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Abstract: The development of a next-generation EQ/IR Gimbal system is so rapid, and it is crucial to enhance the defence forces that require
more reliable Intelligence, Surveillance, and Reconnaissance (ISR) capabilities. The possible outcomes of the development initiatives include
improved target tracking, longer detection ranges, and higher image quality- all of which are essential in surveillance applications. To obtain
precise object tracking in challenging situations, combined EO and IR camera images are used. Image fusion techniques enhance the
features in these images; the fused images provide better tracking and detection capabilities in difficult-to-track scenarios. This survey offers
an extensive investigation of image fusion methods. The evaluation of the fused image is also described as a crucial component, offering
different ways to assess the quality of both full-resolution and reduced-resolution images. Finally, this work is concluded by going over the
current constraints, issues, and problems with image fusion methods, datasets, and quality evaluation.
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1. INTRODUCTION

EO/IR Gimbal systems consist of a gimbal-mounted Electro-
Optical/lnfrared (EO/IR) camera. The camera is rotated about mul-
tiple axes by means of this pivotal support. Additionally, a video
tracker that can follow moving targets is also built inside. With the
aid of an intelligent gimbal system, the system can track its target
with its capabilities of quick image processing, precise camera po-
sitioning, and multimodal information fusion. It raises awareness to
real-time situations and surveillance in various lighting and weather
conditions [1]-[3]. The EOQ/IR Gimbal system may present high-def-
inition images to the operator and function in tandem, contingent
upon favourable daylight circumstances. There are two categories
of EO/IR systems: imaging and non-imaging. While non-imaging
EO/IR systems are primarily concerned with long-range target sur-
veillance, imaging EO/IR systems are committed to scanning the
structure of targets and providing noise-free images for precise de-
tection. The effectiveness of the EO/IR imaging system depends
on contrast, luminance, noise, sampling, and blur. Images may suf-
fer from distortion, occlusion, motion blur, or obstructed vision in
bad weather (such as fog or rain). More sophisticated image pro-
cessing and computer vision methods are needed to address these
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exploitation issues.

Electro-Optical and Infrared imaging sensors support infor-
mation flow by highly advanced cameras that create streams of de-
tailed images. These images are vital because they offer the user
valuable information about the intended target [4]-[5]. The defining
characteristics of EO and IR images are:

— EO cameras, commonly employed in surveillance, computer vi-
sion, and photography under well-lit environments, record re-
flected or emitted light within the visible spectrum. In contrast,
Infrared cameras are used for temperature measurement, night
vision, and heat signature identification because they capture
the thermal radiation emitted by objects.

— Resolution is a performance parameter that defines how well
the sensor can see spatial details (how small) in the object
space. The resolution of the image from the EO camera is high
compared to the IR camera.

— EO image sensors exhibit low noise levels. Images obtained
from IR sensors are subject to high noise levels, such as dead
pixels, lines, and fixed-pattern noise [6].

— Diffraction limits the quality of an imaging sensor. Due to the
shorter wavelengths of EO systems, the diffraction blur is
smaller compared to IR systems.

— Sensitivity is a performance parameter that defines how well
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the sensor can discriminate small radiance changes in the ob-

ject space (how dim).

— Turbulence describes the time-varying temperature inhomoge-
neities of the atmosphere, and it is responsible for fluctuations
in temporal intensity. Both EO and IR imaging are affected by
turbulence, which causes image distortion (loss of detail) and
blur. Similar to the EO, the IR band is sensitive to large-ampli-
tude, lower-frequency image shaking and the linear smear. It is
less susceptible to the higher-frequency, smaller-amplitude
harmonics.

Different image attributes do, however, come with drawbacks.
Depending on the kind of light they catch, each sort of camera
(EO/IR) has a unique set of uses and functions. By combining these
two modalities, an item's thermal properties, in addition to its visual
appearance, may be observed. This improves object detection and
scene perception. This fusion of EO and IR bands provides spher-
ical situational awareness, long-range precision targeting.

Fusion enhancement techniques are necessary for visual sys-
tems in order to preserve feature information for scenes with a vast
area while filling in the missing data for important elements [7][8].
IR images include less color and texture information than visible
light images, hence they might not perform as well in many human
object tracking tasks. IR and EO camera pictures were used to
overcome the constraints and achieve precise human object track-
ing in complicated circumstances. By merging the data from the IR
and EO images, image fusion produces fused images with better
tracking and detection capabilities, especially in difficult-to-track
scenarios. Therefore, there is a need to improve the resolution of
EQ images by utilising data (such as temperature) from IR images.
This allows for the high-resolution EO images to be used for the
purpose of differentiating objects' temperatures during the day. This
is accomplished by using image fusion algorithms to superimpose
the temperature information of the target objects from the infrared
image onto the original RGB color (EQ) images.

