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Abstract: The development of a next-generation EO/IR Gimbal system is so rapid, and it is crucial to enhance the defence forces that require 
more reliable Intelligence, Surveillance, and Reconnaissance (ISR) capabilities. The possible outcomes of the development initiatives include 
improved target tracking, longer detection ranges, and higher image quality- all of which are essential in surveillance applications. To obtain 
precise object tracking in challenging situations, combined EO and IR camera images are used. Image fusion techniques enhance the 
features in these images; the fused images provide better tracking and detection capabilities in difficult-to-track scenarios. This survey offers 
an extensive investigation of image fusion methods. The evaluation of the fused image is also described as a crucial component, offering 
different ways to assess the quality of both full-resolution and reduced-resolution images. Finally, this work is concluded by going over the 
current constraints, issues, and problems with image fusion methods, datasets, and quality evaluation. 
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1. INTRODUCTION 

EO/IR Gimbal systems consist of a gimbal-mounted Electro-
Optical/Infrared (EO/IR) camera. The camera is rotated about mul-
tiple axes by means of this pivotal support. Additionally, a video 
tracker that can follow moving targets is also built inside. With the 
aid of an intelligent gimbal system, the system can track its target 
with its capabilities of quick image processing, precise camera po-
sitioning, and multimodal information fusion. It raises awareness to 
real-time situations and surveillance in various lighting and weather 
conditions [1]-[3]. The EO/IR Gimbal system may present high-def-
inition images to the operator and function in tandem, contingent 
upon favourable daylight circumstances. There are two categories 
of EO/IR systems: imaging and non-imaging. While non-imaging 
EO/IR systems are primarily concerned with long-range target sur-
veillance, imaging EO/IR systems are committed to scanning the 
structure of targets and providing noise-free images for precise de-
tection.  The effectiveness of the EO/IR imaging system depends 
on contrast, luminance, noise, sampling, and blur. Images may suf-
fer from distortion, occlusion, motion blur, or obstructed vision in 
bad weather (such as fog or rain). More sophisticated image pro-
cessing and computer vision methods are needed to address these 

exploitation issues. 
Electro-Optical and Infrared imaging sensors support infor-

mation flow by highly advanced cameras that create streams of de-
tailed images. These images are vital because they offer the user 
valuable information about the intended target [4]-[5]. The defining 
characteristics of EO and IR images are:  

− EO cameras, commonly employed in surveillance, computer vi-
sion, and photography under well-lit environments, record re-
flected or emitted light within the visible spectrum. In contrast, 
Infrared cameras are used for temperature measurement, night 
vision, and heat signature identification because they capture 
the thermal radiation emitted by objects.  

− Resolution is a performance parameter that defines how well 
the sensor can see spatial details (how small) in the object 
space. The resolution of the image from the EO camera is high 
compared to the IR camera.  

− EO image sensors exhibit low noise levels. Images obtained 
from IR sensors are subject to high noise levels, such as dead 
pixels, lines, and fixed-pattern noise [6]. 

− Diffraction limits the quality of an imaging sensor. Due to the 
shorter wavelengths of EO systems, the diffraction blur is 
smaller compared to IR systems. 

− Sensitivity is a performance parameter that defines how well 
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the sensor can discriminate small radiance changes in the ob-
ject space (how dim).  

− Turbulence describes the time-varying temperature inhomoge-
neities of the atmosphere, and it is responsible for fluctuations 
in temporal intensity. Both EO and IR imaging are affected by 
turbulence, which causes image distortion (loss of detail) and 
blur. Similar to the EO, the IR band is sensitive to large-ampli-
tude, lower-frequency image shaking and the linear smear. It is 
less susceptible to the higher-frequency, smaller-amplitude 
harmonics. 
Different image attributes do, however, come with drawbacks. 

Depending on the kind of light they catch, each sort of camera 
(EO/IR) has a unique set of uses and functions. By combining these 
two modalities, an item's thermal properties, in addition to its visual 
appearance, may be observed. This improves object detection and 
scene perception. This fusion of EO and IR bands provides spher-
ical situational awareness, long-range precision targeting. 

Fusion enhancement techniques are necessary for visual sys-
tems in order to preserve feature information for scenes with a vast 
area while filling in the missing data for important elements [7][8].  
IR images include less color and texture information than visible 
light images, hence they might not perform as well in many human 
object tracking tasks. IR and EO camera pictures were used to 
overcome the constraints and achieve precise human object track-
ing in complicated circumstances. By merging the data from the IR 
and EO images, image fusion produces fused images with better 
tracking and detection capabilities, especially in difficult-to-track 
scenarios. Therefore, there is a need to improve the resolution of 
EO images by utilising data (such as temperature) from IR images. 
This allows for the high-resolution EO images to be used for the 
purpose of differentiating objects' temperatures during the day. This 
is accomplished by using image fusion algorithms to superimpose 
the temperature information of the target objects from the infrared 
image onto the original RGB color (EO) images.    

