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Abstract: Accurate estimation of the state of charge (SoC) is crucial for ensuring the reliability, efficiency, and safety of lithium-ion batteries
in electric vehicles and renewable-energy systems. However, conventional model-based and data-driven techniques remain sensitive
to noise, modeling uncertainties, and nonlinear dynamics. This paper proposes an adaptive hybrid Long Short-Term Memory Extended
Kalman Filter (LSTM-EKF) framework that integrates the predictive capability of deep learning with the real-time correction of model-based
estimation. The main novelty lies in an adaptive fusion factor (ay) that dynamically balances the contributions of the LSTM and EKF according
to their instantaneous confidence levels, enhancing both accuracy and robustness under noisy and time-varying operating conditions.
A comprehensive comparative study including BiLSTM, LSTM-Attention, and EKF methods demonstrates that the proposed adaptive
LSTM-EKF achieves the lowest RMSE and MAE, with accuracy improvements of approximately 70 % compared with standalone
approaches. These results highlight the framework’s strong potential as a scalable and noise-resilient solution for advanced battery-man-
agement systems, contributing to improved energy efficiency, extended battery lifespan, and safer operation in electric-mobility and renew-
able-storage applications.
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1. INTRODUCTION

Lithium-ion (Li-ion) batteries have become a cornerstone of
modern energy storage, playing a pivotal role in electric vehicles
(EVs), renewable energy integration, and smart grid applications
[1,2]. Their widespread adoption is driven by their high energy den-
sity, long cycle life, and relatively low self-discharge rate, making
them the preferred choice for efficient and sustainable energy stor-
age systems. However, optimizing their performance requires pre-
cise State of Charge (SoC) estimation, a critical metric that deter-
mines the available battery capacity at any given moment [3,4]. Ac-
curate SoC estimation is essential for energy management, opera-
tional safety, and predictive maintenance, particularly in high-de-
mand applications such as EVs, aerospace systems, and grid-scale
energy storage [5].

Despite significant advancements, SoC estimation remains a
major challenge due to the nonlinear, time-varying, and stochastic
nature of battery behavior [6,7]. Various factors, including temper-
ature fluctuations, internal resistance variations, sensor noise, and
battery aging, degrade the accuracy of estimation models [8,9].
Traditional methods such as Coulomb counting suffer from error
accumulation over time, leading to estimation drift [10], while Open-
Circuit Voltage (OCV) techniques require the battery to be at rest
for precise readings, making them impractical for real-time applica-
tions [11]. Additionally, Equivalent Circuit Models (ECM) struggle
with parameter drift due to aging and environmental variations, re-
sulting in inaccurate predictions under dynamic conditions [12].

To overcome these issues, advanced filtering techniques such
as the Kalman Filter (KF) and its extensions, including the Extended
Kalman Filter (EKF) and Unscented Kalman Filter (UKF), have
been applied to SoC estimation. For linear stochastic systems, sev-
eral optimal Kalman-based approaches have also been proposed,
such as the three-stage Kalman filter [13], the unbiased minimum
variance filter [14], and the optimal recursive filter for systems with
unknown disturbances [15]. Among these, EKF is widely used due
to its ability to handle nonlinear system dynamics and perform real-
time correction of state estimates [16,17]. However, its accuracy
depends heavily on precise battery modeling, and errors in system
parameters can degrade performance [18]. To enhance estimation
robustness, recent research has explored the integration of ma-
chine learning techniques with EKF, particularly deep learning mod-
els [19].

In recent years, a number of improved deep-learning frame-
works have been proposed to enhance both the robustness and
accuracy of SoC and RUL estimation for lithium-ion batteries. For
instance, Wang et al. [20] introduced an improved hyperparameter
Bayesian optimization-BiLSTM framework that significantly en-
hances convergence and estimation precision for SoC under vary-
ing operating conditions. Wang et al. [21] proposed an anti-noise
adaptive LSTM architecture designed specifically to mitigate meas-
urement disturbances for robust remaining-useful-life (RUL) predic-
tion. Furthermore, [22] developed an improved multiple-feature
electrochemical-thermal coupling model with real-time coefficient
correction to better handle low-temperature nonlinearities. These
recent contributions highlight the trend toward adaptive, noise-
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resilient architectures and motivate the adaptive fusion strategy
(ay) adopted in this work.