The underlying motivation of this paper is to provide an explo-
ration of recent literature and offer insights into the studies of image
fusion. In addition, relevant topics such as steps in image fusion,
challenges inherent to image fusion, performance evaluation, limi-
tations, and future scope for work are covered.

2. METHODOLOGY

The systematic literature review for this study employed the
PRISMA approach. It covers the evolution of image fusion tech-
niques from early spatial and frequency domain approaches to re-
cent Al-based fusion frameworks. It resulted in the identification of
110 research papers related to the chosen topic by definition of
keywords: (“multimodal’), (‘RGB-Thermal”), (‘Image fusion
method”). These papers were further refined by utilising exclusion
criteria, such as repetition of papers, recent works, not relevant to
EO/IR gimbal or image fusion methods, and unavailability of full-
text access, bringing the total number of papers reviewed to 64.
The PRISMA flow chart is given in Fig. 1.

The present work aims is to answer the following research
questions:

— How can multimodal image fusion contribute to enhancing si-
tuational awareness, object detection, and target tracking in
modern EO/IR gimbal systems?

— Which public datasets are most widely used for evaluating
EO/R fusion algorithms, and what are their characteristics?
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— How has the field of image fusion evolved from traditional pixel-
level methods to deep learning and Al-based frameworks?

— What recent advancements in deep learning (e.g. CNN, Den-
seFuse) have improved the robustness and accuracy of EO/IR
image fusion?

— What are the strengths and limitations of various fusion algo-
rithms when applied to real-time surveillance and tracking
tasks?

— What future research directions can improve the accuracy,
speed, and adaptability of EQ/IR image fusion methods for
next-generation surveillance platforms?

3. STEPS IN IMAGE FUSION

Multimodal image fusion, or the fusion of images from a daylight
camera and a thermal image from an Infrared (IR) camera, permits
a more comprehensive and informative representation of the cap-
tured image. The integration of visual and thermal information is
essential to improve decision-making and analysis. It allows for im-
proved detection and recognition of objects during night vision or in
conditions with limited visibility due to smoke, fog, etc. Image fusion
combines information from a daylight camera's image and a ther-
mal imager into a single composite image. The composite image
enables viewing both the thermal signature of objects and their ap-
pearance. Fusing these modalities can provide more texture details
for subsequent object detection tasks.

The formal framework for image fusion is grouped into three
broad categories, namely pixel level, feature level, and decision
level, as shown in Fig. 2 [9-13]. The category derives its name from
the level at which the fusion occurs. Pixel-level method for image
fusion integrates the data directly from the input images for further
processing. The feature level method contains the extraction of rel-
evant features, such as edges, textures, or pixel intensities, that are
combined to form the supplementary merged features. The deci-
sion level method is the highest processing level of the three levels.
The source images are treated one at a time to extract all infor-
mation, and then, according to specific criteria, the extracted infor-
mation is fused. Feature and decision level fusion employs ad-
vanced mathematical and statistical procedures using expert
knowledge and probability theory to assign class labels to pixels.
Image fusion at the pixel level is simple to implement and preserves
most of the original data. But its performance deteriorates if affected
by noise. Feature-level image fusion offers greater robustness to
noise and effective in real-time processing. However, it may result
in the loss of supplementary information due to data compression.
Decision-level image fusion provides higher accuracy and is effec-
tive in real-time processing. Also, it is less responsive to noise. The
limitation of decision-level image fusion is that it retains only suffi-
cient information from the source image, and data compression is
highest as compared to the other two methods.

The process of EO/IR image fusion involves several sequential
steps to ensure accurate integration of multimodal data. These
steps include image registration, image resampling, applying the
selected fusion method to the resampled images using appropriate
fusion rules, and performing qualitative and quantitative evaluation
of the fused results. Each of these stages is described in detail in
the following subsections.
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3.1. Image registration

EO/IR sensors have complementary characteristics; hence, the
image registration from the two different sensors is an important
step. The source images should be spatially aligned to ensure that
the features and objects match up accurately. Image registration
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can be either feature-based or image-based. As long as the image
contains specific salient features, a feature-based registration ap-
proach is adopted. On the other hand, image-based registration is
a more trustworthy option if the features are unreliable due to dif-
ferent image degradations [14][15]. This approach uses the pixel
intensity without looking for the visual features.

