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Abstract: Accurate estimation of the state of charge (SoC) is crucial for ensuring the reliability, efficiency, and safety of lithium-ion batteries 
in electric vehicles and renewable-energy systems. However, conventional model-based and data-driven techniques remain sensitive  
to noise, modeling uncertainties, and nonlinear dynamics. This paper proposes an adaptive hybrid Long Short-Term Memory Extended 
Kalman Filter (LSTM–EKF) framework that integrates the predictive capability of deep learning with the real-time correction of model-based 
estimation. The main novelty lies in an adaptive fusion factor (αₖ) that dynamically balances the contributions of the LSTM and EKF according 
to their instantaneous confidence levels, enhancing both accuracy and robustness under noisy and time-varying operating conditions.  
A comprehensive comparative study including BiLSTM, LSTM-Attention, and EKF methods demonstrates that the proposed adaptive  
LSTM–EKF achieves the lowest RMSE and MAE, with accuracy improvements of approximately 70 % compared with standalone  
approaches. These results highlight the framework’s strong potential as a scalable and noise-resilient solution for advanced battery-man-
agement systems, contributing to improved energy efficiency, extended battery lifespan, and safer operation in electric-mobility and renew-
able-storage applications. 

Key words: lithium-ion batteries, state of charge estimation, long short-term memory, extended Kalman filter, adaptive fusion, hybrid  
modeling, noisy environment. 

1. INTRODUCTION 

Lithium-ion (Li-ion) batteries have become a cornerstone of 
modern energy storage, playing a pivotal role in electric vehicles 
(EVs), renewable energy integration, and smart grid applications 
[1,2]. Their widespread adoption is driven by their high energy den-
sity, long cycle life, and relatively low self-discharge rate, making 
them the preferred choice for efficient and sustainable energy stor-
age systems. However, optimizing their performance requires pre-
cise State of Charge (SoC) estimation, a critical metric that deter-
mines the available battery capacity at any given moment [3,4]. Ac-
curate SoC estimation is essential for energy management, opera-
tional safety, and predictive maintenance, particularly in high-de-
mand applications such as EVs, aerospace systems, and grid-scale 
energy storage [5]. 

Despite significant advancements, SoC estimation remains a 
major challenge due to the nonlinear, time-varying, and stochastic 
nature of battery behavior [6,7]. Various factors, including temper-
ature fluctuations, internal resistance variations, sensor noise, and 
battery aging, degrade the accuracy of estimation models [8,9]. 
Traditional methods such as Coulomb counting suffer from error 
accumulation over time, leading to estimation drift [10], while Open-
Circuit Voltage (OCV) techniques require the battery to be at rest 
for precise readings, making them impractical for real-time applica-
tions [11]. Additionally, Equivalent Circuit Models (ECM) struggle 
with parameter drift due to aging and environmental variations, re-
sulting in inaccurate predictions under dynamic conditions [12]. 

To overcome these issues, advanced filtering techniques such 
as the Kalman Filter (KF) and its extensions, including the Extended 
Kalman Filter (EKF) and Unscented Kalman Filter (UKF), have 
been applied to SoC estimation. For linear stochastic systems, sev-
eral optimal Kalman-based approaches have also been proposed, 
such as the three-stage Kalman filter [13], the unbiased minimum 
variance filter [14], and the optimal recursive filter for systems with 
unknown disturbances [15]. Among these, EKF is widely used due 
to its ability to handle nonlinear system dynamics and perform real-
time correction of state estimates [16,17]. However, its accuracy 
depends heavily on precise battery modeling, and errors in system 
parameters can degrade performance [18]. To enhance estimation 
robustness, recent research has explored the integration of ma-
chine learning techniques with EKF, particularly deep learning mod-
els [19]. 

In recent years, a number of improved deep-learning frame-
works have been proposed to enhance both the robustness and 
accuracy of SoC and RUL estimation for lithium-ion batteries. For 
instance, Wang et al. [20] introduced an improved hyperparameter 
Bayesian optimization–BiLSTM framework that significantly en-
hances convergence and estimation precision for SoC under vary-
ing operating conditions. Wang et al. [21] proposed an anti-noise 
adaptive LSTM architecture designed specifically to mitigate meas-
urement disturbances for robust remaining-useful-life (RUL) predic-
tion. Furthermore, [22] developed an improved multiple-feature 
electrochemical–thermal coupling model with real-time coefficient 
correction to better handle low-temperature nonlinearities. These 
recent contributions highlight the trend toward adaptive, noise-
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resilient architectures and motivate the adaptive fusion strategy 
(αₖ) adopted in this work. 

