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Abstract: This study investigates the free vibration behaviour of piezoelectric multi-layered functionally graded nanocomposite beams
reinforced with graphene platelets (GPLs) under combined thermal and electrical fields. Different GPLs distribution patterns are considered
to enhance the mechanical performance of the material. The effective properties are estimated using the rule of mixtures and the modified
Halpin-Tsai model. The equations of motion are derived within the quasi-3D beam theory, accounting for shear deformation and stretching
effects. For the numerical solution, the Differential Quadrature Finite Element Method (DQ-FEM) is employed, offering high accuracy and
computational efficiency. Results reveal that increasing temperature and applied electric potential reduce the structural stiffness and natural
frequencies, with the effect becoming more pronounced at higher GPL contents and piezoelectric coefficients. A comprehensive parametric
study demonstrates the influence of GPL distribution, volume fraction, beam geometry, number of layers, and boundary conditions
on the vibration response, highlighting the strong coupling between thermal, electrical, and mechanical fields in such smart nanocomposite

structures.
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1. INTRODUCTION

Composite nanomaterials, such as graphene sheets and car-
bon nanotube that have been used as reinforcement elements in
various materials types, represent some of the most innovative re-
inforcement techniques available today. Graphene is a material
characterized by its excellent electromechanical and thermal prop-
erties. Graphene exhibits a tensile strength of approximately 130.5
GPa and an elastic modulus exceeding 1 TPa. Its electrical con-
ductivity surpasses that of copper by a factor of 1000 in terms of
current carrying capacity. Graphene is composed by a fundamental
structure that consists of carbon atoms are organized in a regular
hexagonal structure, resembling graphite, but in a different form a
single layer one atom thick. Additionally, graphene is exceptionally
lightweight a sheet of one square meter has a weight of only 0.77
mg. Due to its exceptional properties and success for enhancing
materials, graphene has been employed by researchers in several
studies[1],[2] and [3]. Particularly, a number of publications have
investigated the use of this material to reinforce structures. The me-
chanical characteristics of epoxy nanocomposites strengthened
with weight fraction 0.1% graphene Nano platelets (GPLs) and car-
bon nanotubes (CNTSs), respectively, were studied and compared
by Rafiee et al. [4]. They discovered that graphene nanocomposites
had far greater tensile strength, Young's modulus, and fracture
toughness are higher in pure epoxy compared to other materials,
and that GPLs greatly surpass CNTs in terms of enhancing me-
chanical characteristics. Kundalwal et al. [5] reviewed various mi-
cromechanics models to predict the thermomechanical properties

