacements Di have the following writ-
ing: 

{
𝐷1
𝐷3
} = [

0 0 𝐴15
𝐴31 𝐴33 0

] {
𝜀11 −𝛼𝑇
𝜀33 −𝛼𝑇
𝜀13

} + [
𝑠11 0
0 𝑠33

] {
𝐸̂1
𝐸̂3
}            (20) 

The relationship of the electric field is: 

{
𝐸̂1
𝐸̂3
} = {

𝑑𝜓

𝑑𝑥
𝑐𝑜𝑠 (

𝜋𝑧

ℎ
)

−
𝜋

ℎ
𝜓𝑠𝑖𝑛(

𝜋𝑧

ℎ
)
}− {

0
2𝑉0

ℎ

}                                                     (21) 

Whereas 𝜓 is the intermediate surface electric potential of the 
beam and 𝑉0 is the external electric voltage. 

𝑉̅0 = 𝑉0ℎ
2𝐸𝐺𝑃𝐿                                                                            (22) 

4. EQUATIONS OF MOTION DERIVATION  

The motion equations can be extracted from Lagrange's princi-
ple in the next form: 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑞̇𝑖
) +

𝜕𝐿

𝜕𝑞𝑖
= 0                                                                      (23) 

Where 𝑞𝑖 are the unknown coefficients 𝑢0, 𝑤𝑏 , 𝑤𝑠 et 𝑤𝑧. 𝑞̇ is 
the time derivative of 𝑞 and L is the total energy, which includes 
strain, kinetic and Strain energies [26],[30],[32],[33],[34],[35] and 
[36]. 

Where the strain energy is written as follow: 

𝑈𝑏 =
1

2
∫ (𝜎𝑖𝑗𝜀𝑖𝑗 − 𝐷𝑖𝐸𝑖) 𝑑𝑣                                                    (24) 

By substituting Eqs. (16), (17), (20), and (21) into Eq. (24), the 
final formulation of the strain energy is obtained as presented in 
Appendex A (see Eqs. (A.1)– (A.3)). 

The defined kinetic energy 𝐾𝑏related to studied problem is pro-
vided by next formula: 

𝐾𝑏 =
1

2
∫ 𝜌(𝑈̇2 + 𝑉̇2 + 𝑊̇2)  𝑑𝑣                                            (25) 

The following formula is obtained by deriving the displacement 
field and replacing it in the earlier equation. 

𝐾𝑏 =
1

2
∫ 𝜌((𝑢̇(𝑥, 𝑡) − 𝑧

𝑑𝑤̇𝑏

𝑑𝑥
− 𝑓(𝑧)

𝑑𝑤̇𝑠

𝑑𝑥
)
2

+ (𝑤̇𝑏(𝑥, 𝑡) +

𝑤̇𝑠(𝑥, 𝑡) + 𝑔(𝑧)𝑤̇𝑧(𝑥, 𝑡))
2)   𝑑𝑣                                                 (26) 

𝐾𝑏 =
1

2

∫

 
 
 
 
 
 

(

 
 
 
 
 

𝐽1(𝑢̇
2 + 𝑤̇𝑏

2 + 𝑤̇𝑠
2 + 2𝑤̇𝑏𝑤̇𝑠)

−2𝐽2𝑢̇
𝑑𝑤̇𝑏

𝑑𝑥
− 2𝐽3𝑢̇

𝑑𝑤̇𝑆

𝑑𝑥

+2𝐽4
𝑑𝑤̇𝑏

𝑑𝑥

𝑑𝑤̇𝑠

𝑑𝑥
+ 𝐽5 (

𝑑𝑤̇𝑏

𝑑𝑥
)
2

+𝐽6 (
𝑑𝑤̇𝑠

𝑑𝑥
)
2

+ 𝐽7𝑤̇𝑧
2

+2𝐽8(𝑤̇𝑏𝑤̇𝑧 + 𝑤̇𝑠𝑤̇𝑧) )

 
 
 
 
 

𝑙

0

𝑑𝑥                     (27) 

where 

{𝐽1: 𝐽8} = 𝑏𝜌∫ (1, 𝑧, 𝑓, 𝑧𝑓, 𝑧
2, 𝑓2, 𝑔2, 𝑔)𝑑𝑧

ℎ

2

−
ℎ

2

                         (28) 

Using Eq. (29), the potential energy 𝑉𝑏  of the multilayer FG-
GPLRC beam in response to an applied externally applied electric 
voltage and a constant temperature variation is described [6]: 