Beyond battery applications, AI-based approaches such as Ar-
tificial Neural Networks and Deep Learning have been successfully 
applied in several engineering domains, including thermal systems 
and plasma spraying [23–25]. The growing complexity of battery 
systems has led to the development of hybrid estimation ap-
proaches that integrate physics-based models with data-driven 
methods. Yu et al. [26] introduced a hybrid Long Short-Term 
Memory (LSTM)-EKF model, demonstrating that deep learning can 
enhance Kalman filtering by capturing long-term dependencies in 
battery behavior. Similarly, Khemiri et al. [27] applied hybrid LSTM-
EKF frameworks to complex dynamic systems beyond batteries, 
such as mobile robots, for robust state and fault estimation under 
noisy environments. Comparative studies have shown that hybrid 
models outperform purely physics-based or purely data-driven ap-
proaches, particularly in handling sensor noise and environmental 
uncertainties [28]. 

Machine learning models such as Support Vector Machines 
(SVMs) and Random Forests have also been explored for SoC es-
timation. Baccouche and Ben Amara [29] conducted a comparative 
analysis and found that the LSTM-EKF hybrid approach consist-
ently outperforms SVM-based methods, thanks to its ability to adapt 
dynamically to battery conditions and learn nonlinear relationships 
in battery data. While hybrid deep learning-based approaches im-
prove accuracy, they introduce higher computational complexity 
and memory requirements, making real-time implementation in em-
bedded systems challenging. Fu and Fu [30] analyzed the compu-
tational trade-offs of the LSTM-EKF approach, noting that the dual-
scale nature of LSTM and EKF increases processing demands. Ad-
ditionally, Kurucan et al. [31] emphasized that training and tuning 
hyperparameters in LSTM-EKF models require significant compu-
tational resources. To mitigate these issues, researchers have ex-
plored edge computing frameworks and federated learning ap-
proaches [32], which allow for distributed model training with re-
duced computational overhead. 

Furthermore, advancements in multi-sensor fusion techniques 
have improved SoC estimation accuracy. Liu et al. [33] demon-
strated how combining infrared imaging, acoustic diagnostics, and 
impedance spectroscopy enhances state estimation, particularly for 
detecting early battery degradation signs. Scaling the LSTM-EKF 
model for large and complex battery systems presents additional 
challenges. Chaudhari and Chakravorty [34] found that as battery 
size increases, the number of states and parameters in the model 
grows, leading to exponential computational costs. Thermal dy-
namics and parameter drift in large battery packs further complicate 
accurate estimation, requiring adaptive SoC estimation methods to 
compensate for varying thermal conditions and internal resistance 
fluctuations [35]. To address these issues, fractional-order models 
and particle filtering techniques have been proposed, demonstrat-
ing improved robustness against noise and temperature variations 
[32,36]. 

As battery systems evolve, research is shifting toward self-
learning and adaptive SoC estimation frameworks capable of up-
dating their parameters in real-time. Liu et al. [37] and Hu et al. [38] 
explored reinforcement learning-based approaches to optimize en-
ergy allocation strategies while extending battery lifespan. Addition-
ally, Zhang et al. [39] and Dong et al. [40] examined hybrid physics-
based and AI-driven methods for long-term SoC estimation accu-
racy, particularly in extreme environmental conditions. Recent de-
velopments in Graph Neural Networks (GNNs) for large-scale 

battery packs have introduced a new paradigm for capturing struc-
tural dependencies in multi-module battery configurations [41]. 

Given these advancements, the main objective of this paper is 
to develop a novel hybrid approach combining LSTM neural net-
works with the Extended Kalman Filter (EKF) to improve State of 
Charge (SoC) estimation under varying operating conditions. The 
LSTM model captures complex temporal dependencies and nonlin-
ear battery behaviors, while EKF refines state predictions by filter-
ing out process and measurement noise. Additionally, the proposed 
method incorporates a dynamic fusion mechanism using adaptive 
fusion factor 𝛼𝑘, dynamically balancing LSTM and EKF contribu-
tions based on real-time confidence, ensuring optimal accuracy and 
robustness, especially in highly nonlinear, noisy environments. 