of fiber and Nano reinforced composites, highlighting their applica-
bility to advanced materials such as graphene based systems.
More recently, studies have shown that graphene not only improves
the mechanical performance of nanocomposites but also exhibits
piezoelectric behavior due to pores, curvature, and flexoelectric ef-
fects. Analytical, numerical, and molecular dynamics models con-
firm that these effects significantly influence the electromechanical
response, making graphene reinforced nanocomposites highly
promising for developing lightweight sensors, actuators, and other
smart devices. Wu et al. [6] explored the dynamic instability of func-
tionally graded nanocomposite beams reinforced with graphene
platelets (GPLs) under thermal loading and periodic axial forces.
By combining the Halpin Tsai model with the differential quadrature
method, they showed that placing more GPLs near the outer sur-
faces increases the natural frequencies and improves stability.
Their results also highlighted that higher temperature and axial
compression reduce stiffness and enlarge the instability region. Qa-
deri et al. [7] studied the free vibration of multilayer graphene plate-
let reinforced composite (GPLRC) beams resting on a viscoelastic
foundation. Using the Halpin Tsai model and higher-order shear de-
formation theory with Navier’s solution, they examined the influence
of GPL distribution, foundation parameters, and damping. The re-
sults showed that adding GPLs and increasing the Pasternak foun-
dation stiffness significantly improve the natural frequencies, while
higher damping reduces them. The nonlinear bending behavior of
multilayer polymer nanocomposite beams reinforced with graphene
platelets (GPLS) is investigated by Feng et al. [8]. The analysis is
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developed within the framework of Timoshenko beam theory com-
bined with the von Karman nonlinear strain displacement relation,
while the effective properties are estimated using a modified Halpin
Tsai model. By employing the Ritz method, the authors conduct a
detailed parametric study to assess the effects of GPL distribution,
geometry, weight fraction, size, and number of layers. The results
highlight that even a small amount of GPLs can considerably en-
hance stiffness and reduce deflections, with the most effective re-
inforcement achieved by dispersing square-shaped GPLs near the
beam'’s top and bottom surfaces. Barati and Zenkour [9] examines
the post-buckling behavior of porous nanocomposite beams rein-
forced with graphene platelets (GPLs) and sup-ported by a nonlin-
ear hardening foundation. The beam model incorporates shear de-
formation effects without the need for correction factors, while the
material properties are determined using the Halpin Tsai microme-
chanics model. The authors investigate the combined influences of
porosity distribution, GPL distribution, weight fraction, geometrical
imperfections, and foundation stiffness on the nonlinear buckling
response. Results reveal that porosity and GPL reinforcement play
a decisive role in the stability of both perfect and imperfect beams,
with symmetric distributions of porosity and GPLs providing the
highest post-buckling load capacity. In contrast, uniform porosity
weakens structural performance. Moreover, stronger foundation
parameters enhance post-buckling resistance, whereas initial im-
perfections significantly affect the deformation path near critical
loading. Mitao et al. [10] analyze the free and forced vibration be-
havior of functionally graded multilayer graphene platelet
(GPL)/polymer composite plates using first order shear deformation
theory. The material properties are determined through the modi-
fied Halpin Tsai model and the rule of mixtures, while the governing
equations are solved via a Navier based approach for simply sup-
ported plates under dynamic loading. A detailed parametric study
highlights the effects of GPL distribution, weight fraction, geometry,
size, and number of layers on the vibrational performance. Findings
show that even a small addition of GPLs can significantly enhance
natural frequencies and suppress dynamic deflections. The most
effective reinforcement is obtained when square-shaped GPLs with
fewer graphene layers are concentrated near the top and bottom
surfaces. Furthermore, adopting a multilayer configuration with
about 10-15 layers provides a reliable approximation of the graded
profile while maintaining low manufacturing costs. Zhou et al. [11]
investigated the free vibratory answer of functional graded porous
nanocomposite rectangular plates structure via the general differ-
ential quadrature method (GDQM) and series solution. The inner
porosity and graphene platelets (GPLs) are dispersed inside the
matrix in three distinct arrangements, either uniformly or non-uni-
formly. Sobhy et zankour [12] based on shell theory with four vari-
ables for shear deformation. An investigation is conducted on the
free vibration behavior of composite shallow shells with dual curva-
ture and elastic foundations that are strengthened by functional
graded graphene platelets. The Hamiltonian approach is employed
to derive the system equations of motion, which are subsequently
tackled analytically. Ganapathi et al. [13] utilized higher order trigo-
nometric shear deformation law to examine the dynamic motion be-
havior of FG-GPLs reinforced porous curved beams while taking
thickness stretching into account. Mazari et al. [14],[15] have re-
cently conducted complementary studies on the vibrational behav-
ior of graphene platelet reinforced compo-site (GPLRC) beams un-
der distinct external fields. In the first study, the vibration of a nano-
composite beam subjected to a uniform thermal effect was ana-
lyzed using a semi-analytical Galarkin solution in combination with
a linear regression machine learning model. In the second study,
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the beam was investigated under a non-uniform magnetic field us-
ing the same semi-analytical solution method coupled with other
machine learning techniques. Together, these works demonstrated
that GPL distribution patterns, slenderness ratio (L/H), and external
field intensity play a decisive role in governing the natural frequen-
cies and overall dynamic response of GPLRC beams. Piezoelectric
components have been widely employed in several essential indus-
trial models and intelligent infrastructures. As a result, they have
the ability to transform mechanical energy into electrical energy and
vice versa. These special qualities are utilized in many different ap-
plications, including sensors, actuators, and power devices [16] and
[17]. El Harti et al. [18] investigate the active vibration control of a
porous functionally graded (FGM) beam operating in a thermal en-
vironment using piezoelectric sensors and actuators. The model is
developed using the finite element method and Euler Bernoulli
beam theory, with the equations of motion derived from Hamilton’s
principle. Material properties vary through the thickness following a
power law, and the study examines the effects of temperature, po-
rosity, and sensor placement. Results show that increasing the
power law exponent lowers the natural frequencies due to reduced
stiffness, while porosity and temperature amplify vibration ampli-
tudes. Sensor location significantly affects control performance:
placing sensors near the free end leads to larger vibration ampli-
tudes and reduces the effectiveness of active control. Zenkour and
Aljadani [19] analyze the electro-mechanical buckling of function-
ally graded piezoelectric plates using a quasi-3D refined plate the-
ory that incorporates thickness stretching effects. The governing
equations are derived from the total potential energy principle, and
an exact solution is obtained for simply supported rectangular
plates with material properties graded through the thickness ac-
cording to a power law. Results show that including thickness-
stretching leads to lower critical buckling loads compared to models
that neglect it. Increasing the material exponent reduces stiffness
and decreases the buckling load, while the sign and magnitude of
applied electric voltage have a strong influence on buckling behav-
ior. The findings provide valuable insights for the design and opti-
mization of FGP plate devices under combined mechanical and
electrical loading. Alazwari et al. [20] employed the Differential
Quadrature Method (DQM) is utilized to examine the crucial buck-
ling temperature of piezoelectric circular Nano plates that are
strengthened with evenly dispersed graphene platelets (GPLS).
The Nano plates are positioned on aflexible substrate and exposed
to an external electric field. The results showed that increasing gra-
phene content, elastic foundation stiffness, and electric field en-
hances buckling resistance, while moisture reduces it. The influ-
ence of boundary conditions and nonlocal effects was also high-
lighted. Qingging Chen et al. [21] Examine the impact of flexoelec-
tricity upon the vibration behavior of a sandwich Nano beam made
of spatially graded porous piezoelectric material and enhanced with
graphene platelets (GPLs) using the differential quadrature
method. This numerical analysis demonstrates that porosity, GPLSs,
and flexoelectricity play a crucial role in governing the vibration be-
havior of Nano beams. Sobhhy and Mukahal [22] investigated the
natural oscillation of piezo electromagnetic plates enhanced by FG
graphene Nano sheets (FG-GNSs) under the influence of outer
electric and magnetic potentials. The results show that the funda-
mental frequency increases with higher graphene content, mag-
netic potential, and foundation stiffness, while it decreases with
larger electric potential, aspect ratio, side to thickness ratio, and
power-law index. Mao and Zhang [23] investigated the buckling and
post-buckling behavior of a piezoelectric plate strengthened with
functionally graded graphene. The plate was subjected to electric
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potential and axial pressures. The researchers employed the differ-
ential quadrature technique and the first order shear distortion plate
theory to analyze the plate's response. Liang et al. [24] developed
linear and nonlinear isogeometric finite element models for axially
functionally graded graphene platelet reinforced compo-site (AFG-
GPLRC) curved beams within the framework of third order shear
deformation theory and von Karman'’s nonlinearity. Using the mod-
ified Halpin Tsai model and rule of mixture to predict effective ma-
terial properties, and solving the governing equations via an isoge-
ometric analysis (IGA) approach, they validated their framework
against available results. Their parametric study demonstrated the
significant influence of geometric parameters, boundary conditions,
and GPL distribution patterns on the nonlinear bending and vibra-
tion responses of AFG-GPLRC curved beams. Zhang et al. [25] in-
vestigated the nonlinear free vibration and static bending of func-
tionally graded porous graphene platelet reinforced composite
plates with integrated piezoelectric patches, incorporating the flex-
oelectric effect for the first time. Using the Halpin Tsai model, rule
of mixture, and GRF scheme to evaluate effective material proper-
ties, they developed an isogeometric analysis framework based on
FSDT and von Karman nonlinearity. Their results highlighted the
significant influence of porosity, GPL distribution, and weight frac-
tion on the mechanical response, showing that the flexoelectric ef-
fect introduces a stiffness hardening mechanism in piezoelectric
smart structures. Results show that GPLs, especially when con-
centrated near the surface, significantly improve strength, negative
electric voltage enhances stability, and uniaxial loading provides
nearly twice the resistance of biaxial loading. No research has yet
examined the free vibration behavior of multilayer piezoelectric
nanocomposite beams reinforced with functionally graded gra-
phene platelets, under the combined influence of an external elec-
tric voltage, a uniform temperature change, and different boundary
conditions. This paper addresses this gap by employing a quasi-3D
beam theory with stretching effects. The equations of motion are
derived using Lagrange’s principle and solved through a robust nu-
merical approach specifically, the differential quadrature finite ele-
ment method (DQ-FEM), which integrates the finite element
method with the differential quadrature method and has been re-
cently applied in this study [26]. The effects of graphene platelet
weight fraction, distribution patterns, length to thickness ratio, and
number of layers, external electric voltage, temperature variation,
and boundary conditions on the natural frequencies of multilayer
functionally graded graphene platelet reinforced nanocomposite
beams are systematically investigated.