Beyond battery applications, Al-based approaches such as Ar-
tificial Neural Networks and Deep Learning have been successfully
applied in several engineering domains, including thermal systems
and plasma spraying [23-25]. The growing complexity of battery
systems has led to the development of hybrid estimation ap-
proaches that integrate physics-based models with data-driven
methods. Yu et al. [26] introduced a hybrid Long Short-Term
Memory (LSTM)-EKF model, demonstrating that deep learning can
enhance Kalman filtering by capturing long-term dependencies in
battery behavior. Similarly, Khemiri et al. [27] applied hybrid LSTM-
EKF frameworks to complex dynamic systems beyond batteries,
such as mobile robots, for robust state and fault estimation under
noisy environments. Comparative studies have shown that hybrid
models outperform purely physics-based or purely data-driven ap-
proaches, particularly in handling sensor noise and environmental
uncertainties [28].

Machine learning models such as Support Vector Machines
(SVMs) and Random Forests have also been explored for SoC es-
timation. Baccouche and Ben Amara [29] conducted a comparative
analysis and found that the LSTM-EKF hybrid approach consist-
ently outperforms SVM-based methods, thanks to its ability to adapt
dynamically to battery conditions and learn nonlinear relationships
in battery data. While hybrid deep learning-based approaches im-
prove accuracy, they introduce higher computational complexity
and memory requirements, making real-time implementation in em-
bedded systems challenging. Fu and Fu [30] analyzed the compu-
tational trade-offs of the LSTM-EKF approach, noting that the dual-
scale nature of LSTM and EKF increases processing demands. Ad-
ditionally, Kurucan et al. [31] emphasized that training and tuning
hyperparameters in LSTM-EKF models require significant compu-
tational resources. To mitigate these issues, researchers have ex-
plored edge computing frameworks and federated learning ap-
proaches [32], which allow for distributed model training with re-
duced computational overhead.

Furthermore, advancements in multi-sensor fusion techniques
have improved SoC estimation accuracy. Liu et al. [33] demon-
strated how combining infrared imaging, acoustic diagnostics, and
impedance spectroscopy enhances state estimation, particularly for
detecting early battery degradation signs. Scaling the LSTM-EKF
model for large and complex battery systems presents additional
challenges. Chaudhari and Chakravorty [34] found that as battery
size increases, the number of states and parameters in the model
grows, leading to exponential computational costs. Thermal dy-
namics and parameter drift in large battery packs further complicate
accurate estimation, requiring adaptive SoC estimation methods to
compensate for varying thermal conditions and internal resistance
fluctuations [35]. To address these issues, fractional-order models
and particle filtering techniques have been proposed, demonstrat-
ing improved robustness against noise and temperature variations
[32,36].

As battery systems evolve, research is shifting toward self-
learning and adaptive SoC estimation frameworks capable of up-
dating their parameters in real-time. Liu et al. [37] and Hu et al. [38]
explored reinforcement learning-based approaches to optimize en-
ergy allocation strategies while extending battery lifespan. Addition-
ally, Zhang et al. [39] and Dong et al. [40] examined hybrid physics-
based and Al-driven methods for long-term SoC estimation accu-
racy, particularly in extreme environmental conditions. Recent de-
velopments in Graph Neural Networks (GNNs) for large-scale
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battery packs have introduced a new paradigm for capturing struc-
tural dependencies in multi-module battery configurations [41].

Given these advancements, the main objective of this paper is
to develop a novel hybrid approach combining LSTM neural net-
works with the Extended Kalman Filter (EKF) to improve State of
Charge (SoC) estimation under varying operating conditions. The
LSTM model captures complex temporal dependencies and nonlin-
ear battery behaviors, while EKF refines state predictions by filter-
ing out process and measurement noise. Additionally, the proposed
method incorporates a dynamic fusion mechanism using adaptive
fusion factor a;, dynamically balancing LSTM and EKF contribu-
tions based on real-time confidence, ensuring optimal accuracy and
robustness, especially in highly nonlinear, noisy environments.

The remainder of this papar is organized as follows: Section2
presents the problem statement and key challenges associated
with SoC estimation. Section 3 details the proposed hybrid LSTM-
EKF methodology. Section 4 discusses experimental validation,
comparing the performance of the proposed approach against
conventional SoC estimation techniques. Finally, the conclusions
are outlined in Section 5.