3.2. Image resampling

Resampling is essential for images with significant resolution
disparities. The pixel spacing between the EO and IR images has
to be the same or a power of 2 before performing the fusion pro-
cess. Conceptually, resampling involves interpolating the discrete
data samples to continuous intensity, followed by sampling the in-
terpolated image [16]-[19]. The four basic interpolation techniques
used in resampling are nearest neighbor, bilinear interpolation,
bicubic interpolation, and basic spline. Nearest neighbor creates a
coarse block pixel with the same intensity without any new pixel
formation. This technique is computationally fast but may bring sig-
nificant distortion. Bilinear interpolation is a local smoothing over
four neighboring pixels. It is unable to produce any undershoot or
overshoot along edges. Compared to nearest neighbor interpola-
tion, it is more complicated and requires more processing time.
Bicubic interpolation increases the perceived sharpness by making
pixels close to edges noticeably brighter or darker. Bicubic interpo-
lation is generally regarded as the standard technique and is uti-
lised in the majority of image alteration tools since it yields notably
better results than the bilinear method at comparable computing
costs. Cubic B-spline yields reduced smoothing of high-resolution
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features in the image. When compared to bilinear interpolation al-
gorithms, the interpolation improvement may be worth the compu-

tational load.

Spatial Domain

acta mechanica et automatica, vol.19 no.4 (2025)

3.3. Image Fusion Methods

Fusion methods provide a systematic methodology for fusing
images. It encompasses a wide range of techniques and strategies

that are detailed in Fig. 3.

1. Maximum Pixel Value

2. Averaging

3. Minimum Pixel Value

4. Max-Min

5. Simple Block Replace

6. Weighted averaging

7. Principal Component Analysis

8. Intensity Hue Saturation

9. Brovey Transform

10. Guided Filtering

11. Histogram equalization

12. Independent Component
Analysis

Pyramid Transform

Image Fusion Methods

Fig. 3. Image fusion techniques
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1. Discrete Cosine Transform

2. Discrete wavelet Transform

3. Redundant wavelet Transform
4. Discrete Cosine Harmoni

5. Multiwavelet transform

6. Weighted averaging

1. Curvelet
2. Contourlet
3. Shearlet
4. NSCT
5.NSST

1. Support vector machines
2. Fuzzy logic
3. Sparse representation

Deep Learning

1. Artificial Neural networks
2. Adaptive PCNN

3. Fully convolution network
4. Multi-level features CNN
5. Metaheuristic
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3.3.1. Spatial-domain image fusion methods

Spatial domain image fusion methods operate by combining
pixel intensity values. These methods are simple and computation-
ally fast. However, the quality of the fused image is not satisfactory
as there are spectral deteriorations [20][21]. The merits and demer-
its of spatial domain fusion methods are given in Tab. 1. Tech-
niques such as weighted averaging, Principal Component Analysis
(PCA), and Intensity-Hue-Saturation (IHS) transformation have
been widely used for fusing EO/IR images due to their simplicity
and low computational cost. Although IHS and PCA are computa-
tionally efficient and rely on simple feature transformations, they
exhibit limited adaptability to complex illumination variations. The
underlying fusion rules in these methods operate primarily on inten-
sity or component features, which can lead to spectral distortion
and loss of fine detail under varying conditions.

Tab. 1. Advantages and disadvantages of Spatial Domain Methods
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Fusion Method

Advantages

Disadvantages

Averaging — Image
fusion by pixel
averaging [22,23]

This is a basic
method to identify
and put into practice
if the images are
from the same
sensor with lot of
contrast and
brightness. It
involves a low
computational cost

The fused image
quality is reduced.
The output images

are hazy and so not

suitable for real-time
applications. Also,
edges and image
information are lost

It is more suitable for
multifocus images
PCA [26,27] excellent spatial
uality and robust and spectra
quetly degradation
The colour,
resolution and Only three
features are multispectral bands
IHS (23] improved in the are analysed. So
output image. The chromatic aberration
processing time is occurs in the fused
quick with high image
sharpening
Extremely easy and RGB p|ctur§s are
fast processin generated with high
Brovey [24] P 9 contrast, which
method
causes color
distortion
The method does not
This methodis | 2PPY to sparse input
. . data. Some edges
suitable for real-time
applications and may have halos.
Guided fitering [28] | 2P0 Also, there will be a
provides better . .
erformance in mismatch in the color
ir$1a e smoothin and depth details
g 9 between the input
and fused image