𝑉𝑏 = −
1

2
∫ 𝑁𝑇𝑂𝑇 (

𝑑𝑊

𝑑𝑥
)
2

𝑑𝑥
𝑙

0

                                                     (29) 

with 

(
𝑑𝑊

𝑑𝑥
)
2

= (
𝑑𝑤𝑏

𝑑𝑥
)
2

+ (
𝑑𝑤𝑠

𝑑𝑥
)
2

+ 2
𝑑𝑤𝑏

𝑑𝑥

𝑑𝑤𝑠

𝑑𝑥
  

+𝑔2 (
𝑑𝑤𝑧

𝑑𝑥
)
2

+ 2𝑔
𝑑𝑤𝑏

𝑑𝑥

𝑑𝑤𝑧

𝑑𝑥
+ 2𝑔

𝑑𝑤𝑠

𝑑𝑥

𝑑𝑤𝑧

𝑑𝑥
                                    (30) 

Equation (31) is the result of substituting Equations (29)–(30): 
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𝑉𝑏 = −
1

2

∫

 
 
 
 
 
 

𝑁𝑇𝑂𝑇

(

 
 
 
 
(
𝑑𝑤𝑏

𝑑𝑥
)
2

+ (
𝑑𝑤𝑠

𝑑𝑥
)
2

+2
𝑑𝑤𝑏

𝑑𝑥

𝑑𝑤𝑠

𝑑𝑥
+ 𝑔2 (

𝑑𝑤𝑧

𝑑𝑥
)
2

+2𝑔
𝑑𝑤𝑏

𝑑𝑥

𝑑𝑤𝑧

𝑑𝑥

+2𝑔
𝑑𝑤𝑠

𝑑𝑥

𝑑𝑤𝑧

𝑑𝑥 )

 
 
 
 

𝑑𝑥

𝑙

0

            (31) 

5. THE COUPLED DIFFERENTIAL QUADRATURE FINITE  
ELEMENT METHOD 

5.1. The improved differential quadrature rule 

Differential quadrature technique is numerical method that esti-
mate the derivatives of a given function by calculating a weighted 
sum of field variables along a line that passes through a certain 
point. The test functions for polynomial basis functions DQM are 
implemented using a collection of Lagrange polynomials 
[[26]26,37]. 

Hence, the derivative of the subject function f(x) of degree n at 
a discrete position 𝑥𝑖 may be expressed as: 

𝜕𝑛𝑓(𝑥;𝑡)

𝜕𝑥𝑛
=∑ 𝐴𝑖𝑗

(𝑛)
𝑁

𝑗=1
𝑓(𝑥𝑗 ; 𝑡)   (𝑖 = 1,2,3, . . . , 𝑁)               (32) 

The weighting coefficient, denoted as 𝐴𝑖𝑗
(𝑛)

, is a parameter re-

lated to the order n derivative. When n is equal to 1, the weighting 
factor will be determined in the following manner. 

𝐴𝑖𝑗
(1)
=

𝑀(𝑥𝑖)

(𝑥𝑖−𝑥𝑗)𝑀(𝑥𝑗)
      𝑖 ≠ 𝑗, 𝑗 = 1,2, . . . , 𝑁                   

𝐴𝑖𝑖
(1)
= −∑ 𝐴𝑖𝑗

(1)
          𝑖

𝑁

𝑗=1,𝑗≠𝑖
= 1,2, . . . , 𝑁                       

           (33) 

where 

𝑀(𝑥𝑖) = ∏ (𝑥𝑖 − 𝑥𝑘)
𝑁
𝑘=1,𝑘≠𝑖

𝑀(𝑥𝑗) = ∏ (𝑥𝑗 − 𝑥𝑘)
𝑁

𝑘=1,𝑘≠𝑖

                                                   (34) 

The given recurrence connection is utilized to compute the 
weighting factors for second and larger-order derivatives. If n > 1, 
which is given as: 

𝐴𝑖𝑗
(𝑛)
= 𝑛(𝐴𝑖𝑗

(1)
∗ 𝐴𝑖𝑖
(𝑛−1)
−
𝐴𝑖𝑗
(𝑛−1)

(𝑥𝑖−𝑥𝑗)
)               

 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,2, . . . , 𝑁, 𝑛 > 1

𝐴𝑖𝑖
(1)
= −∑ 𝐴𝑖𝑗

(1)
          𝑖

𝑁

𝑗=1,𝑗≠𝑖
= 1,2, . . . , 𝑁 

                             (35) 

5.2. Gauss-Lobatto quadrature principle 

Gauss-Lobatto quadrature rules refer to a mathematical topic 
is available in various works of mathematics. The quadrature rule 
of Gauss Lobatto for a given function f(x) as prescribed in [-1, 1] 
with a degree of accuracy (2n-3) is as follows [26]: 

∫ 𝑓(𝑥)𝑑𝑥 =∑ 𝐶𝑗𝑓(𝑥𝑗)
𝑁

𝑗=1

1

−1

                                                  (36) 

Integration can be obtained using the Gauss-Lobatto weighting 
coefficient 𝐶𝑗as follows: 

𝐶1 = 𝐶𝑁 =
2

𝑁(𝑁−1)
,        

𝐶𝑗 =
2

𝑁(𝑁−1)[𝑃𝑁−1(𝑥𝑗)]
2      (𝑗 ≠ 1,𝑁)                                        (37) 

The (j-1) root of the primary derivative of PN-1 (x)  is denoted by 
𝑥𝑗 . Equations (38) and (39) of the recursively formula will be used 

to solve the Legendre polynomials' roots. This will facilitate the pro-
cess of locating numerous roots. 