The remainder of this papar is organized as follows: Section2 
presents the problem statement and key challenges associated 
with SoC estimation. Section 3 details the proposed hybrid LSTM-
EKF methodology. Section 4 discusses experimental validation, 
comparing the performance of the proposed approach against 
conventional SoC estimation techniques. Finally, the conclusions 
are outlined in Section 5. 

2. STATEMENT OF THE PROBLEM 

Accurately estimating the SoC of lithium-ion batteries is essen-
tial for optimizing energy management in various applications, such 
as electric vehicles, renewable energy storage systems, and port-
able electronic devices. However, SoC estimation presents signifi-
cant challenges due to the nonlinear and time-varying nature of bat-
tery characteristics. Several factors, including temperature fluctua-
tions, internal resistance variations, and measurement noise, can 
degrade the accuracy of traditional estimation methods. 𝑉𝑜𝑐 , the 
open-circuit voltage, plays a crucial role in determining the battery’s 
internal state, which is continuously updated through the LSTM-
EKF algorithm. By combining measured voltage and current with 
internal battery parameters, this framework provides a more pre-
cise and robust SoC estimation. 

2.1. Battery Modeling 

A nonlinear equivalent circuit model (ECM) is often used to rep-
resent the dynamic behavior of lithium-ion batteries. The state-
space representation of this model is given as follows: 

SoC𝒌+𝟏 = SoC𝒌 −
𝜼𝜟𝒕

𝑪bat
𝑰𝒌 + 𝒘𝒌                                                         (1) 

where 
𝛥𝑡: is the discrete-time step, 
𝜂: charge efficiency parameter 
𝐶bat: represents the nominal capacity of the battery, 
𝐼𝑘: is the battery current, 
𝑤𝑘: denotes process noise, assumed to be Gaussian with zero 
mean and a variance 𝑄. 

The measurement equation as follows: 

𝑉𝑘 = 𝑉oc(SoC𝑘) − 𝑅𝑠𝐼𝑘 + 𝑣𝑘                                                     (2) 

where 

 𝑉𝑘 : is the measured terminal voltage, 
 𝑉oc(SoC𝑘): is the open-circuit voltage as a function of SoC, 
 𝑅𝑠: represents the series resistance. 



DOI 10.2478/ama-2025-0085                                                                                                                                                          acta mechanica et automatica, vol.19 no.4 (2025)  

 

763 

 𝑣𝑘: is the measurement noise, assumed to be Gaussian with zero 
mean and a variance 𝑅. 

Given the nonlinear nature of the system, traditional filtering 
techniques such as the Extended Kalman Filter (EKF) have been 
employed to estimate the internal battery states. However, these 
methods struggle with capturing complex nonlinear dependencies 
in SoC estimation, necessitating the integration of machine learning 
techniques like Long Short-Term Memory (LSTM) networks. 

2.2. State-Space Model 

The state-space model represents the dynamics of the system, 
capturing the evolution of the internal states over time based on the 
system's inputs and noise. In the context of lithium-ion battery mod-
eling, the state-space approach provides an efficient framework for 
estimating the battery's state of charge (SoC), voltage, and temper-
ature under uncertain conditions. The state-space model for a non-
linear system can be expressed as: 

𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘) + 𝑤𝑘 

𝑦𝑘 = ℎ(𝑥𝑘) + 𝑣𝑘                                                                      (3) 

where 

𝑥𝑘 is the state vector (SoC, temperature), 
𝑢𝑘 represents the input vector (current), 
𝑦𝑘is the output vector (measured voltage), 
𝑓(. )and ℎ(. )are the nonlinear dynamic and measurement 
models, respectively. 

To overcome these limitations, this paper introduces an adap-
tive hybrid LSTM-EKF framework that leverages the strengths of 
both approaches. The proposed method integrates a dynamic fu-
sion factor (αₖ), which adjusts the LSTM and EKF contributions 
based on real-time confidence metrics, ensuring robust SoC esti-
mation under varying operating conditions. 