2. GPLRC BEAM MODEL
In this study, we consider a multilayer piezoelectric nanocom-

posite beam reinforced with functionally graded graphene platelets,
with dimensions L, b, and h.

(a) A
— L r> —
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(b) A-A
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U-GPLRC X-GPLRC O-GPLRC A-GPLRC

Fig. 1. Dimensions of a GPLRC beam (a),
different types of distributions (b)
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As seen in Figure 1(a). Throughout the cross sections are de-
fined four different types of reinforcement considered in the current
research. The beam has NL layers of uniform thickness for each
layer of thickness h/NL, as indicated in Figure 1(b).In the FG-X type
GPLRC beam distribution, the surface layers contain more GPL,
whereas in the FG-O GPLRC type, the mid layers are enriched with
GPLs. Conversely, in the FG-A GPLRC arrangement, GPL content
steadily rises from the uppermost to the lowermost layer. Notably,
in a UD GPLRC beam, GPL content remains consistent across all
layers. Evidently, the FG-A GPLRC has asymmetry, but the remain-
ing three distributions display symmetry with respect to the mid-
plane [6], [27], [28] and [29].

This study investigates structurally graded GPLRC layered
beams with an even number of layers. The calculation of the vol-
ume fractions v;p, of the k" layer are obtained for each of the
four distribution patterns as see in Figure 1 by:

U - GPLRC: V) = Vip, (1)
X — GPLRC: V&) = 2V, 12K — N, — 1|/N, 2)
0 — GPLRC: V&) = 2V, (1 — 12K — N, — 1I/N))  (3)
A—GPLRC: V) =2V, (2K — 1)/N, (4)

where NL represent is the entire count of layers in the composite
beam and k = 1, 2...NL is the kth layer. The overall volume fraction
of GPLs is determined using:

* w

Vers = WGPL‘*‘(PGPL;;::I)(l_WGPL) ©)
with

wgp,: the weight fraction of GPLs,

Pep: density of graphene platelets,

Pm: Polymer matrix beam density.

To calculate the appropriate efficient Young's modulus E of the
beam, the enhanced Halpin-Tsai law is utilized, which considers the
impacts and size of GPL geometry.

_ 31+8niVepL - 51+{rnrVepL < E (6)
8 1-nLVgpL 8 1-nrVgpPL
where
¢, = 2(agp/bgpL), $r = 2(bgpL/tepL) (7)
n, = (EGgpL/Em)-1 _ (BgpL/Em)-1 (8)
L™ Eepr/Em)+a” 'T T (EgpL/Em)+iT

Lepr,agp, @nd hgp, represent the nominal length, depth, and
thickness related to graphene, correspondingly, while E,, and E;p;,
are the Young's moduli of the piezoelectric matrix and GPLs.

The determination of the following physical parameters, effective
linear thermal expansion coefficient a, mass density p, Poisson's
ratio v, and electrical properties A; ;has been done according to the
rule of mixtures as:

P = PerLVerr + PuVu )
U = Vgp Vip, + Uy Vi (10)
a = agpVepr + ayVuy (1)
A= AgpVepr + AnVu (12)

In which V,, + V;p, = 1 indicates the connection within the
volume fractions of the GPL and piezoelectric matrix, V;p, and 17,.
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3. EQUATIONS OF MOTION

In which V,, + V5, = 1 indicates the connection within the
volume fract|ons of the GPL and piezoelectric matrix, V;p, and V,,,.
The quasi-3D theory is employed in this study to establish the kine-
matic relationships of the beam. A key advantage of this theory lies
in its ability to account for thickness stretching, which is essential
for accurately analyzing thermal vibrations. The displacement
expressions associated with the beam’s kinematics are given as
[30]-[31] and [32]:

u(x,z,t) = up(x, t) — Z——f( )=
w(x,z,t) = wy(x, t) + w (x, t) + g(z)wz (x,t)

dws

(13)

Here, u, represents the axial displacement of the mid-plane,
while the transverse deflection W is decomposed into three compo-
nents: w,, w,, and w,. The first two components correspond to
the bending and shear displacements, whereas w,, (x) accounts for
the stretching contribution.