𝑃𝑁+1(𝑥) =
2𝑁+1

𝑁+1
𝑥𝑃𝑁(𝑥) −

𝑁

𝑁+1
𝑃𝑁+1(𝑥)                                (38) 

By which𝑃0(𝑥) = 1, 𝑃1(𝑥) = 𝑥. The following formula can 

be used to find the 𝑛𝑡ℎ order derivation of the Legendre polynomi-
als: 

𝑃𝑁+1
(𝑛)
(𝑥) = 𝑥𝑃𝑁

(𝑛)
(𝑥) + (𝑁 + 𝑛)𝑃𝑁

(𝑛)
(𝑥)                               (39) 

The selection of sampling points depends on the grid distribu-
tion of Gauss-Lobatto nodes to offer a higher density of points near 
the boundaries. 

𝑥𝑗 = −𝑐𝑜𝑠 (
𝑗−1

𝑁−1
𝜋)                                                                    (40) 

Iteratively solving Gauss-Lobatto nodes is done using the New-
ton-Raphson technique. 

𝑥𝑖𝑇+1 = 𝑥𝑖𝑇 − 𝐹′(𝑥
𝑖𝑇)
−1

𝐹(𝑥𝑖𝑇),       𝑖𝑇 = 0,1, . ..                    (41) 

in which  

𝑥 = [𝑥2,  𝑥3,  … , 𝑥𝑁−1]
𝑇  

𝑥 = [𝑥2,  𝑥3,  … , 𝑥𝑁−1]
𝑇                                                            (42) 

𝐹(𝑥) = [𝑓(𝑥2), 𝑓(𝑥3), . . . , 𝑓(𝑥𝑁−1)]
𝑇                                      (43) 

𝐹′(𝑥) = [
𝜕𝑓(𝑥𝑗)

𝜕𝑥𝑖
]
(𝑁−2)×(𝑁−2)

                                                    (44) 

𝑓(𝑥𝑗) =∑
1

𝑥𝑗−𝑥𝑘

𝑁

𝑘=1,𝑘≠𝑗

       𝑗 = 2,3, . . . , 𝑁 − 1                 (45) 

𝜕𝑓(𝑥𝑗)

𝜕𝑥𝑖
=

{
 
 

 
 
−∑

1

(𝑥𝑗−𝑥𝑘)
2 ,           (𝑖 = 𝑗)

𝑁

𝑘=1,𝑘≠𝑗
1

(𝑥𝑗−𝑥𝑘)
2 ,                        (𝑖 ≠ 𝑗)   

                        (46) 

In the 𝑖th iteration step, k represents the value of x. This ap-
proach exhibits less sensitivity to the beginning value. Equation 
(46) provides the numerical estimations that are utilized like initial 
values. 

5.3. The enhanced Finite element method based Differential 
Quadrature 

A variety of engineering problems can be solved numerically 
with the help of the finite element method (FEM), which is recog-
nized as an efficient numerical tool. 

Unfortunately, there are instances when this approach strug-
gles with numerical instability, speed of computation, and conver-
gence. To improve its robustness, stability, and speed in the calcu-
lus, this method must now be combined with other numerical or 
semi-numerical methods. With the purpose to parametrize the sys-
tem energies, “the differential quadrature “rules and Gauss-Lobatto 
quadrature are applied [26]. 

Considering that the function of deflection is: 
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𝑢(𝑥) = ∑ 𝐿𝑖
𝑁
𝑖=1 (𝑥)𝑢𝑖   

𝑤(𝑥) = ∑ 𝐿𝑖
𝑁
𝑖=1 (𝑥)𝑤𝑖  

                                                             (47) 

Where the Lagrange polynomial is represented by 𝐿𝑖, the mo-
tions of the Gauss Lobatto quadrature nodes or the DQ nodal shifts 
of the beam finite element are represented by 𝑢𝑖 and 𝑤𝑖.The for-
mulas for strain, kinetic and potential energies in equations (A.1-27-
31) may be expressed are presented in Appendix A as Eqs. ((A.4)–
(A.6)), using Gauss-Lobatto quadrature and DQ rules. 

Equations (33–35) are used in order to compute the matrices 
containing the weighting factors for the DQ procedures for the initial 
and second order derivatives, correspondingly, by respect to the 

Gauss Lobatto nodes. These matrices are shown by 𝐴(1) and 𝐴(2). 

𝐶 = 𝑑𝑖𝑎𝑔[𝐶1, 𝐶2, . . . 𝐶𝑁]                                                           (48) 

Where 𝐶𝑗  represent the corresponding weighting factors of in-

tegration by Gauss-Lobatto. 