2. STATEMENT OF THE PROBLEM

Accurately estimating the SoC of lithium-ion batteries is essen-
tial for optimizing energy management in various applications, such
as electric vehicles, renewable energy storage systems, and port-
able electronic devices. However, SoC estimation presents signifi-
cant challenges due to the nonlinear and time-varying nature of bat-
tery characteristics. Several factors, including temperature fluctua-
tions, internal resistance variations, and measurement noise, can
degrade the accuracy of traditional estimation methods. V., the
open-circuit voltage, plays a crucial role in determining the battery’s
internal state, which is continuously updated through the LSTM-
EKF algorithm. By combining measured voltage and current with
internal battery parameters, this framework provides a more pre-
cise and robust SoC estimation.

2.1. Battery Modeling

A nonlinear equivalent circuit model (ECM) is often used to rep-
resent the dynamic behavior of lithium-ion batteries. The state-
space representation of this model is given as follows:

SOCk+1 = SOCk - %Ik + W (1)

where
At: is the discrete-time step,
7: charge efficiency parameter
Cpae: Tepresents the nominal capacity of the battery,
I, is the battery current,
w,,. denotes process noise, assumed to be Gaussian with zero
mean and a variance Q.
The measurement equation as follows:

Vi = Voe(S0C) — Rely + vy (2)
where

V- is the measured terminal voltage,
V,.(SoC,): is the open-circuit voltage as a function of SoC,
R,: represents the series resistance.
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vy, is the measurement noise, assumed to be Gaussian with zero
mean and a variance R.

Given the nonlinear nature of the system, traditional filtering
techniques such as the Extended Kalman Filter (EKF) have been
employed to estimate the internal battery states. However, these
methods struggle with capturing complex nonlinear dependencies
in SoC estimation, necessitating the integration of machine learning
techniques like Long Short-Term Memory (LSTM) networks.

2.2. State-Space Model

The state-space model represents the dynamics of the system,
capturing the evolution of the internal states over time based on the
system's inputs and noise. In the context of lithium-ion battery mod-
eling, the state-space approach provides an efficient framework for
estimating the battery's state of charge (SoC), voltage, and temper-
ature under uncertain conditions. The state-space model for a non-
linear system can be expressed as:

Xir1 = f (X, W) + Wy
Vi = h(xg) + vy (3)
where

xis the state vector (SoC, temperature),

u;, represents the input vector (current),

Vs the output vector (measured voltage),

f()and h(.)are the nonlinear dynamic and measurement
models, respectively.

To overcome these limitations, this paper introduces an adap-
tive hybrid LSTM-EKF framework that leverages the strengths of
both approaches. The proposed method integrates a dynamic fu-
sion factor (ay), which adjusts the LSTM and EKF contributions
based on real-time confidence metrics, ensuring robust SoC esti-
mation under varying operating conditions.

3. THE PROPOSED HYBRID APPROACH FRAMEWORK

To address the limitations of conventional SoC estimation tech-
niques such as the sensitivity of EKF to modeling errors and the
lack of real-time correction in standalone LSTM models we propose
an adaptive hybrid framework that synergistically combines the pre-
dictive capabilities of LSTM networks with the corrective robustness
of EKF.

LSTM Net
[0/ o
Oﬁ =
O3

r(m':n\] SOChsTar
" g "’

NASA Dataset | I Vi, Toa [ Pre- '3 ‘

SOC Estimate

Fig. 1. Hybrid LSTM-EKF architecture for SOC estimation

As illustrated in Fig. 1, this hybrid architecture leverages the
LSTM’s ability to capture complex, nonlinear temporal dependen-
cies in battery behavior, while the EKF provides real-time state cor-
rections by filtering process and measurement noise. The key
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innovation of our approach lies in the introduction of a dynamic fu-
sion factor (ag), which continuously adjusts the relative contribu-
tions of the LSTM and EKF based on their instantaneous confi-
dence levels. This adaptive mechanism ensures optimal accuracy
and robustness, particularly under noisy and time-varying operating
conditions. The following subsections detail the LSTM-based non-
linear model (Section 3.1), the EKF implementation (Section 3.2),
and the adaptive fusion strategy (Section 3.3).