The warping function f(z) mention in equation (13) is used to
describe how both crosswise shear strain and shear stress vary
across the thickness of a composite beam.

f@) =% (14)
9(2)=1-22 (15)

Based on the quasi-3D displacement field, strain relations are
expressed as follows:

— U _duy _ a?ws
&1 = dx  dx dx2 f( ) dx?
dW dg(z)
£ = W = 2D (1) (16)

du = dw dws dwz)
E13 = — = —_—
13 dz toax dx g( ) ( dx

This is the constitutive relationship for the stresses compo-
nents, according to the piezo elasticity theory [33]:
E
) o

011 Qi1 @iz O J(&1—al 0 Az
O33¢=1Q13 Q33 0 [{&zz—alt—| 0 Az
13 0 0 Qss €13 15 0

By which the Q;; denote the elastic coefficients of the beam
that can be stated as:

Q11 =033 = 1 UZ;Q13=%;Q55=2(1L+U) (18)
In addition, T is the applied temperature.
T(x,y,z) =T, + AT, (19)

In which, T, represent the ambient room temperature and AT
is the constant temperature variation.
Moreover, the electric displacements Di have the following writ-

ing:
—aT N
Dl} [ 0 0 A15] 4[5 01(E;
= &33 —aT - 20
{D3 A3y Azz 0 33813 0 s33] (B, (20)

The relationship of the electric field is:
ay nz
3 = cos (— 0
{5:1} — d; cos ( hﬂz _ {ZVU} (21)
E; —sin (T) n
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Whereas 1 is the intermediate surface electric potential of the
beam and Vo is the external electric voltage.

Vo = Voh?*Egp, (22)
4, EQUATIONS OF MOTION DERIVATION

The motion equations can be extracted from Lagrange's princi-
ple in the next form:

d (oL JaL
- (E) +2=0 (29)
Where q; are the unknown coefficients u,, wy, wg et w,. g is
the time derivative of g and L is the total energy, which includes
strain, kinetic and Strain energies [26],(30],[32],[33],[34],[35] and
[36].
Where the strain energy is written as follow:

Up = %f (Uijfij

By substituting Egs. (16), (17), (20), and (21) into Eq. (24), the
final formulation of the strain energy is obtained as presented in
Appendex A (see Egs. (A.1)- (A.3)).

The defined kinetic energy K related to studied problem is pro-
vided by next formula:

— D;E;) dv (24)

K, = %f p(U%+V2 +W?2) dv (25)

The following formula is obtained by deriving the displacement
field and replacing it in the earlier equation.

Ky =§fp<(u(x t)—z

— @) + iy 0) +

1, (6, ) + g (W, 05, 6))? ) v (26
(‘ ], (@2 +Wb + W2 + 2w, W)
~2J Sl — 2] 0 S

w w. w 2

Ky =1 +2], S5 4 ) (22 b) dx (27)
+/6 (dws) + ], W7
Jo +2J5 (W, W, + Wyi,)
where
h

UriJs} = bp [%(L, 2. f, 2f, 2%, f, 9%, g)dz (28)

Using Eq. (29), the potential energy V,, of the multilayer FG-
GPLRC beam in response to an applied externally applied electric
voltage and a constant temperature variation is described [6]:

Vbz_%j:NTOT( ) dx (29)
with

() = () (B) + 2 me

+g? (dWZ)2+2g‘%%+zg%% (30)

Equation (31) is the result of substituting Equations (29)—(30):
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| () + (3
dwpdws | o (dl)z
V, = -3 Nror dx dx dx dx (31)

dwp dwz
+2g=2
g dx dx

dwg dwy,

0 +2‘g dx dx

5. THE COUPLED DIFFERENTIAL QUADRATURE FINITE
ELEMENT METHOD

5.1. The improved differential quadrature rule

Differential quadrature technique is numerical method that esti-
mate the derivatives of a given function by calculating a weighted
sum of field variables along a line that passes through a certain
point. The test functions for polynomial basis functions DQM are
implemented using a collection of Lagrange polynomials
[[26]26,37].

Hence, the derivative of the subject function f(x) of degree n at
a discrete position x; may be expressed as:

n N
e Z AP Fit) (= 1,23,...,N) (32)
j=1

ax™
The weighting coefficient, denoted as Ag.l), is a parameter re-
lated to the order n derivative. When n is equal to 1, the weighting
factor will be determined in the following manner.

W __ ME)
g (xi—xj)M(xj) L#FJ],]= 1,2,...,N
; o (33)
Agi)=_2~ . 'Agj) i=12,...,N
Jj=1,j#i
where

M(x;) = TTizy e (i — 1)
M%) =TTy, (% — 20

The given recurrence connection is utilized to compute the
weighting factors for second and larger-order derivatives. If n > 1,
which is given as:

(n-1)
) _ D, ,m-1) A
A= n(Aij * Ay _—>

(xi=xj)

i#j,i,j=12,...,Nn>1 (35)

(34)

i=12,...,N

5.2. Gauss-Lobatto quadrature principle

Gauss-Lobatto quadrature rules refer to a mathematical topic
is available in various works of mathematics. The quadrature rule
of Gauss Lobatto for a given function f(x) as prescribed in [-1, 1]
with a degree of accuracy (2n-3) is as follows [26]:

f_ SGdx = YL Gf(x) (36)

Integration can be obtained using the Gauss-Lobatto weighting
coefficient C;as follows:

2

Ci=0Cy = N(N-1)’

acta mechanica et automatica, vol.19 no.4 (2025)

2

- 1\1(1\1—1)[1)1\,_1(;c]-)]2

G (G +1,N) (37)
The (j-1) root of the primary derivative of Px.1(x) is denoted by
x;. Equations (38) and (39) of the recursively formula will be used
to solve the Legendre polynomials' roots. This will facilitate the pro-
cess of locating numerous roots.
2N+1

Pys1 () = 225 xPy () = 2= Py s () (38)

By whichP,(x) = 1, P, (x) = x. The following formula can
be used to find the n" order derivation of the Legendre polynomi-
als:

P (x) = xP{ (%) + (N + )P (x) (39)

The selection of sampling points depends on the grid distribu-
tion of Gauss-Lobatto nodes to offer a higher density of points near
the boundaries.

x; = —cos (22 ) (40

N-1

Iteratively solving Gauss-Lobatto nodes is done using the New-
ton-Raphson technique.