𝑢̅𝑇 = [𝑢1𝑢2. . . 𝑢𝑁]   

𝑤̅𝑇 = [𝑤1𝑤2 . . . 𝑤𝑁] 
                                                                  (49) 

To achieve coherence within elements, the element motion vec-
tors must be constructed: 

𝑢𝑇 = [𝑢1𝑢3
′ 𝑢3. . . 𝑢𝑁−2𝑢𝑁𝑢𝑁

′ ]     

𝑤𝑇 = [𝑤1𝑤3
′𝑤3 . . . 𝑤𝑁−2𝑤𝑁𝑤𝑁

′ ] 
                                                   (50) 

The relationship between u and w is established by the utiliza-
tion of the DQ rule: 

𝑢 = 𝑄𝑢̅,        𝑤 = 𝑄𝑤̅                                                                  (51) 

with 

𝑄 =

[
 
 
 
 
 
 
1 0 0 ⋯ 0 0

𝐴1,1
(1) 𝐴1,2

(1) 𝐴1,3
(1) ⋯ 𝐴1,𝑁−1

(1) 𝐴1,𝑁
(1)

0 0 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 0 1

𝐴𝑁,1
(1) 𝐴𝑁,2

(1) 𝐴𝑁,3
(1) ⋯ 𝐴𝑁,𝑁−1

(1) 𝐴𝑁,𝑁
(1)
]
 
 
 
 
 
 

                       (52) 

For quadrature and differentiation, all node     distribution types 
are [-1, 1]. Thus, to utilize them in practical applications, it is neces-
sary to make the following modifications to the differential and quad-
rature matrices: 

𝐶̅ =
𝑙𝑒

2
𝐶,        𝐴̅(1) =

2

𝑙𝑒
𝐴(1),         𝐴̅(2) =

4

𝑙𝑒
2 𝐴
(2)                       (53) 

By which the length of the beam element is written by le. 
It is possible to replace the energy using Eqs. (32)–(52). To de-

rive the fundamental equations of motion, Eqs. (A.1), (27), and (31) 
are combined to obtain Eq. (A.7), where the constituents of the 
mass and stiffness matrices are presented in Appendix as Eqs. 
(A.8) and (A.9), respectively. 

6. NULERICAL RESULTS 

This section presents the comprehensive quantitative findings 
for the dynamic examination of a piezoelectric beam reinforceded 
with functionally graded graphene platelets that was exposed to an 
external electric voltage in a thermal environment considering sev-
eral ends supports, including clamped- clamped  (CC), simply sup-
ported- simply supported (SS), clamped-free (CF), and clamped-

simply supported (CS). Unless specified otherwise, the simply sup-
ported-simply supported (S-S) beam and the following constant 
data were used in the numerical examples: 

𝐿𝐺𝑃𝐿 = 2.5 μm, 𝑏𝐺𝑃𝐿1.5 μm, ℎ𝐺𝑃𝐿 = 1.5 nm ,
𝐿

ℎ
=

5,𝑊𝐺𝑃𝐿 = 0.5%, 𝐿 = 1m,𝑁𝐿 = 20, 𝑒0 = 1000 .  

The non-dimensional natural frequency indicated below is used 
for all findings in tables and figures.  

𝜔̅ = 𝜔ℎ√
𝜌𝑚

𝐸𝑚
                                                                               (54) 

The piezoelectric matrix and GPL properties are presented in 
Table 1 as [21] and [32]. 

Tab. 1. Material constituents and properties 

 “Materials” “Piezoelectric” “GPLs” 

E(Gpa) 1.4 1010 

𝝂 0.29 0.186 

𝝆(𝐠/𝒄𝒎𝟑) 1.92 1.06 

𝛂(𝟏𝟎−𝟔𝑲−𝟏) 60 5 

𝐀𝟑𝟏(𝟏𝟎
−𝟑𝑪/𝒎𝟐) 50.535 50.535 e0 

𝐀𝟑𝟑(𝟏𝟎
−𝟑𝑪/𝒎𝟐) 13.212 13.212 e0 

𝐀𝟏𝟓(𝟏𝟎
−𝟑𝑪/𝒎𝟐) -15.93 -15.93 e0 

𝐬𝟏𝟏(𝟏𝟎
−𝟗𝑪/𝑽𝒎) 0.5385 0.5385 e0 

𝐬𝟑𝟑(𝟏𝟎
−𝟗𝑪/𝑽𝒎) 0.59571 0.59571 e0 

6.1. Convergence investigation 

To investigate the convergence of the current assessment, Ta-
ble 2 lists the non-dimensional basic frequencies of S-S multilayer 
GPL/piezoelectric nanocomposite beams with various reinforcing 
forms, such as “UD, FG-O, FG-X, and FG-A”. This study considers 
varying numbers of elements and grid points, with a fixed number 
of layers NL=20, L/h=5 and a weight fraction 𝑊𝐺𝑃𝐿=0,5%. In Figure 
2, the number of elements is fixed at 𝑁𝑒 = 1  while the number of 
grid points is varied. Conversely, in Figure 3, the number of grid 
points is fixed at N=6 while the number of elements is changed. 