3.1. LSTM-Based Nonlinear Model

The LSTM network serves as the data-driven component of our
hybrid framework, modeling the complex, time-varying dynamics of
lithium-ion batteries. At each time step t, the LSTM processes input
features (current, voltage, and temperature) to predict the
SoC;srm- The network’s gating mechanisms enable it to selectively
retain or discard information, making it particularly suited for se-
quential data with long-term dependencies. The LSTM'’s hidden
state /1, and cell state C, are updated according to the following
equations:

fo = o(Wr X [he_q, x,] + by)

ip = o(W; X [he_y, x,] + b;)

C, = tanh(W¢ X [he_y, %] + be)

Co=f, OCy+i, OC,

0. = o(W, X [hy_q,%.] + b,)

hy = 0, © tanh(C,) (4)

where
- f: i and o.are the forget, input, and output gates respectively
- adenotes the sigmoid activation function

The final state prediction SoCygry +1 IS Obtained through a
linear projection layer as follows:

SoCisrmi+1 = frstm (i Vie, Tie) (%)

The LSTM network effectively models the nonlinear dynamics
of lithium-ion batteries by capturing long-term dependencies in volt-
age, current, and temperature data. However, its lack of real-time
error correction necessitates integration with the EKF, as described
in the following subsection, to achieve robust SoC estimation under
noisy conditions.

3.2. EKF for SoC Estimation

While the LSTM captures the nonlinear dynamics of the battery,
the EKF provides real-time correction by filtering process and
measurement noise. Referring to the system equations (3), the Ex-
tended Kalman Filter recursively estimates the states by linearizing
the system dynamics and measurement equations around the cur-
rent state estimate using Jacobian matrices:

— State prediction:

fk/k—l = f (e, uy) (6)
Pyje—1 = AP Ag + Q (7)

or
where 4, = ™ |2,

— Measurement Update
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Ky = Pyje—1 Hy (HyPyje—1 Hy + R)™ (8)
Rijk = Zipe—1 + K Uk — h(Ekpe-1)) 9)
Pk|k =U- Kka)Pk|k—1 (10)
where
an
k= a |fk

The EKF SoC estimation equation is simplified as:

S’(-)\Ck+1|k+1 = SB\Ck+1|k + K (Vi — VOC(S’O\Ck+1|k) + Rly)
(11)

3.3. Adaptive Fusion Strategy

The final SoC estimation is obtained by fusing the LSTM pre-
diction and EKF correction through a weighted approach:

S0Ch4q = aSoCpsrmpsn + (1 — @) S0Ceke k41 (12)

Where «,, is an adaptive weighting factor that dynamically bal-
ances the contributions of EKF and LSTM. By tuninge;,, the system
optimally combines the strengths of both approaches, ensuring ac-
curate and stable SoC estimation under varying operating condi-
tions. The adaptive fusion factor, ;, € [0, 1], is computed as:

a = UE‘KF,I{ (13)
k UéKF,kaULZSTM,k

To maintain consistency in error modeling, Gaussian white
noise is introduced in both the LSTM and EKF estimations, ensur-
ing fair comparison and robustness. The variances aZgp,and
0%y ras follows:

1
ULZSTM = ;Z?/:I(SOCreal,i - SOCLSTM,i)Z (14)

Ofkr = Pk (15)

where Py ,is the covariance matrix of the state from the EKF.

The fusion with the weighting factor ex,is a critical aspect of the
proposed LSTM-EKF hybrid model. It balances the contributions of
the LSTM's prediction and the EKF's estimation to refine the State
of Charge estimation. By tuning «,,, the method dynamically ad-
justs the trust given to the data-driven model (LSTM) versus the
physics-based model (EKF), thereby enhancing robustness against
noise and improving overall estimation accuracy.

This synergistic combination addresses the limitations of indi-
vidual methods, providing accurate, robust, and adaptive SoC esti-
mation under noisy and nonlinear conditions. The next section val-
idates the framework’s performance on NASA’s battery datasets,
comparing it to standalone and fixed hybrid methods.