. . it~ ]
X+ = xiT — ') "F(xIT), T =0,1,... (41)
in which

x =[xy, X3, 0o, Xy_1]T

x =[xy, X3, w0, Xy_1]T (42)

F(x) = [f(x), f(x3), .o, fy—1)]" (43)

F'(x) = [% (44)
i dv-2)x(v-2)

N
1 .
fx) = E T T 23,...,N—1 (45)
k=1,k#j
N

1
7 Zk:l,k;,- (%) (46)

6xl- 1
—, L+
(xj—xk)z @@+
In the it™iteration step, k represents the value of x. This ap-
proach exhibits less sensitivity to the beginning value. Equation
(46) provides the numerical estimations that are utilized like initial
values.

5.3. The enhanced Finite element method based Differential
Quadrature

A variety of engineering problems can be solved numerically
with the help of the finite element method (FEM), which is recog-
nized as an efficient numerical tool.

Unfortunately, there are instances when this approach strug-
gles with numerical instability, speed of computation, and conver-
gence. To improve its robustness, stability, and speed in the calcu-
lus, this method must now be combined with other numerical or
semi-numerical methods. With the purpose to parametrize the sys-
tem energies, “the differential quadrature “rules and Gauss-Lobatto
quadrature are applied [26].

Considering that the function of deflection is:
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u(x) = XL, L (O
w(x) = XiL; L (Ow;

Where the Lagrange polynomial is represented by L;, the mo-
tions of the Gauss Lobatto quadrature nodes or the DQ nodal shifts
of the beam finite element are represented by u; and w;.The for-
mulas for strain, kinetic and potential energies in equations (A.1-27-
31) may be expressed are presented in Appendix A as Eqs. ((A.4)-
(A.6)), using Gauss-Lobatto quadrature and DQ rules.

Equations (33-35) are used in order to compute the matrices
containing the weighting factors for the DQ procedures for the initial
and second order derivatives, correspondingly, by respect to the
Gauss Lobatto nodes. These matrices are shown by A™ and A,

C = diag[Cy,C,,...Cy] (48)

Where C; represent the corresponding weighting factors of in-
tegration by Gauss-Lobatto.

(47)

al = [ugu,.. . uy]
o7 —
wl = [wyw,...wy]

(49)

To achieve coherence within elements, the element motion vec-
tors must be constructed:

ul = [u ufus. .. uy_ Uyl
wl = [wywiws...wy_,wywi ]

(50)

The relationship between u and w is established by the utiliza-
tion of the DQ rule:

u=Qu, w=Qw (51)
with
1 0 0 - 0 0
A AL AT - Al A
o={? ¥ L v 2 0 52)
0 0 0 - 0 1
LAY AR) AR~ AW A

For quadrature and differentiation, all node  distribution types
are [-1, 1]. Thus, to utilize them in practical applications, it is neces-
sary to make the following modifications to the differential and quad-
rature matrices:

C=tec 1020 J@ =2, (53)
2’ le ! 12

By which the length of the beam element is written by /e.

Itis possible to replace the energy using Egs. (32)-(52). To de-
rive the fundamental equations of motion, Egs. (A.1), (27), and (31)
are combined to obtain Eq. (A.7), where the constituents of the
mass and stiffness matrices are presented in Appendix as Egs.
(A.8) and (A.9), respectively.

6. NULERICAL RESULTS

This section presents the comprehensive quantitative findings
for the dynamic examination of a piezoelectric beam reinforceded
with functionally graded graphene platelets that was exposed to an
external electric voltage in a thermal environment considering sev-
eral ends supports, including clamped- clamped (CC), simply sup-
ported- simply supported (SS), clamped-free (CF), and clamped-
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simply supported (CS). Unless specified otherwise, the simply sup-
ported-simply supported (S-S) beam and the following constant
data were used in the numerical examples:

Lepp = 2.5 um, bgp; 1.5 pm, hgp, = 1.5 nm ,% =

5, Wgpy, = 0.5%, L = 1m,NL = 20,e, = 1000 .

The non-dimensional natural frequency indicated below is used
for all findings in tables and figures.

@ = wh |2 (54)

Em

The piezoelectric matrix and GPL properties are presented in
Table 1 as [21] and [32).

Tab. 1. Material constituents and properties

Materials Piezoelectric GPLs

E(Gpa) 14 1010

v 0.29 0.186

p(g/cm?) 1.92 1.06

a(1075K1) 60 5

A3,(1073C/m?) 50.535 50.535 e,
A33(1073C/m?) 13.212 13212 e,
A15(1073C/m?) -15.93 -15.93 e,
511(107°C/Vm) 0.5385 0.5385 e,
s33(107°C/Vm) 0.59571 0.59571 e,

6.1. Convergence investigation

To investigate the convergence of the current assessment, Ta-
ble 2 lists the non-dimensional basic frequencies of S-S multilayer
GPL/piezoelectric nanocomposite beams with various reinforcing
forms, such as “UD, FG-O, FG-X, and FG-A". This study considers
varying numbers of elements and grid points, with a fixed number
of layers NL=20, L/h=5 and a weight fraction W, =0,5%. In Figure
2, the number of elements is fixed at N, = 1 while the number of
grid points is varied. Conversely, in Figure 3, the number of grid
points is fixed at N=6 while the number of elements is changed.