Minimum pixel
value [22]

The fused image is
good if the inputs
have dark shades

Fused images are
characterised by low
contrast and blurred

Simple block
replacement [24]

Incredibly easy to
understand and

apply

The fused image has
a random variation of
brightness and color
information. Fine
detail of the image is
less

The low pixel values

are rejected, and the

highest pixel value is
used to create the

The contrast of the

“12);:]”;[;212%?' fused method. So fused image is
' this method is decreased
susceptible to
artifacts and
distortion
The efficiency of
Easy to implement, fusion is reduced,
. and the and the output image
Max-min [24] computational time is | has rough edges due
less to blocking artifacts
and isolated spots
Weighted averaging | This method is easy Thg §|gnal-to-n0|§e
ratio is enhanced in
[25] to apply and robust.

the fused image
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3.3.2. Transform-domain image fusion methods

Frequency domain methods are also known as Multi-Scale De-
composition (MSD) [29]-[30]. All the MSD methods involve three
major steps. First, the base level features and detail level features
can be analysed separately by decomposing the source image into
low-frequency and high-frequency sub-bands using an appropriate
multi-scale transform. The most commonly used transforms are
pyramids, contourlets, discrete wavelets, shearlets and dual-tree
complex wavelets. Second, the decomposed coefficients are inte-
grated using a specific fusion rule. Third, inverse transforms are
used to obtain the fused image. In the frequency domain or MSD
methods, the spectral distortion is reduced and produces better
SNR than the spatial domain methods. Tab. 2 shows the pros and
cons in the different MSD methods. Geometric analysis-based
MSD methods are effective in image representation. The most sa-
lient features in images are retained in MSD-based edge-preserv-
ing filters, including bilateral filters and guided filters. The success
of transform-based methods depends on the decomposition level.
If the level is low, there will be a lack of spatial details from the
source image. On the contrary, if the level is high, fusion would be
more sensitive to noise and it will be difficult to make accurate reg-
istration.

In the sparse transformation method, the source images are not
decomposed into low-frequency and high-frequency bands, but in-
stead, both frequency bands are assumed to have similar sparse
coefficients. The sparse representations take advantage of the
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regularity of source images and create coefficients of small ampli-
tude [31][32][33]. The sparse coefficients are the important param-
eters that provide a final image by improving the contrast of the
image by preserving the structure and visual information of the
source images. However, the drawback of the sparse representa-
tion technique is that it cannot preserve fine details, and it is sus-
ceptible to misregistration errors. Despite the merits of individual
fusion methods, the limitations have spurred interest in hybrid
transformation strategies. Two transformation techniques, such as
curvelet-wavelet, MSD-Sparse representation methods, and Prin-
cipal Component Analysis - Intensity Hue Saturation, are combined
in hybrid transformation methodologies.

Tab. 2. Advantages and Disadvantages of Frequency Domain Methods

Fusion Method Advantages Disadvantages
. . The fused image is
Morphological pyramid affected by the
[34] number of

Laplacian/Gaussian
pyramid [34,35]

breakdown levels.

Provide better Also, there is no

Gradient pyramid [36] . . direction

Low-pass pyramid ratio image quality information, so
[37] detailed image

Filter subtract decimate information in
[36] different directions

cannot be extracted.

The images are
decomposed into a
series of cosine
waveforms
representing
different spatial
frequency
components. This
compact
representation
makes DCT
suitable for real-
time applications

The fused image is
blurred, and
blocking artifacts
are generated.

Discrete cosine
transform (DCT) [38]

The spatial

Spectral distortions resolution of the
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3.3.3. Al-based and Deep Learning fusion methods

Modern technology has advanced significantly in analysis and de-

cision-making with the incorporation of Artificial Intelligence (Al)
and Deep Learning (DL) into electro-optical/infrared (EQ/IR) sys-
tems [48][49]. The ability to automate and accelerate image analy-
sis is one of the main benefits of integrating Al and DL into EO/IR
systems. Large volumes of data from EO/IR sensors may be quickly
processed by Al algorithms, which can then identify patterns, ab-
normalities, and things of interest that human operators might find
difficult to identify. However, DL algorithms provide improved accu-
racy over time by permitting the systems to learn from data and
familiarise themselves with changing environments.