3. THE PROPOSED HYBRID APPROACH FRAMEWORK 

To address the limitations of conventional SoC estimation tech-
niques such as the sensitivity of EKF to modeling errors and the 
lack of real-time correction in standalone LSTM models we propose 
an adaptive hybrid framework that synergistically combines the pre-
dictive capabilities of LSTM networks with the corrective robustness 
of EKF. 

 

Fig. 1. Hybrid LSTM-EKF architecture for SOC estimation 

 
As illustrated in Fig. 1, this hybrid architecture leverages the 

LSTM’s ability to capture complex, nonlinear temporal dependen-
cies in battery behavior, while the EKF provides real-time state cor-
rections by filtering process and measurement noise. The key 

innovation of our approach lies in the introduction of a dynamic fu-
sion factor (αₖ), which continuously adjusts the relative contribu-
tions of the LSTM and EKF based on their instantaneous confi-
dence levels. This adaptive mechanism ensures optimal accuracy 
and robustness, particularly under noisy and time-varying operating 
conditions. The following subsections detail the LSTM-based non-
linear model (Section 3.1), the EKF implementation (Section 3.2), 
and the adaptive fusion strategy (Section 3.3). 

3.1. LSTM-Based Nonlinear Model 

The LSTM network serves as the data-driven component of our 
hybrid framework, modeling the complex, time-varying dynamics of 
lithium-ion batteries. At each time step 𝑡, the LSTM processes input 
features (current, voltage, and temperature) to predict the 
SoCLSTM. The network’s gating mechanisms enable it to selectively 
retain or discard information, making it particularly suited for se-
quential data with long-term dependencies. The LSTM’s hidden 
state ℎ𝑡 and cell state 𝐶𝑡 are updated according to the following 
equations: 

𝑓𝑡 = 𝜎(𝑊𝑓 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) 

𝑖𝑡 = 𝜎(𝑊𝑖 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

𝐶̃𝑡 = 𝑡𝑎𝑛ℎ( 𝑊𝐶 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) 

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝐶̃𝑡 

𝑜𝑡 = 𝜎(𝑊𝑜 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝐶𝑡)                                                          (4) 

where  
− 𝑓𝑡 , 𝑖𝑡  and 𝑜𝑡are the forget, input, and output gates respectively 
−  𝜎denotes the sigmoid activation function 

The final state prediction SoCLSTM,𝑘+1 is obtained through a 

linear projection layer as follows: 

 SoCLSTM,𝑘+1 = 𝑓LSTM(𝐼𝑘 , 𝑉𝑘 , 𝑇𝑘)                                            (5) 

The LSTM network effectively models the nonlinear dynamics 
of lithium-ion batteries by capturing long-term dependencies in volt-
age, current, and temperature data. However, its lack of real-time 
error correction necessitates integration with the EKF, as described 
in the following subsection, to achieve robust SoC estimation under 
noisy conditions. 

3.2. EKF for SoC Estimation 

While the LSTM captures the nonlinear dynamics of the battery, 
the EKF provides real-time correction by filtering process and 
measurement noise. Referring to the system equations (3), the Ex-
tended Kalman Filter recursively estimates the states by linearizing 
the system dynamics and measurement equations around the cur-
rent state estimate using Jacobian matrices: 

− State prediction: 

𝑥𝑘/𝑘−1 = 𝑓(𝑥𝑘 , 𝑢𝑘)                                                                  (6) 

𝑃𝑘|𝑘−1 = 𝐴𝑘𝑃𝑘𝐴𝑘
⊤ + 𝑄                                                             (7) 

where 𝐴𝑘 =
𝜕𝑓

𝜕𝑥
|𝑥̂𝑘

 

− Measurement Update 



Karim Khemiri, Ridha Djebali                                                                                                                                                                                          DOI 10.2478/ama-2025-0085 
Adaptive Hybrid LSTM-EKF Model for Reliable State of Charge Estimation in Lithium-Ion Batteries under Noisy Conditions 

764 

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻𝑘
⊤(𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘

⊤ + 𝑅)−1                                   (8) 

𝑥𝑘|𝑘 = 𝑥𝑘|𝑘−1 + 𝐾𝑘(𝑦𝑘 − ℎ(𝑥𝑘|𝑘−1))                                   (9) 