Tab. 2. Convergence study of DQFEM related to linear free vibration
nanocomposite beam armed with GPLs

Ne N uD FG-X FG-0 FG-A
4 0.3061 | 0.3637 | 0.2351 | 0.3062
1 6 0.2742 | 0.3258 | 0.2105 | 0.2674

8 0.2741 | 0.3257 | 0.2104 | 0.2673
10 0.2741 | 0.3257 | 0.2104 | 0.2673
0.2752 | 0.3270 | 0.2113 | 0.2686
2 6 0.2741 | 0.3257 | 0.2104 | 0.2673
0.2741 | 0.3257 | 0.2104 | 0.2673
10 0.2741 | 0.3257 | 0.2104 | 0.2673
0.2743 | 0.3259 | 0.2106 | 0.2676
3 6 0.2741 | 0.3257 | 0.2104 | 0.2673
0.2741 | 0.3257 | 0.2104 | 0.2673
10 0.2741 | 0.3257 | 0.2104 | 0.2673




DOI 10.2478/ama-2025-0081

FG-A patt

B °rn.

0 5 10 15 20 25 30
N

Fig. 2. Convergent of the vibration frequency of a piezoelectric beam
armed with GPLs as a function of the amount of grid points
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Fig. 3. The convergence of the natural frequency of a piezoelectric beam

reinforced with graphene platelets as a variable dependent on the
quantity of components

As observed in Figures 2 and 3, the outcomes begin to con-
verge at N=4 with Ne=1, and achieve full convergence at N=6 with
Ne=1. These results confirm the efficiency of the proposed method
in delivering highly accurate solutions with minimal computational
increments. In addition, the convergence behavior is not affected
by the type of graphene platelet distribution, which mainly influ-
ences the values of the non-dimensional natural frequency. Specif-
ically, the FG-X distribution yields the highest natural frequency, fol-
lowed by the UD and FG-A distributions, while the FG-O distribution
exhibits the lowest values. Based on these observations and to en-
sure consistency with previous studies in the literature, we adopt
N=10 sample points and Ne=1 element for the remainder of the re-
search.

6.2. Comparison studies

To verify the coherence and precision of the current findings
from the novel resolution procedure based DQ-FEM for different
boundary conditions, the non-dimensional natural frequency of an
FG beam is checked with those given by Simsek et al.[38] beam
model in Table 3, for numerous L/h proportion, and k=0.3 is used
as the power law exponent. The properties that follow related to the
ceramic (Alumina) and metal (Aluminum) used to make the FG
beam:

Alumina: E, = 380 Gpa, p, = 3800 kg/m3,v,, = 0.23
Aluminum: E,,, = 70 Gpa, p,,2700kgm?3,v,, = 0.23

acta mechanica et automatica, vol.19 no.4 (2025)

The following formula is used to represent the non-dimensional
vibration frequency for validation purposes.

o= wl?

Ih

n2 (M2 gap’

—h/2

h/2
11 - f—h/zp dz

(59)

Table 3 shows that for different L/h ratios (10, 30, and 100) and
numerous end supports, the present results are in good agreement
with the reference solutions reported by Simsek [37].

Tab. 3. Comparative examination of the natural frequencies of various
boundary conditions with varying L/h ratios

BC L/h=10 LIh=30 L/h=100
Simsek 2.695 2.737 2.742
S-S [37]
Present 2.739 2.775 2.779
Simsek 0.969 0.976 0.977
C-F [37]
Present 0.976 0.982 0.983
Simsek 5.811 6.167 6.212
c-C [37]
Present 5.947 6.242 6.279

Tab. 4. Comparative of non-dimensional frequency with Wu et al. 7 for
various GPL distributions at AT =0 K, L/H = 10, and W, =

0.3%
Pure ub FG-X FG-O FG-A
epoxy
Wu et al.[6]] 0.5998 | 0.8475 0.9293 | 0.7508 | 0.8164
Present | 0.5977 | 0.8445 0.9300 | 0.7401 | 0.8158

For the second comparison, Table 4 presents the non-dimen-
sional frequencies of FG multilayer graphene platelet—reinforced
composite beams with different GPL distribution patterns, consider-
ing a weight fraction of 0.3% and an aspect ratio of L/h=10, under
clamped-clamped (C-C) boundary conditions. The material prop-
erties are taken as follows: E,, = 3 Gpa, p,, = 1200kg/m?3,
v,, = 0.3 and a,,, = 60 X 106K~ for the polymer matrix and
Egp, = 1010 Gpa, pgp, = 1062.5 kg/m3, vsp, = 0.186
and agp, = 5% 107K~ for Graphene Platelets. The results
show that, across all GPL distribution patterns, the present model
is in close agreement with the reference solution.

Additionally, Table 5 reports a validation of the present DQ-
FEM formulation under thermal effects by comparing the fundamen-
tal frequency of a C-C FG-X beam (L/h=10, W;p,, = 0.3%) with
the reference data provided by Wu et al. [6] for (A7=0,50, and
100K). The close agreement confirms the accuracy and reliability of
the proposed method.

Tab. 5. Comparative of the non-dimensional fundamental frequency w,
for Ps/Pcr=0 between the present results and those of Wu et al.
under different temperature conditions

AT Present Wu et al.[6]
0K 0.9666 0.9289
50K 0.9275 0.8883
100 K 0.8865 0.8501

The non-dimensional frequency can be represented by the following

formula:
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_ Ioo h/2
@ =wL |2, loo=J"n" pmdz,
110 -3

/
Ao = f_hh/zz Q1 dz (56)

6.3. Parametric examination

Figure 4 displays the non-dimensional frequency for S-S
(simply supported-simply supported) GPLRC beam with varying
numbers of layers, W;p, = 0.5% and L/h=3. It is observed that
for UD and FG-A distributions, the frequency remains nearly un-
changed as the number of layers increases, whereas it increases
for FG-X and decreases for FG-O. Moreover, the results stabilize
when the number of layers reaches NL=15. Consequently, NL=20
will be used to acquire all research findings, ensuring maximum ac-
curacy. Among the four distribution patterns, the beam with UD pat-
tern is the least affected by variations in NL.