4. EXPERIMENTAL STUDY

In this section, we evaluate the performance of the proposed
LSTM-EKF hybrid model for State-of-Charge (SoC) estimation us-
ing the NASA battery dataset used by Saha and Goebel.[11]. The
observed fluctuations highlight the challenges of traditional SoC es-
timation methods, which may struggle with sensor noise, nonlinear
dependencies, and model uncertainties. This justifies the need for
a hybrid approach that combines machine learning (LSTM) with
model-based filtering (EKF).
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Fig. 2. Experimental voltage, current, temperature and SoC profiles
of a lithium-ion battery cell during the discharge process
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Fig. 3. Training and validation loss for LSTM Model

The dataset was split into 80% training and 20% testing. The
model was trained for 50 epochs with a batch size of 16, using a
validation split of 10% to monitor performance. The training process
was evaluated by plotting the loss curves, showing a consistent de-
crease in MSE over epochs, indicating effective learning. Once
trained, the model was tested on the entire dataset to generate SoC
predictions. The model summary confirmed its suitability for battery
SoC estimation, demonstrating its ability to capture time-dependent
patterns in dynamic battery conditions.

Figure 3 illustrates the evolution of the training loss and valida-
tion loss for the LSTM model over 50 epochs, measured using the
Mean Squared Error (MSE). Overall, the results demonstrate that
the LSTM model is effectively trained and provides accurate pre-
dictions with minimal overfitting.

To refine the SoC predictions generated by the LSTM model,
the EKF was applied. The SoC estimation is modeled using a dis-
crete-time state-space representation with the following parame-
tersA, =1, Cpqr = 2mh, B, =—-1/(3600 * Cyy), Q =
0.02,R =0.02,x, =0andP =1

Referring to Equation (12), the combination is performed using
the adaptive fusion factor a; represented by Equation (13).
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Fig. 4. Evolution of the adaptive fusion factor (ay)

The evolution of over time (Fig. 4) shows that:

— when LSTM predictions are reliable, increases, giving more
weight to the neural network model.

— when uncertainty is high, EKF takes over to stabilize the esti-
mation.

— this adaptive mechanism enhances overall SoC estimation ac-
curacy, balancing both methods dynamically.

The fusion factor fluctuates over time, demonstrating that the
system dynamically adjusts the influence of each method based on
estimation confidence and noise levels. This adaptive mechanism
enhances robustness by allowing the hybrid model to intelligently
switch between data-driven learning and Kalman filtering, depend-
ing on real-time conditions.
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Fig. 5. SoC Estimation results using LSTM, BiLSTM, LSTM-Attention,
EKF and LSTM-EKF

Figure 5 presents the SoC estimation results obtained using
five different approaches: the standalone LSTM model, the BiLSTM
model, the LSTM with attention mechanism, the EKF method, and
the proposed adaptive hybrid LSTM-EKF model.

— The LSTM-EKF hybrid model significantly reduces estimation
errors, particularly in dynamic and nonlinear regions (as shown
in the zoomed-in section).

— The standalone LSTM and its variants (BiLSTM and LSTM with
attention) exhibit limitations: while they capture temporal de-
pendencies effectively, they lack real-time correction, leading
to higher errors in noisy or transient conditions.

— The EKF method improves upon standalone LSTM by providing
real-time correction but struggles in highly nonlinear sections
due to its reliance on accurate system modeling.

— The hybrid LSTM-EKF approach effectively combines the pre-
dictive capabilities of LSTM with the adaptive filtering ability of

acta mechanica et automatica, vol.19 no.4 (2025)

EKF, resulting in superior performance. By dynamically balanc-

ing their contributions through the fusion factor, it overcomes

the limitations of both standalone and recent advanced meth-
ods.

These findings highlight the advantage of integrating machine
learning with traditional filtering techniques for SoC estimation, en-
suring higher accuracy and adaptability to nonlinear and noisy con-
ditions.

Figure 6 presents a comparative evaluation of SoC estimation
accuracy for three methods. The metrics used are the Mean Abso-
lute Error (MAE) and Root Mean Square Error (RMSE):

MAE==3", | y;-9il (16)

’1 ~
RMSE = ;Z?=1(yi -y

(17)

Figure 6 provides a visual comparison of the Root Mean Square
Error (RMSE) and Mean Absolute Error (MAE) for five different
State of Charge (SoC) estimation methods: LSTM, BiLSTM, LSTM-
Attention, EKF, and LSTM-EKF. The exact error values are dis-
played above each bar, allowing for a direct comparison of the per-
formance of each method:

— LSTM Only:

— RMSE (0.0211) and AME (~0.0165) are the highest.