𝑃𝑘|𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘|𝑘−1                                                      (10) 

where 

𝐻𝑘 =
𝜕ℎ

𝜕𝑥
|𝑥̂𝑘

  

The EKF SoC estimation equation is simplified as:  

SoĈ𝑘+1|𝑘+1 = SoĈ𝑘+1|𝑘 + 𝐾𝑘(𝑉𝑘 − 𝑉OC(SoĈ𝑘+1|𝑘) + 𝑅𝑠𝐼𝑘)     

(11) 

3.3. Adaptive Fusion Strategy 

The final SoC estimation is obtained by fusing the LSTM pre-
diction and EKF correction through a weighted approach: 

SoĈ𝑘+1 = 𝛼𝑘SoCLSTM,𝑘+1 + (1 − 𝛼𝑘)SoĈEKF,𝑘+1             (12) 

Where 𝜶𝒌 is an adaptive weighting factor that dynamically bal-
ances the contributions of EKF and LSTM. By tuning𝜶𝒌, the system 
optimally combines the strengths of both approaches, ensuring ac-
curate and stable SoC estimation under varying operating condi-
tions. The adaptive fusion factor, 𝜶𝒌 ∈ [𝟎, 𝟏], is computed as: 

𝛼𝑘 =
𝜎𝐸𝐾𝐹,𝑘

2

𝜎𝐸𝐾𝐹,𝑘
2 +𝜎𝐿𝑆𝑇𝑀,𝑘

2                                                                 (13)      

To maintain consistency in error modeling, Gaussian white 
noise is introduced in both the LSTM and EKF estimations, ensur-

ing fair comparison and robustness. The variances 𝝈𝑳𝑺𝑻𝑴
𝟐 and 

𝝈𝑬𝑲𝑭
𝟐 as follows: 

𝜎𝐿𝑆𝑇𝑀
2 =

1

𝑁
∑ (𝑁

𝑖=1 𝑆𝑜𝐶𝑟𝑒𝑎𝑙,𝑖 − 𝑆𝑜𝐶𝐿𝑆𝑇𝑀,𝑖)
2                           (14) 

𝜎𝐸𝐾𝐹
2 = 𝑃𝑘|𝑘                                                                             (15) 

where 𝑷𝒌|𝒌is the covariance matrix of the state from the EKF.  

The fusion with the weighting factor 𝜶𝒌is a critical aspect of the 
proposed LSTM-EKF hybrid model. It balances the contributions of 
the LSTM's prediction and the EKF's estimation to refine the State 
of Charge estimation. By tuning 𝜶𝒌, the method dynamically ad-
justs the trust given to the data-driven model (LSTM) versus the 
physics-based model (EKF), thereby enhancing robustness against 
noise and improving overall estimation accuracy.  

This synergistic combination addresses the limitations of indi-
vidual methods, providing accurate, robust, and adaptive SoC esti-
mation under noisy and nonlinear conditions. The next section val-
idates the framework’s performance on NASA’s battery datasets, 
comparing it to standalone and fixed hybrid methods. 

4. EXPERIMENTAL STUDY  

In this section, we evaluate the performance of the proposed 
LSTM-EKF hybrid model for State-of-Charge (SoC) estimation us-
ing the NASA battery dataset used by Saha and Goebel.[11]. The 
observed fluctuations highlight the challenges of traditional SoC es-
timation methods, which may struggle with sensor noise, nonlinear 
dependencies, and model uncertainties. This justifies the need for 
a hybrid approach that combines machine learning (LSTM) with 
model-based filtering (EKF). 

 
Fig. 2.   Experimental voltage, current, temperature and SoC profiles  

of a lithium-ion battery cell during the discharge process 

 

 

Fig. 3. Training and validation loss for LSTM Model 

The dataset was split into 80% training and 20% testing. The 
model was trained for 50 epochs with a batch size of 16, using a 
validation split of 10% to monitor performance. The training process 
was evaluated by plotting the loss curves, showing a consistent de-
crease in MSE over epochs, indicating effective learning. Once 
trained, the model was tested on the entire dataset to generate SoC 
predictions. The model summary confirmed its suitability for battery 
SoC estimation, demonstrating its ability to capture time-dependent 
patterns in dynamic battery conditions. 