Tab. 3 specifies the advantages and disadvantages of various
deep learning models. The primary benefit of deep learning-based
EO/IR image fusion is that it eliminates the laborious process of
manually selecting parameters, demonstrates advanced perfor-
mance for the complex interaction between data, and facilitates the
acquisition of better fusion outcomes. In DL-based image fusion
methods, Convolution Neural Networks (CNN) were widely used.
The current development in the CNN-based deep learning frame-
work [50] has been shown to be effective in handling spatial and
temporal information in multimodal images. CNNs enhance the ac-
curacy with improved computation capabilities and quantitative
evaluation metrics. Also, the misregistration issues, either due to
the movement of objects or the shaking of the camera, are solved.
However, the efficiency is degraded in challenging situations like
dark environments and bad atmospheric conditions. In dark envi-
ronments, extracting the relevant features is highly challenging and
in bad atmospheric conditions, such as fog, the contrast and image
quality may be reduced. Furthermore, their reliance on annotated
datasets restricts their suitability for real-time surveillance applica-
tions. Comparatively, Convolution Sparse Representation (CSR)
offers better robustness to registration errors but remains data-in-
tensive. Stacked Autoencoders (SAE) reduce data dependency at
the cost of slower training speed and limited scalability. Overall, the
critical analysis highlights a trade-off between the fused image
quality, data requirement and computational efficiency, emphasiz-
ing the need for hybrid and lightweight models in challenging EO/IR
environments.

Tab. 3. Advantages and Disadvantages of Deep Learning Methods

transform fusion [40,41]

the fused image is
more informative

Discrete wavelet are decreased, fused i .
technique with Haar and a fused image uTe 'm?_%e s
fusion [39] with better SNR is . °Vtve"- fth

produced. anisotropy of the
source image is not
represented.
Kekre's wavelet Irrespectlvg of the .
size of the images, Computation

complexity is high

Kekre's hybrid wavelet-
based transform fusion

Fused image
results are better
with more temporal

If the images are an
integer power of

Fusion Method Advantages Disadvantages
Features are
Convolution Neural extracted and learnt | Computational
Network [51-53] from the training speed is low
data without human
assistance
This method is less Enormous
CSR [54] sensitive to training data
misregistration required
- The model
SAE [55] L|m|t_ed data training speed
required for
! . depends on the
supervised learning
processor

42,43
[42.43] and freq_uency . two, this approach
features with multi-
X cannot be used
resolution
properties.
. At decomposition . .
Stationary wavelet level 2. better High computational
transform (SWT) [44- : time
46] result_s are
obtained
Curvelet Transform [47] | Best suits for edge | High computational
representation time

3.4. Fusionrules

Fusion rule is a specific guideline or mathematical procedure

that dictates how information from multiple input images or sources
is combined to create a single fused image [56]. A fusion rule is
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within a fusion method to combine information from EO/IR images,
and it emphasises interesting attributes while suppressing irrele-
vant attributes, as shown in Fig. 4. The multi-scale coefficients de-
rived from the decomposition method are merged depending on the
fusion rule. The fused image quality is highly influenced by the fu-
sion rule. A good fusion rule leads to better results of fusion. Nev-
ertheless, creating a single fusion rule that works for every applica-
tion is not feasible.

3.4.1. Fusion rule components

Fusion rule comprises four major components: i) activity level
measurement ii) coefficient grouping, iii) coefficient combination,
and iv) consistency verification. The quality of each part of the input
image is determined in the activity level measurement. The input
images are transformed to salient features by window-based, re-
gion-based based or coefficient-based measures. In a window-
based measure, a small squared window is placed over the image
with the coefficient under consideration employed at the centre.
Rank filter and weighted average methods are common examples
of window-based measures. In coefficient-based measures, each
coefficient is quantified separately. The region-based measure is
parallel to the window-based measure except that region-based
methods have odd shapes.

Coefficient grouping provides the details about the association
between pixels of source images that are presented at the same
decomposition level. The coefficient combination combines the co-
efficients of each image source to get the coefficients of the fused
image. These rules are applied to the input image coefficient to get
the final fused pixel via maximum, average or weighted average.
Consistency verification ensures neighboring coefficients are fused
with the same rule for a more accurate outcome.