— This suggests that the standalone deep learning model in-

troduces some lag and lacks real-time error correction.

i
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Fig. 6. Comparison of RMSE and MAE for different SoC estimation
methods

— BILSTM:
— RMSE =0.0227, MAE =0.0182
—  The BiLSTM model does not outperform the standalone
LSTM, suggesting that bidirectional processing does not
provide substantial benefits for this specific application.
The errors are slightly higher than those of the LSTM.
— LSTM-Attention:
— RMSE=0.0217, MAE=0.0169
—  The LSTM with attention mechanism performs similarly
to the standalone LSTM. This indicates that attention
mechanisms do not significantly improve the accuracy of
SoC estimation in this context.
— EKF Only:
— RMSE (0.0118) and AME (0.0093) are lower than LSTM.
— The EKF model shows a notable improvement over the
LSTM, with a 43.92% reduction in RMSE. This improve-
ment is due to its ability to dynamically correct state esti-
mates in real-time, addressing one of the key limitations
of data-driven models.
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— LSTM-EKF (Hybrid Model):

— RMSE =0.0062, MAE = 0.0048.

— The proposed adaptive hybrid LSTM-EKF framework
achieves the lowest errors among all methods. This rep-
resents a 70.77% reduction in RMSE and a 70.80% re-
duction in MAE compared to the standalone LSTM. The
dynamic fusion factor optimally balances the contribu-
tions of the LSTM and EKF, resulting in superior accuracy
and robustness under noisy and nonlinear conditions.

Tab. 2. Comparative performance of SoC estimation methods

RMSE AME

Method RMSE | MAE | Improvement |(Improvement
(%) (%)

LSTM 0.021 | 0.016 0.00 0.00
BiLSTM 0.023 | 0.018 -1.37 9.78
LSTM-Atten- | 0.022 | 0.017 -2.82 -2.12
tion
EKF 0.012 | 0.009 43.92 43.88
LSTM-EKF 0.006 | 0.005 70.77 70.80

The results in Tab.1. demonstrate that the standalone LSTM
model, while effective at capturing temporal dependencies, suffers
from higher estimation errors due to its lack of real-time correction.
The BIiLSTM and LSTM with attention models do not significantly
outperform the baseline LSTM, suggesting that bidirectional pro-
cessing and attention mechanisms do not provide substantial ben-
efits for this specific application. In contrast, the EKF model shows
a notable improvement, with a 43.92% reduction in RMSE, thanks
to its ability to dynamically correct state estimates in real time. How-
ever, the most significantimprovement is achieved by the proposed
adaptive hybrid LSTM-EKF framework, which combines the predic-
tive power of the LSTM with the corrective robustness of the EKF.
The dynamic fusion factor (ay) optimally balances their contribu-
tions, resulting in a 70.77% reduction in RMSE and a 70.80% re-
duction in MAE compared to the standalone LSTM. This superior
performance underscores the effectiveness of our hybrid approach
in achieving accurate and robust SoC estimation under noisy and
nonlinear conditions.

The results show that the hybrid approach achieves the lowest
error values, demonstrating superior accuracy and robustness. The
LSTM-EKF model effectively reduces errors by dynamically adjust-
ing the contribution of each method through the adaptive fusion
mechanism (). This confirms that integrating machine learning
with model-based filtering significantly improves SoC estimation,
making it a reliable solution for battery management in electric ve-
hicles and renewable energy systems.

5. CONCLUSION

This work presented an adaptive hybrid LSTM-EKF framework
for accurate and robust state-of-charge (SoC) estimation of lithium-
ion batteries under nonlinear and noisy conditions. The key innova-
tion is the dynamic fusion mechanism (et;,), which adaptively bal-
ances the predictive capability of the LSTM and the corrective feed-
back of the EKF in real time. A comprehensive comparison with
recent approaches BILSTM, LSTM-Attention, and EKF confirmed
the superiority of the proposed method, achieving about 70% im-
provement in RMSE and MAE. The model effectively captures com-
plex battery behavior while ensuring stability and fast convergence,
showing strong potential for integration into advanced battery-
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management systems. Future work will extend the framework to
multi-cell configurations and explore integration with physics-in-
formed neural networks (PINNs) for real-time health prediction.
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