0.34

032

oty T pattern

— FG-X pattern
el FG-0) paritern
FG-A pattern

10 20 30 40 50
NL

Fig. 4. The no-dimensional frequency in relation to the quantity of layers
(NL) with respect to various forms

The linear vibration frequency result of simply support- simply
support FG piezoelectric reinforced beam considering various
GPLs weight fraction, different patterns and a wide range of length-
to-depth ratios (L/h) is showed in Table 6. We can clearly see from
the obtained outcomes, that the weight fraction and length to thick-
ness ratio have significant impacts on frequency parameter. The
behavior by vibration frequency increases as the weight fraction in-
creases. Conversely, As the L/h ratio grows, the natural frequency
decreases. The beam with FG-X reinforcement offers the extreme
natural frequency, tracked by UD, FG-A, and FG-O types reinforce-
ments. This is because, compared to other distributions, the com-
posite beam with the FG-X pattern exhibits significantly higher ri-

gidity.

Tab. 6. Dynamic results of FG-GPLRC piezoelectric beam diverse types
of distribution and different values of the length-to-thikness pro-
portion L/h

WGPL

Patterns uD FG-X FG-O FG-A

L/h=5 0.1581 | 0.1765 | 0.1373 | 0.1569
L/h =10 0.0448 | 0.0448 | 0.0348 | 0.0398
L/h 15 0.0179 | 0.0200 | 0.0155 | 0.0177
L/h =20 0.0101 | 0.0112 | 0.0087 | 0.0100

0.1%
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L/h=5 0.2237 | 0.2618 | 0.1776 | 0.2194
L/h =10 0.0567 | 0.0665 | 0.0450 | 0.0557

0.5% L/h 15 0.0253 | 0.0296 | 0.0201 | 0.0248
L/h =20 0.0142 | 0.0167 | 0.0113 | 0.0140
L/h=5 0.2741 |0.3257 | 0.2104 | 0.2673
L/h =10 0.0695 |0.0827 | 0.0533 | 0.0678
0.5%

Lh15 | 0.0310 [0.0368 | 0.0238 | 0.0302
LUh=20 | 0.0174 |0.0207 | 0.0134 | 0.0170

Tab. 7. Dynamic Change in the non-dimensional frequency of the S-S
beams for different temperatures changes, different patterns and
various values for weight fraction

AT Wer 0.1% 0.3% 0.5%
uD 0.1581 0.2237 0.2741
FG-X 0.1765 0.2618 0.3257
0 FG-O0 0.1373 0.1776 0.2104
FG-A 0.1569 0.2194 0.2673
ub 0.1413 0.2000 0.2451
100 FG-X 0.1616 0.2419 0.3017
FG-O0 0.1175 0.1467 0.1711
FG-A 0.1415 0.1983 0.2417
ub 0.1221 0.1730 0.2122
200 FG-X 0.1452 0.2201 0.2757
FG-0 0.0936 0.1071 0.1194
FG-A 0.1240 0.1741 0.2122

Table 7 exhibits the temperature change impacts with weight
fraction on the first natural frequency of piezoelectric GPLRC beam
for various distributions (“FG-X, UD, FG-O, and FG-A"). The out-
comes indicate that an increase in temperature changes AT (0,
100, and 200) resulted in a decrease in non-dimensionless frequen-
cies. As well as, the non-dimensionless frequencies decrease for
all distributions when “the length of the beam to thickness (L/h)” ra-
tio increases, indicating that these characteristics may have a con-
siderable influence on the frequency. Additionally, similar to other
former results, FG-X provides the highest frequency, while FG-O
gives the lowest. UD and FG-A rank just after FG-X pattern respec-
tively for all L/h values.

Figure 5 shows that the natural frequency decreases as L/h in-
creases, with the FG-X distribution giving the highest values. Under
a thermal load (AT=100K), the frequencies drop further because
thermal stresses reduce the beam'’s stiffness. When L/h>10, the
trend becomes irregular. This happens because slender beams
have very low flexural rigidity, and thermal compressive stresses
weaken them even more. As a result, the beam becomes highly
sensitive to small disturbances, which explains the instability ob-
served in the frequency response.

Figure 6 illustrates the impact of the weight fraction and disper-
sion forms of GPL on the non-dimensional frequency of FG gra-
phene composite beams. It is observed that the frequency in-
creases even with a little dose of GPL, and that this enhancement
increases with more GPL weight fractions. In addition, compared
with the “UD, FG-O and FG-A GPLRC beams, the FG-X GPLRC
beam” can vibrate in higher values of frequency.
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Figure 7 illustrates the effect of GPLs geometric and dimension
on the ultimate vibratory frequency parameter of GPLRC beam with
FG-X. A greater ratio of a;p; /bsp,, denotes a bigger GPL surface
area; whereas a greater number of b;p, /tp, indicate that, every
single GPL has a reduced number of graphene layers. This figure's
outcomes shows that an increase in agpy,/bgpr, @nd bgpL/tepL
causes the non-dimensionless frequency to rise for all numerical
values of AT. agpr./bgpr, and bgpy/tepr effects become consid-
erably less noticeable when b, /tsp, is greater than 103 and the
frequency seems to stabilize. In addition, Figures 5, 6 and 7 make
it clear that as the temperature disparity (AT) expand, the value of
vibratory frequency reduce, indicating a drop in the global stiffness
of the structure.
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bapL/terL
(a)
0.35
03[
0.25
3
0.2}
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——acrr/borL = 10
epn/bopn = 4
015 +u(FL/ 'GPL
agpr/bepr =1
0.1 L
10° 10° 102 10° 10*
berr/terr

Fig. 7. The impact of GPL dimensions and geometry on the vibratory
frequency of FG-X type GPRLC beam (a) AT = 0K and (b) AT =
100

For a multi-layer “FG-X GPLRC” beam, considering L/h=>5,
Wep, = 0.5 and simply supported boundary conditions on both
sides, Figure 8 shows the effect of the weight fraction and temper-
ature change on the non-dimensionless frequency. Due to the high
thermal conductivity of graphene, the results indicate a decrease in
frequency as the temperature difference increases. This effect be-
comes more pronounced at higher GPL weight fractions.