Tab. 4. Performance Evaluation Metrics

B0 .
image
Fusion -
Rule "
IR > Fused multi-scale
image coefficients

Multi-scale coefficients

Fig. 4 Generic structure of fusion rules

4. ASSESSMENT OF PERFORMANCE AND INTRINSIC
CHALLENGES IN IMAGE FUSION

Once the fusion process is complete, the performance of the
fusion method adopted is assessed by two measures. The first
measure is visual observation, and the second is to use evaluation
metrics that involve mathematical formulas. There are different
types of qualitative and quantitative evaluation metrics to evaluate
the quality of the fused image. Tab. 4 lists the various evaluation
metrics. The equations for the evaluation metrics can be obtained
from [57,58]. Tab. 5 shows the performance evaluation metrics of
quite a few fusion methods for visible and IR data sets. When paired
with the aesthetic qualities of the fusion results, the congeneric
values of the IY-Net algorithm appear to be acceptable even though
they are not ideal. The time required for computation is a crucial
factor in evaluating an algorithm’s overall performance. The IY-Net
algorithm is 94% faster.

Desired value for

S. No. Category Metric good performance Remarks
Evaluates the similarity of information shared between
Cross entropy (CE) Low the EQ/IR image and the fused image
. . Measures the average amount of information or detail
1 Inf?r:z)atlon Entropy (EN) High contained in the fused image
v Mutual information (M) High Quantifies the degree of statistical dependence between

the source and fused images.

Peak signal-to-noise ratio (PSNR)

High Fused image distortion

Universal image quality index, SSIM

Image loss (correlation loss, luminance loss) and

) Structural (Structural Similarity Index Metric) High distortion (contrast distortion)
imilart — .
similarity Root Mean Squared Error (RMSE) Low Calculate the variation in mea Zgurce image and the fused
Average gradient (AG) High Insights into image clarlty and fusion texture
characteristics
Edge intensity (EI) High Quantifies image edge intensity
- . Provide details on the factors linked with image quality -
3 Image feature Standard deviation (SD) High distribution of information and contrast
Spatial frequency (SF) High Information on the overall activity and clarity of the image
Gradient-based fusion performance, . Assgsses the degree tq which the gradient or gdge
QUBF High details from the source images are preserved in the
fused image
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Tab. 5. Quantitative results of various methods [59] - [62]

acta mechanica et automatica, vol.19 no.4 (2025)

Data set Algorithm PSNR | SSIM | EN MI AG SD SF Running
time (s)

Dense Fuse 60.27 0.72 | 6.84 | 13.67 | 4.24 - - 9.85
CNN 62.21 069 | 7.31 | 14.67 | 5.76 - - 33.25
ResNet 64.23 0.73 | 6.73 | 13.46 | 3.64 - 453
Convolution Sparse representation - 0.864 | 6.22 | 1.90 | - 21.46
Anisotropic diffusion - 094 | 618 | 1.94 | - 20.58
Fourth-order partial differential equation - 086 | 625|173 |- 21.33
Total variation and augmented Lagrangian | - 091 | 621|192 |- 21.08
Bayes Fusion - 094 | 643 | 245 | - 26.28
Deep convolutional sparse coding - 6.91 | 250 | 4.22 46.97
DeepFuse - 6.86 | 230 | 3.60 32.25

Muttimodal |~ galiency Detection - 6.67 | 1.72 | 398 | 28.04

Mage I FusianGAN - 6.58 | 234 | 242 | 29.04

DLF - 6.38 | 215 | 2.72 22.94
Fast and efficient zero learning - 6.63 | 223 | 2.55 28.09 | - -
Discrete Wavelet Transform (DWT) - 6.44 | - 3.09 - 8.16 0.76
Non-subsampled contourlet transform - 717 | - 5.02 - 12.78 | 2.03
(NSCT)
Multi-Focus image fusion (MFCNN) - 6.61 | - 3.61 - 9.55 0.38
CNN integration (ECNN) - 710 | - 5.48 - 1834 | 0.34
Unsupervised depth model for image - 7.3 | - 7.26 - 24.91 0.31
fusion (SESF)
IY-Net - 6.81 | - 4.84 - 1253 | 0.16

*Best values in Bold and 2" best underlined

5. COMPARATIVE ANALYSIS OF THE FUSION METHODS
AND INSIGHTS

A comparative assessment of traditional, multi-scale, and Al-
based image fusion techniques reveals a clear evolution in both
methodological complexity and fusion quality. Traditional spatial-
domain approaches, such as averaging, IHS, and PCA, are com-
putationally efficient and easy to implement but often produce fused
images with blurred edges, spectral distortion, and limited robust-
ness under varying illumination. These limitations motivated the de-
velopment of multi-scale or transform-domain methods such as
wavelet, contourlet, and Laplacian pyramid fusion, which provide
better edge preservation and detail enhancement by separating
spatial and frequency components. However, these methods still
rely on manually designed fusion rules, and their performance
tends to degrade when applied to dynamically changing or noisy
environments.