Figure 3 illustrates the evolution of the training loss and valida-
tion loss for the LSTM model over 50 epochs, measured using the 
Mean Squared Error (MSE). Overall, the results demonstrate that 
the LSTM model is effectively trained and provides accurate pre-
dictions with minimal overfitting. 

To refine the SoC predictions generated by the LSTM model, 
the EKF was applied. The SoC estimation is modeled using a dis-
crete-time state-space representation with the following parame-
ters:𝐴𝑘 = 1, 𝐶𝑏𝑎𝑡 = 2𝑚ℎ, 𝐵𝑘 = −1/(3600 ∗ 𝐶bat), 𝑄 =
0.02, 𝑅 = 0.02, 𝑥0 = 0and 𝑃 = 1 

Referring to Equation (12), the combination is performed using 
the adaptive fusion factor 𝛼𝑘represented by Equation (13). 
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Fig. 4.  Evolution of the adaptive fusion factor (αₖ) 

The evolution of   over time (Fig. 4) shows that: 

− when LSTM predictions are reliable, increases, giving more 
weight to the neural network model. 

− when uncertainty is high, EKF takes over to stabilize the esti-
mation. 

− this adaptive mechanism enhances overall SoC estimation ac-
curacy, balancing both methods dynamically. 
The fusion factor fluctuates over time, demonstrating that the 

system dynamically adjusts the influence of each method based on 
estimation confidence and noise levels. This adaptive mechanism 
enhances robustness by allowing the hybrid model to intelligently 
switch between data-driven learning and Kalman filtering, depend-
ing on real-time conditions. 

 

 
Fig. 5.   SoC Estimation results using LSTM, BiLSTM, LSTM-Attention, 

EKF and LSTM-EKF 

Figure 5 presents the SoC estimation results obtained using 
five different approaches: the standalone LSTM model, the BiLSTM 
model, the LSTM with attention mechanism, the EKF method, and 
the proposed adaptive hybrid LSTM-EKF model. 

− The LSTM-EKF hybrid model significantly reduces estimation 
errors, particularly in dynamic and nonlinear regions (as shown 
in the zoomed-in section). 

− The standalone LSTM and its variants (BiLSTM and LSTM with 
attention) exhibit limitations: while they capture temporal de-
pendencies effectively, they lack real-time correction, leading 
to higher errors in noisy or transient conditions. 

− The EKF method improves upon standalone LSTM by providing 
real-time correction but struggles in highly nonlinear sections 
due to its reliance on accurate system modeling. 

− The hybrid LSTM-EKF approach effectively combines the pre-
dictive capabilities of LSTM with the adaptive filtering ability of 

EKF, resulting in superior performance. By dynamically balanc-
ing their contributions through the fusion factor, it overcomes 
the limitations of both standalone and recent advanced meth-
ods. 
These findings highlight the advantage of integrating machine 

learning with traditional filtering techniques for SoC estimation, en-
suring higher accuracy and adaptability to nonlinear and noisy con-
ditions. 

Figure 6 presents a comparative evaluation of SoC estimation 
accuracy for three methods. The metrics used are the Mean Abso-
lute Error (MAE) and Root Mean Square Error (RMSE): 

MAE=
𝟏

𝒏
∑ |𝒏

i=1 𝒚𝒊-ŷ𝒊|                                                              (16) 

RMSE = √
𝟏

𝒏
∑ (𝒏

𝒊=𝟏 𝒚𝒊 − 𝒚̂𝒊)
𝟐                                                 

(17) 

Figure 6 provides a visual comparison of the Root Mean Square 
Error (RMSE) and Mean Absolute Error (MAE) for five different 
State of Charge (SoC) estimation methods: LSTM, BiLSTM, LSTM-
Attention, EKF, and LSTM-EKF. The exact error values are dis-
played above each bar, allowing for a direct comparison of the per-
formance of each method: 

− LSTM Only: 

− RMSE (0.0211) and AME (~0.0165) are the highest. 

− This suggests that the standalone deep learning model in-
troduces some lag and lacks real-time error correction. 