Tab. 2.  Convergence study of DQFEM related to linear free vibration  
nanocomposite beam armed with GPLs 

Ne N UD FG-X FG-O FG-A 

 

1 

4 0.3061 0.3637 0.2351 0.3062 

6 0.2742 0.3258 0.2105 0.2674 

8 0.2741 0.3257 0.2104 0.2673 

10 0.2741 0.3257 0.2104 0.2673 

 

2 

4 0.2752 0.3270 0.2113 0.2686 

6 0.2741 0.3257 0.2104 0.2673 

8 0.2741 0.3257 0.2104 0.2673 

10 0.2741 0.3257 0.2104 0.2673 

 

3 

4 0.2743 0.3259 0.2106 0.2676 

6 0.2741 0.3257 0.2104 0.2673 

8 0.2741 0.3257 0.2104 0.2673 

10 0.2741 0.3257 0.2104 0.2673 
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Fig. 2.  Convergent of the vibration frequency of a piezoelectric beam 

armed with GPLs as a function of the amount of grid points 

 
Fig. 3.   The convergence of the natural frequency of a piezoelectric beam 

reinforced with graphene platelets as a variable dependent on the 
quantity of components 

As observed in Figures 2 and 3, the outcomes begin to con-
verge at N=4 with Ne=1, and achieve full convergence at N=6 with 
Ne=1. These results confirm the efficiency of the proposed method 
in delivering highly accurate solutions with minimal computational 
increments. In addition, the convergence behavior is not affected 
by the type of graphene platelet distribution, which mainly influ-
ences the values of the non-dimensional natural frequency. Specif-
ically, the FG-X distribution yields the highest natural frequency, fol-
lowed by the UD and FG-A distributions, while the FG-O distribution 
exhibits the lowest values. Based on these observations and to en-
sure consistency with previous studies in the literature, we adopt 
N=10 sample points and Ne=1 element for the remainder of the re-
search. 

6.2. Comparison studies  

To verify the coherence and precision of the current findings 
from the novel resolution procedure based DQ-FEM for different 
boundary conditions, the non-dimensional natural frequency of an 
FG beam is checked with those given by Şimşek et al.[38] beam 
model in Table 3, for numerous L/h proportion, and k=0.3 is used 
as the power law exponent. The properties that follow related to the 
ceramic (Alumina) and metal (Aluminum) used to make the FG 
beam:  

Alumina: 𝐸𝑐 = 380 𝐺𝑝𝑎, 𝜌𝑐 = 3800 𝑘𝑔/𝑚
3, 𝑣m = 0.23        

Aluminum: 𝐸𝑚 = 70 𝐺𝑝𝑎, 𝜌𝑚2700𝑘𝑔𝑚
3, 𝑣m = 0.23 

The following formula is used to represent the non-dimensional 
vibration frequency for validation purposes. 

𝜔̅ = 𝜔𝐿2√
𝐼1

ℎ2 ∫ 𝐸 𝑑𝑧
ℎ 2⁄
−ℎ/2

,      𝐼1 = ∫ 𝜌 𝑑𝑧
ℎ 2⁄

−ℎ/2
                                (55) 

Table 3 shows that for different L/h ratios (10, 30, and 100) and 
numerous end supports, the present results are in good agreement 
with the reference solutions reported by Şimşek [37]. 

Tab. 3.  Comparative examination of the natural frequencies of various 
boundary conditions with varying L/h ratios 

BC  L/h=10 L/h=30 L/h=100 

 

S-S 

Şimşek 
[37] 

2.695 2.737 2.742 

Present 2.739 2.775 2.779 

 

C-F 

Şimşek 
[37] 

0.969 0.976 0.977 

Present 0.976 0.982 0.983 

 

C-C 

Şimşek 
[37] 

5.811 6.167 6.212 

Present 5.947 6.242 6.279 

Tab. 4.  Comparative of non-dimensional frequency with Wu et al. 7 for 
various GPL distributions at ΔT = 0 K, L/H = 10, and 𝑊𝐺𝑃𝐿= 
0.3% 

 Pure 
epoxy 

UD FG-X FG-O FG-A 

Wu et al.[6] 0.5998 0.8475 0.9293 0.7508 0.8164 

Present 0.5977 0.8445 0.9300 0.7401 0.8158 

 
For the second comparison, Table 4 presents the non-dimen-

sional frequencies of FG multilayer graphene platelet–reinforced 
composite beams with different GPL distribution patterns, consider-
ing a weight fraction of 0.3% and an aspect ratio of L/h=10, under 
clamped–clamped (C–C) boundary conditions. The material prop-
erties are taken as follows: 𝐸𝑚 = 3 𝐺𝑝𝑎, 𝜌𝑚 = 1200𝑘g/𝑚

3, 
𝝂𝑚 = 0.3 and α𝑚 = 60 × 10

−6𝐾−1 for the polymer matrix and 
𝐸𝐺𝑃𝐿 = 1010 𝐺𝑝𝑎, 𝜌𝐺𝑃𝐿 = 1062.5 𝑘g/𝑚

3, 𝝂𝐺𝑃𝐿 = 0.186 
and α𝐺𝑃𝐿 = 5 × 10

−6𝐾−1 for Graphene Platelets. The results 
show that, across all GPL distribution patterns, the present model 
is in close agreement with the reference solution. 