The advent of deep learning and Al-based fusion frameworks
marks a significant paradigm shift from hand-crafted feature extrac-
tion to data-driven representation learning. Convolutional neural
networks (CNNs), GAN-based architectures, and hybrid deep-
learning models such as DenseFuse have demonstrated substan-
tial improvements in fusion quality, achieving higher PSNR, SSIM,
and mutual information values compared to traditional and multi-
scale methods. These models can automatically learn optimal fu-
sion rules and adapt to diverse image characteristics without man-
ual intervention. Nevertheless, their deployment in real-world sur-
veillance and gimbal systems remains constrained by high compu-
tational demands, data dependency, and limited interpretability.

Overall, the comparative evaluation indicates a fundamental
trade-off between fusion quality, computational efficiency, and in-
terpretability. Traditional methods remain suitable for real-time or

resource-limited applications, while multi-scale techniques offer a
balance between performance and complexity. The progression
from traditional methods to deep learning—based fusion reflects a
paradigm shift from handcrafted design to data-driven optimization.
Despite measurable gains in image quality, the computational bur-
den and lack of interpretability in DNNs hinder real-time adoption.
Thus, future research should focus on hybrid architectures that bal-
ance fusion accuracy, transparency, and efficiency. This analysis
highlights the growing need for hybrid and lightweight fusion frame-
works that can integrate the interpretability of traditional and trans-
form-based methods with the adaptive learning capabilities of deep
models. Such approaches will be critical for advancing EQ/IR fusion
in real-time defense, surveillance, and autonomous vision systems.

6. BENCHMARKING DATASETS

Some public databases containing visible and infrared image
pairs are listed in Tab. 6. The Netherlands Organization for Applied
Scientific Research (TNO) dataset comprises visual and infrared
nighttime images of numerous military and surveillance
circumstances. It shows different objects and targets with rural and
urban backgrounds. The KAIST multispectral dataset contains
color and thermal pairs taken from vehicles. All the pairs include
human annotations and temporal alignment between bounding
boxes. Visual and Image Fusion Benchmark (VIFB) provides a
platform for a comprehensive comparison of VIF algorithms. There
are 21 image pairs, 20 image fusion algorithms and 13 evaluation
metrics in VIFB. Among the existing datasets, LLVIP (A Visible-
infrared Paired Dataset for Low-light Vision) stands to be the largest
dataset featuring 15488 spatially and temporally aligned image
pairs with dark scenes.
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Tab. 6. Benchmarking datasets

S.No | Database | Year Web Address

. Name

1. TNO 2014 | https://figshare.com/articles/dataset
/TNO_Image_Fusion_Dataset/1008
029

2. KAIST 2015 | https://soonminhwang.github.io/rgbt
-ped-detection/

3. VIFB 2020 | https://github.com/xingchenzhang/
VIFB

4, LLVIP 2021 | https://bupt-ai-cz.github.io/LLVIP/

7. CHALLENGES INHERENT TO EO/IR IMAGE FUSION

The challenges intrinsic to the EQ/IR image fusion are

— Imperfect environmental conditions - The images might have
been obtained from unfavourable conditions. So, the input
images may comprise under-exposure and serious noise due
to weather and illumination conditions. So, pre-processing
steps such as noise reduction, radiometric calibration, and
contrast enhancement [63] are required to improve the quality
of the fused image.

— Object motion and misalignment - The sensors capture the
images while the objects are moving. As a result, fused images
are created with wraith artifacts. So, it is extremely challenging
for precise and accurate image registration.

— Spectral and resolution disparities - Due to the prominent
spectral difference and resolution disparities among the input
images, selecting an appropriate fusion algorithm becomes
crucial. The choice of algorithm significantly influences the
quality and information content of the fused image.

— Computational efficiency - The image fusion algorithm must be
computationally effective in merging the information from the
source images to get the fused image, engaging continuous
real-time monitoring.