 
Fig. 6.   Comparison of RMSE and MAE for different SoC estimation 

methods 

− BiLSTM: 

− RMSE = 0.0227, MAE = 0.0182 

− The BiLSTM model does not outperform the standalone 
LSTM, suggesting that bidirectional processing does not 
provide substantial benefits for this specific application. 
The errors are slightly higher than those of the LSTM. 

− LSTM-Attention: 

− RMSE=0.0217, MAE=0.0169 

− The LSTM with attention mechanism performs similarly 
to the standalone LSTM. This indicates that attention 
mechanisms do not significantly improve the accuracy of 
SoC estimation in this context. 

− EKF Only: 

− RMSE (0.0118) and AME (0.0093) are lower than LSTM. 

− The EKF model shows a notable improvement over the 
LSTM, with a 43.92% reduction in RMSE. This improve-
ment is due to its ability to dynamically correct state esti-
mates in real-time, addressing one of the key limitations 
of data-driven models. 
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− LSTM-EKF (Hybrid Model): 

− RMSE = 0.0062, MAE = 0.0048. 

− The proposed adaptive hybrid LSTM-EKF framework 
achieves the lowest errors among all methods. This rep-
resents a 70.77% reduction in RMSE and a 70.80% re-
duction in MAE compared to the standalone LSTM. The 
dynamic fusion factor optimally balances the contribu-
tions of the LSTM and EKF, resulting in superior accuracy 
and robustness under noisy and nonlinear conditions. 

Tab. 2. Comparative performance of SoC estimation methods 

Method RMSE MAE 
RMSE 

Improvement 
(%) 

AME 
Improvement 

(%) 

LSTM 0.021 0.016 0.00 0.00 

BiLSTM 0.023 0.018 -7.37 -9.78 

LSTM-Atten-
tion 

0.022 0.017 -2.82 -2.12 

EKF 0.012 0.009 43.92 43.88 

LSTM-EKF 0.006 0.005 70.77 70.80 

The results in Tab.1. demonstrate that the standalone LSTM 
model, while effective at capturing temporal dependencies, suffers 
from higher estimation errors due to its lack of real-time correction. 
The BiLSTM and LSTM with attention models do not significantly 
outperform the baseline LSTM, suggesting that bidirectional pro-
cessing and attention mechanisms do not provide substantial ben-
efits for this specific application. In contrast, the EKF model shows 
a notable improvement, with a 43.92% reduction in RMSE, thanks 
to its ability to dynamically correct state estimates in real time. How-
ever, the most significant improvement is achieved by the proposed 
adaptive hybrid LSTM-EKF framework, which combines the predic-
tive power of the LSTM with the corrective robustness of the EKF. 
The dynamic fusion factor (αₖ) optimally balances their contribu-
tions, resulting in a 70.77% reduction in RMSE and a 70.80% re-
duction in MAE compared to the standalone LSTM. This superior 
performance underscores the effectiveness of our hybrid approach 
in achieving accurate and robust SoC estimation under noisy and 
nonlinear conditions. 

The results show that the hybrid approach achieves the lowest 
error values, demonstrating superior accuracy and robustness. The 
LSTM-EKF model effectively reduces errors by dynamically adjust-
ing the contribution of each method through the adaptive fusion 
mechanism (𝛼𝑘). This confirms that integrating machine learning 
with model-based filtering significantly improves SoC estimation, 
making it a reliable solution for battery management in electric ve-
hicles and renewable energy systems. 

5. CONCLUSION 

This work presented an adaptive hybrid LSTM–EKF framework 
for accurate and robust state-of-charge (SoC) estimation of lithium-
ion batteries under nonlinear and noisy conditions. The key innova-
tion is the dynamic fusion mechanism (𝜶𝒌), which adaptively bal-
ances the predictive capability of the LSTM and the corrective feed-
back of the EKF in real time. A comprehensive comparison with 
recent approaches BiLSTM, LSTM-Attention, and EKF confirmed 
the superiority of the proposed method, achieving about 70% im-
provement in RMSE and MAE. The model effectively captures com-
plex battery behavior while ensuring stability and fast convergence, 
showing strong potential for integration into advanced battery-

management systems. Future work will extend the framework to 
multi-cell configurations and explore integration with physics-in-
formed neural networks (PINNs) for real-time health prediction. 
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