Additionally, Table 5 reports a validation of the present DQ-
FEM formulation under thermal effects by comparing the fundamen-
tal frequency of a C–C FG-X beam (L/h=10, 𝑊𝐺𝑃𝐿 = 0.3%) with 
the reference data provided by Wu et al. [6] for (ΔT=0,50, and 
100K). The close agreement confirms the accuracy and reliability of 
the proposed method. 

Tab. 5. Comparative of the non-dimensional fundamental frequency  ω1 
for Ps/Pcr=0 between the present results and those of Wu et al. 
under different temperature conditions 

ΔT Present Wu et al.[6] 

0 K 0.9666 0.9289 

50 K 0.9275 0.8883 

100 K 0.8865 0.8501 

The non-dimensional frequency can be represented by the following 
formula: 
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𝜔̅ = 𝜔𝐿√
𝐼00

𝐴110
,      𝐼00 = ∫ 𝜌𝑚  𝑑𝑧

ℎ 2⁄

−
ℎ

2

,      

𝐴110 = ∫ 𝑄11  𝑑𝑧
ℎ 2⁄

−ℎ/2
                                                                    (56) 

6.3. Parametric examination  

Figure 4 displays the non-dimensional frequency for S-S 
(simply supported-simply supported) GPLRC beam with varying 
numbers of layers, 𝑊𝐺𝑃𝐿 = 0.5% and L/h=5. It is observed that 
for UD and FG-A distributions, the frequency remains nearly un-
changed as the number of layers increases, whereas it increases 
for FG-X and decreases for FG-O. Moreover, the results stabilize 
when the number of layers reaches NL=15. Consequently, NL=20 
will be used to acquire all research findings, ensuring maximum ac-
curacy. Among the four distribution patterns, the beam with UD pat-
tern is the least affected by variations in NL. 

 
Fig. 4.   The no-dimensional frequency in relation to the quantity of layers 

(NL) with respect to various forms 

The linear vibration frequency result of simply support- simply 
support FG piezoelectric reinforced beam considering various 
GPLs weight fraction, different patterns and a wide range of length-
to-depth ratios (L/h) is showed in Table 6. We can clearly see from 
the obtained outcomes, that the weight fraction and length to thick-
ness ratio have significant impacts on frequency parameter.  The 
behavior by vibration frequency increases as the weight fraction in-
creases. Conversely, As the L/h ratio grows, the natural frequency 
decreases. The beam with FG-X reinforcement offers the extreme 
natural frequency, tracked by UD, FG-A, and FG-O types reinforce-
ments. This is because, compared to other distributions, the com-
posite beam with the FG-X pattern exhibits significantly higher ri-
gidity. 

Tab. 6.  Dynamic results of FG-GPLRC piezoelectric beam diverse types 
of distribution and different values of the length-to-thikness pro-
portion L/h 

𝑾𝑮𝑷𝑳  
 

Patterns UD FG-X FG-O FG-A 

0.1% 

L/h=5 0.1581 0.1765     0.1373     0.1569     

L/h =10 0.0448     0.0448     0.0348     0.0398     

L/h 15 0.0179         0.0200     0.0155     0.0177     

L/h =20 0.0101 0.0112 0.0087 0.0100 

0.3% 

L/h=5 0.2237 0.2618     0.1776     0.2194     

L/h =10 0.0567     0.0665     0.0450     0.0557     

L/h 15 0.0253     0.0296     0.0201     0.0248     

L/h =20 0.0142 0.0167 0.0113 0.0140 

0.5% 

L/h=5 0.2741     0.3257     0.2104     0.2673     

L/h =10 0.0695   0.0827     0.0533     0.0678     

L/h 15 0.0310     0.0368     0.0238     0.0302     

L/h =20 0.0174 0.0207 0.0134 0.0170 

Tab. 7. Dynamic Change in the non-dimensional frequency of the S-S 
beams for different temperatures changes, different patterns and 
various values for weight fraction 

∆𝑻 

 