The variations in the non-dimensional vibratory frequency of
FG-X pattern taking into consideration diverse values of the voltage
V, applied from an external source against the weight fraction
Wgp,, and considering numerous values of piezoelectric factor e,
in the corresponding figures a (e, = 100), b (e, = 300),c (e, =
600) and d (e, = 1000) are illustrated in Figure 9. As noted, that
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the beam stiffness decreases as the external electric voltage V, in-
creases leading to a decrement in the natural frequency. It is ap-
parent, from all the figures that the impact of V, on natural fre-
quency becomes more significant as the weight fraction and the pi-
ezoelectric multiple increases, due to the high electrical conductivity
of the graphene platelets.

0.35

—0— AT=0K

0.3} =—AT=100K
=—— A T=200K
== AT =300K

0.25

13 02f

0.15

0 : 2 3 a 5
Wepr %1073
Fig. 8. The impact of the weight portion and temperature increase on the
no dimensional vibration frequency of GPLRC beams

(© )
Fig. 9. The influence of the external electric voltage and piezoelectric
component on the vibration frequency of FG-GPLRC beams

In Figure 10, a three dimensional bar chart depicting the change
in the value of natural frequency related to a simply supported
simply supported reinforced GPL beams is shown. This represen-
tation considers different values of external electric voltage and
temperature difference, with an FG-X dispersion pattern. It is ob-
served that the frequency steadily decreases as the temperature
difference diminishes and electric voltage parameters increase, this
is in line with the well-established idea that higher values of these
parameters weaken structural rigidity.

The influence of diverse end supports on the non-dimensional
frequency for an FG-X pattern with L/h=5 and different weight frac-
tion values are displayed in Figure 11. As can be observed, the
clamped-clamped boundary condition yields the highest vibration
frequency, followed by the clamped-simply supported and simply
supported-simply  supported configurations. In contrast, the
clamped-free boundary condition results in the lowest natural fre-
quency values.
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Fig. 10. Impact of boundary conditions on the natural frequency of GPLRC
beams

Table 8 exhibits the numerical values for the free variation in
the non-dimensional frequency of reinforced nanocomposite
beams by layered GPLs in FG-X repartition with W, =0.5% for
various L/h values and boundary conditions. As expected, a con-
siderably higher natural frequency is seen for the C-C beam type
support for all L/h ratio values followed by C-S, S-S and finally C-F
nanocomposite beam. In addition, as seen an increment the slen-
derness ratios lead to the reduction in the ultimate results by the
vibratory response of the nanocomposite beam as a result of the
decrease in the pliability of the composite structure.

Tab. 8. Frequency values of functionally graded multilayer X-GPLRC
beams with varying boundary conditions and slenderness ratios

BC L/h=5 L/h=10 L/h=15 L/h=20
S-S 0.3257 0.0827 0.0368 0.0207
c-C 0.7302 0.1888 0.0844 0.0476
C-S 0.5071 0.1297 0.0579 0.0326
C-F 0.1180 0.0297 0.0132 0.0074

7. CONCLUSION

In This Work. The study investigates the free vibration charac-
teristics of multilayered piezoelectric beams reinforced with func-
tionally graded graphene platelets (FG-GPLRC). The beams are
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subjected to an external electric voltage and uniform temperature
variation, considering various boundary conditions. The effective
Young's moduli have been derived for the beam under the Halpin-
Tsai model. The Poisson's ration, "mass density", thermal expan-
sion coefficient, and piezoelectric characteristics were derived un-
der four different FG-GPL distribution types of the ruling mixture.
The displacement components were represented using an im-
proved shear and stretched deformation beam approach. (Q3DBT)
concerning the effect of stretching thickness. Moreover, the equa-
tions of motion were obtained by Lagrange's principle. In addition,
these formulations were verified through comparative analysis with
results from other previous publications. According to the results of
this investigation, some crucial conclusions can be drawn as fol-
lows:

The employed DQFEM based numerical tool has a fast conver-
gence, compact computation execution time machine, and ro-
bust numerical stability, where it converges for one element and
a number of sampling points equal to 6.

When comparing the current DQFEM to the traditional finite el-
ement approach and analytical solutions, and the computation
times are notably faster.

For all possible forms of FG-GPL distribution, it was determined
that when we increase in “the external electric voltage, the pie-
zoelectric” factor and the applied temperature results in a re-
duction in structural stiffness. The impacts of external electric
voltage and temperature difference on natural frequency be-
comes more significant as the weight fraction and the piezoe-
lectric multiple increases, Because of the graphene platelets'
excellent thermal and electrical conductivity.

The type of distribution of the GPL has a substantial influence
on the GPL weight fraction and geometry. Furthermore, “when
the GPL width-to-thickness ratio is higher than"103, the influ-
ence of GPL geometry tends to be significantly less evident.
The nanocomposite beam, while reinforced with FG-X; exhibits
an extremely high vibration frequency, compared with the “UD,
FG-0 and FG-A GPLRC beams”.

For each GPLs shape, when the functionally graded graphene
platelets used as reinforcing components, significantly in-
creases the stiffness and strength of composite beams.
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Appendix A. Detailed Equations
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