— Target saliency preservation - Target saliency refers to the
emphasis placed on specific objects or features within an image
during the fusion process. The target saliency should be
maintained to enhance the visibility and importance of particular
elements in the fused image. The choice of fusion rules or
methods plays a crucial role in achieving target saliency. The
fusion rule should be chosen so that it accentuates the features
or regions of interest while preserving the complementary
information from both the visible and IR images.

8. LIMITATIONS AND FUTURE WORK

The major factors that are expected from the fusion methods
for surveillance applications are i) The algorithms should effectively
integrate the data from EO/IR images. ii) The fusion method must
be computationally efficient for performing real-time surveillance. iii)
The developed fusion methods should be robust to serious noise
and underexposure conditions while achieving high quality fused
image. Although there are various image fusion methods at
present, there are still many open-ended challenges that need to
be addressed.
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Dependence on image registration - The images obtained from
EO/IR sensors will have some spatial errors. So it is important
to perform image registration before image fusion. However,
most of the image fusion algorithms are based on pre-
registered images.

Noise sensitivity - The image obtained from the IR sensor is
generally disturbed by noise. Although the present time fusion
algorithms have good metrics for noiseless images, their
performance on noisy images has not yet been determined.
Resolution disparity - The image resolution from EO/IR sensors
is different.To achieve efficient fusion, it is difficult to get over
the resolution disparity and fully utilize the information in
several source images [64]. The issues related to the selection
of the upsampling strategy and position of upsampling are
unresolved, despite the fact that various techniques have been
put forth to address varying resolution image fusion. More
crucially, the goal is to naturally combine the features of image
fusion and super-resolution work to create deep networks.
Data scarcity for deep learning models - Deep learning neural
networks, such as CNN, GAN, and Transformers, require large,
diverse, and labelled datasets to train effectively. Thermal
datasets are scarce in the constructed dataset. So, the DNN-
based fusion methods may be inferior to the traditional methods
due to insufficient data for training. Therefore, a larger dataset
needs to be constructed for sufficient training of DNNs

Model complexity and real-time limitations - Network
architectures are becoming increasingly complex in the pursuit
of improved fusion performance. However, lightweight and
computationally efficient deep learning—based solutions
tailored for industrial applications remain limited, posing
challenges for real-time and large-scale deployments.

Future EO/IR fusion systems are expected to evolve towards:
Transfer learning -Transfer learning by using deep neural
networks has beena potential option for surveillance
applications. This approach can address data insufficiency by
leveraging pretrained models. It might help with the human
annotation issue, which is considered to be complex and
expensive. Future fusion technologies may possibly include
ideas of knowledge transfer for improvement.

Hybrid and context-aware fusion frameworks - Combining
mult-scale transforms with CNNs, or integrating optimisation-
based and deep learning approaches, can achieve better
robustness across varying environmental conditions. Such a
framework can dynamically blend fusion rules based on scene
content.

Explainable Al — Incorporating such models will enhance the
interpretability of deep fusion outputs for defence and
surveillance missions where transparency is critical.
Integration with object detection and tracking pipelines — Joint
fusion and perception architectures can improve object
detection and tracking under low-light or occluded conditions,
providing semantic understanding alongside fused imagery.
Cross-modal attention mechanisms and transformer-based
architectures — These models demonstrate the effectiveness of
global information perception in multimodal image fusion. It can
handle long-range dependencies and complex spatial
relationships between modalities.


https://github.com/xingchenzhang/VIFB
https://github.com/xingchenzhang/VIFB
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— Multi-sensor fusion ecosystems - Future research will likely
integrate EO/IR data with radar, LiDAR, or hyperspectral
imagery to achieve a halistic situational awareness.

9. CONCLUSION

The continuing challenge in surveillance operations is,
maintaining a technological edge in EO/IR imaging systems. In
addition to improving the individual sensor technologies,
maintaining the technological edge also depends on fusing the
images from the two sensors and sharing the information in real-
time. Presently, it has been demonstrated that image fusion
algorithms are useful tools for improving image information for
visual interpretation. Pixel-level-based image fusion techniques are
widely used to analyze multimodal images. In MSD fusion methods,
the spatial structures are represented with wavelets, edge-
preserving filtering, etc. Further, the fusion performance has been
improved by considering the high correlation among neighboring
pixels. Nevertheless, several issues still affect image fusion and
objective fusion performance evaluation. These issues include
picture noise, disparities in image resolution, unfavorable
environmental circumstances, computational complexity, moving
objects, and imaging hardware constraints. Thus, it is anticipated
that in the years to come, new studies and useful applications
based on image fusion will continue to expand.
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