𝑾𝑮𝑷𝑳  
 

0.1% 0.3% 0.5% 

0 

UD 0.1581 0.2237 0.2741 

FG-X 0.1765 0.2618 0.3257 

FG-O 0.1373 0.1776 0.2104 

FG-A 0.1569 0.2194 0.2673 

100 

UD 0.1413 0.2000 0.2451 

FG-X 0.1616 0.2419 0.3017 

FG-O 0.1175 0.1467 0.1711 

FG-A 0.1415 0.1983 0.2417 

200 

UD 0.1221 0.1730 0.2122 

FG-X 0.1452 0.2201 0.2757 

FG-O 0.0936 0.1071 0.1194 

FG-A 0.1240 0.1741 0.2122 

Table 7 exhibits the temperature change impacts with weight 
fraction on the first natural frequency of piezoelectric GPLRC beam 
for various distributions (“FG-X, UD, FG-O, and FG-A”). The out-
comes indicate that an increase in temperature changes ∆T (0, 
100, and 200) resulted in a decrease in non-dimensionless frequen-
cies. As well as, the non-dimensionless frequencies decrease for 
all distributions when “the length of the beam to thickness (L/h)” ra-
tio increases, indicating that these characteristics may have a con-
siderable influence on the frequency. Additionally, similar to other 
former results, FG-X provides the highest frequency, while FG-O 
gives the lowest. UD and FG-A rank just after FG-X pattern respec-
tively for all L/h values. 

Figure 5 shows that the natural frequency decreases as L/h in-
creases, with the FG-X distribution giving the highest values. Under 
a thermal load (ΔT=100K), the frequencies drop further because 
thermal stresses reduce the beam’s stiffness. When L/h>10, the 
trend becomes irregular. This happens because slender beams 
have very low flexural rigidity, and thermal compressive stresses 
weaken them even more. As a result, the beam becomes highly 
sensitive to small disturbances, which explains the instability ob-
served in the frequency response. 

Figure 6 illustrates the impact of the weight fraction and disper-
sion forms of GPL on the non-dimensional frequency of FG gra-
phene composite beams. It is observed that the frequency in-
creases even with a little dose of GPL, and that this enhancement 
increases with more GPL weight fractions. In addition, compared 
with the “UD, FG-O and FG-A GPLRC beams, the FG-X GPLRC 
beam” can vibrate in higher values of frequency. 
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(a) 

 
(b) 
Fig. 5.  The no-dimensional The impact of the beam's span-to-thickness 

portion on the natural frequency of GPLRC beams  (a) ∆𝑻 =
𝟎𝑲 and (b) ∆𝑻 = 𝟏𝟎𝟎𝑲 

 
(a) 

 
(b) 
Fig. 6.  The impact of the L/h portion on the no dimensionless natural  

frequency related to GPLRC beams (a) ∆𝑻 = 𝟎𝑲 and (b) ∆𝑻 =
𝟏𝟎𝟎𝑲 

Figure 7 illustrates the effect of GPLs geometric and dimension 
on the ultimate vibratory frequency parameter of GPLRC beam with 
FG-X. A greater ratio of 𝑎𝐺𝑃𝐿/𝑏𝐺𝑃𝐿 denotes a bigger GPL surface 
area; whereas a greater number of 𝑏𝐺𝑃𝐿/𝑡𝐺𝑃𝐿 indicate that, every 
single GPL has a reduced number of graphene layers. This figure's 
outcomes shows that an increase in aGPL/bGPL and 𝑏𝐺𝑃𝐿/𝑡𝐺𝑃𝐿 
causes the non-dimensionless frequency to rise for all numerical 
values of ΔT. aGPL/bGPL and bGPL/tGPL effects become consid-
erably less noticeable when 𝑏𝐺𝑃𝐿/𝑡𝐺𝑃𝐿 is greater than 103 and the 
frequency seems to stabilize. In addition, Figures 5, 6 and 7 make 
it clear that as the temperature disparity (∆T) expand, the value of 
vibratory frequency reduce, indicating a drop in the global stiffness 
of the structure. 

 
(a) 

 
(b) 
Fig. 7.  The impact of GPL dimensions and geometry on the vibratory  

frequency of FG-X type GPRLC beam (a) ∆𝑻 = 𝟎𝑲 and (b) ∆𝑻 =
𝟏𝟎𝟎 

For a multi-layer “FG-X GPLRC” beam, considering L/h=5, 
𝑊𝐺𝑃𝐿 = 0.5 and simply supported boundary conditions on both 
sides, Figure 8 shows the effect of the weight fraction and temper-
ature change on the non-dimensionless frequency. Due to the high 
thermal conductivity of graphene, the results indicate a decrease in 
frequency as the temperature difference increases. This effect be-
comes more pronounced at higher GPL weight fractions. 

The variations in the non-dimensional vibratory frequency of 
FG-X pattern taking into consideration diverse values of  the voltage 
𝑉0 applied from an external source against the weight fraction 
𝑊𝐺𝑃𝐿,  and considering numerous values of piezoelectric factor 𝑒0 
in the corresponding figures a (𝑒0 = 100), b (𝑒0 = 300), c (𝑒0 =
600) and  d (𝑒0 = 1000) are illustrated in Figure 9. As noted, that 
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the beam stiffness decreases as the external electric voltage 𝑉0 in-
creases leading to a decrement in the natural frequency. It is ap-
parent, from all the figures that the impact of 𝑉0  on natural fre-
quency becomes more significant as the weight fraction and the pi-
ezoelectric multiple increases, due to the high electrical conductivity 
of the graphene platelets. 

 

 
Fig. 8.  The impact of the weight portion and temperature increase on the 

no dimensional vibration frequency of GPLRC beams 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 9.  The influence of the external electric voltage and piezoelectric  
component on the vibration frequency of FG-GPLRC beams 

In Figure 10, a three dimensional bar chart depicting the change 
in the value of natural frequency related to a simply supported 
simply supported reinforced GPL beams is shown. This represen-
tation considers different values of external electric voltage and 
temperature difference, with an FG-X dispersion pattern. It is ob-
served that the frequency steadily decreases as the temperature 
difference diminishes and electric voltage parameters increase, this 
is in line with the well-established idea that higher values of these 
parameters weaken structural rigidity. 

The influence of diverse end supports on the non-dimensional 
frequency for an FG-X pattern with L/h=5 and different weight frac-
tion values are displayed in Figure 11. As can be observed, the 
clamped-clamped boundary condition yields the highest vibration 
frequency, followed by the clamped-simply supported and simply 
supported-simply supported configurations. In contrast, the 
clamped-free boundary condition results in the lowest natural fre-
quency values. 

 
Fig. 10.   Natural Frequencies as Three-Dimensional Bar Chart Under  

different values of External Electric Voltages and Temperature 
Differences values 

 
Fig. 10.   Impact of boundary conditions on the natural frequency of GPLRC 

beams 

Table 8 exhibits the numerical values for the free variation in 
the non-dimensional frequency of reinforced nanocomposite 
beams by layered GPLs in FG-X repartition with 𝑊𝐺𝑃𝐿=0.5% for 
various L/h values and boundary conditions. As expected, a con-
siderably higher natural frequency is seen for the C-C beam type 
support for all L/h ratio values followed by C-S, S-S and finally C-F 
nanocomposite beam. In addition, as seen an increment the slen-
derness ratios lead to the reduction in the ultimate results by the 
vibratory response of the nanocomposite beam as a result of the 
decrease in the pliability of the composite structure. 

Tab. 8. Frequency values of functionally graded multilayer X-GPLRC 
beams with varying boundary conditions and slenderness ratios 

BC L/h=5 L/h=10 L/h=15 L/h=20 

S-S 0.3257     0.0827     0.0368     0.0207 

C-C 0.7302     0.1888     0.0844     0.0476 

C-S 0.5071     0.1297     0.0579     0.0326 

C-F 0.1180     0.0297     0.0132     0.0074 

7. CONCLUSION 

In This Work. The study investigates the free vibration charac-
teristics of multilayered piezoelectric beams reinforced with func-
tionally graded graphene platelets (FG-GPLRC). The beams are 
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subjected to an external electric voltage and uniform temperature 
variation, considering various boundary conditions. The effective 
Young's moduli have been derived for the beam under the Halpin-
Tsai model. The Poisson's ration, "mass density", thermal expan-
sion coefficient, and piezoelectric characteristics were derived un-
der four different FG-GPL distribution types of the ruling mixture. 
The displacement components were represented using an im-
proved shear and stretched deformation beam approach. (Q3DBT) 
concerning the effect of stretching thickness. Moreover, the equa-
tions of motion were obtained by Lagrange's principle. In addition, 
these formulations were verified through comparative analysis with 
results from other previous publications. According to the results of 
this investigation, some crucial conclusions can be drawn as fol-
lows: 

− The employed DQFEM based numerical tool has a fast conver-

gence, compact computation execution time machine, and ro-

bust numerical stability, where it converges for one element and 

a number of sampling points equal to 6. 

− When comparing the current DQFEM to the traditional finite el-
ement approach and analytical solutions, and the computation 
times are notably faster. 

− For all possible forms of FG-GPL distribution, it was determined 

that when we increase in “the external electric voltage, the pie-

zoelectric” factor and the applied temperature results in a re-

duction in structural stiffness. The impacts of external electric 

voltage and temperature difference on natural frequency be-

comes more significant as the weight fraction and the piezoe-

lectric multiple increases, Because of the graphene platelets' 

excellent thermal and electrical conductivity.  

− The type of distribution of the GPL has a substantial influence 
on the GPL weight fraction and geometry. Furthermore, “when 
the GPL width-to-thickness ratio is higher than”103, the influ-
ence of GPL geometry tends to be significantly less evident. 

− The nanocomposite beam, while reinforced with FG-X, exhibits 
an extremely high vibration frequency, compared with the “UD, 
FG-O and FG-A GPLRC beams”. 

− For each GPLs shape, when the functionally graded graphene 

platelets used as reinforcing components, significantly in-

creases the stiffness and strength of composite beams. 
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