The underlying motivation of this paper is to provide an explo-
ration of recent literature and offer insights into the studies of image 
fusion. In addition, relevant topics such as steps in image fusion, 
challenges inherent to image fusion, performance evaluation, limi-
tations, and future scope for work are covered.  

2. METHODOLOGY 

The systematic literature review for this study employed the 
PRISMA approach. It covers the evolution of image fusion tech-
niques from early spatial and frequency domain approaches to re-
cent AI-based fusion frameworks. It resulted in the identification of 
110 research papers related to the chosen topic by definition of 
keywords: (“multimodal”), (“RGB-Thermal”), (“Image fusion 
method”).  These papers were further refined by utilising exclusion 
criteria, such as repetition of papers, recent works, not relevant to 
EO/IR gimbal or image fusion methods, and unavailability of full-
text access, bringing the total number of papers reviewed to 64. 
The PRISMA flow chart is given in Fig. 1. 

The present work aims is to answer the following research 
questions: 

− How can multimodal image fusion contribute to enhancing si-
tuational awareness, object detection, and target tracking in 
modern EO/IR gimbal systems? 

− Which public datasets are most widely used for evaluating 
EO/IR fusion algorithms, and what are their characteristics? 
 

− How has the field of image fusion evolved from traditional pixel-
level methods to deep learning and AI-based frameworks? 

− What recent advancements in deep learning (e.g. CNN, Den-
seFuse) have improved the robustness and accuracy of EO/IR 
image fusion? 

− What are the strengths and limitations of various fusion algo-
rithms when applied to real-time surveillance and tracking 
tasks? 

− What future research directions can improve the accuracy, 
speed, and adaptability of EO/IR image fusion methods for 
next-generation surveillance platforms? 

3. STEPS IN IMAGE FUSION 

Multimodal image fusion, or the fusion of images from a daylight 
camera and a thermal image from an Infrared (IR) camera, permits 
a more comprehensive and informative representation of the cap-
tured image. The integration of visual and thermal information is 
essential to improve decision-making and analysis. It allows for im-
proved detection and recognition of objects during night vision or in 
conditions with limited visibility due to smoke, fog, etc. Image fusion 
combines information from a daylight camera's image and a ther-
mal imager into a single composite image. The composite image 
enables viewing both the thermal signature of objects and their ap-
pearance. Fusing these modalities can provide more texture details 
for subsequent object detection tasks.  

The formal framework for image fusion is grouped into three 
broad categories, namely pixel level, feature level, and decision 
level, as shown in Fig. 2 [9-13]. The category derives its name from 
the level at which the fusion occurs. Pixel-level method for image 
fusion integrates the data directly from the input images for further 
processing. The feature level method contains the extraction of rel-
evant features, such as edges, textures, or pixel intensities, that are 
combined to form the supplementary merged features. The deci-
sion level method is the highest processing level of the three levels. 
The source images are treated one at a time to extract all infor-
mation, and then, according to specific criteria, the extracted infor-
mation is fused. Feature and decision level fusion employs ad-
vanced mathematical and statistical procedures using expert 
knowledge and probability theory to assign class labels to pixels. 
Image fusion at the pixel level is simple to implement and preserves 
most of the original data. But its performance deteriorates if affected 
by noise.  Feature-level image fusion offers greater robustness to 
noise and effective in real-time processing. However, it may result 
in the loss of supplementary information due to data compression. 
Decision-level image fusion provides higher accuracy and is effec-
tive in real-time processing. Also, it is less responsive to noise. The 
limitation of decision-level image fusion is that it retains only suffi-
cient information from the source image, and data compression is 
highest as compared to the other two methods.  

The process of EO/IR image fusion involves several sequential 
steps to ensure accurate integration of multimodal data. These 
steps include image registration, image resampling, applying the 
selected fusion method to the resampled images using appropriate 
fusion rules, and performing qualitative and quantitative evaluation 
of the fused results. Each of these stages is described in detail in 
the following subsections. 
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     Fig. 1. PRISMA flow diagram of this systematic review

 

 
Fig. 2.   Image fusion framework a) pixel level b) feature level c) decision  

level 

3.1. Image registration  

EO/IR sensors have complementary characteristics; hence, the 
image registration from the two different sensors is an important 
step. The source images should be spatially aligned to ensure that 
the features and objects match up accurately. Image registration 

can be either feature-based or image-based. As long as the image 
contains specific salient features, a feature-based registration ap-
proach is adopted. On the other hand, image-based registration is 
a more trustworthy option if the features are unreliable due to dif-
ferent image degradations [14][15]. This approach uses the pixel 
intensity without looking for the visual features.  

3.2. Image resampling 

Resampling is essential for images with significant resolution 
disparities. The pixel spacing between the EO and IR images has 
to be the same or a power of 2 before performing the fusion pro-
cess. Conceptually, resampling involves interpolating the discrete 
data samples to continuous intensity, followed by sampling the in-
terpolated image [16]-[19]. The four basic interpolation techniques 
used in resampling are nearest neighbor, bilinear interpolation, 
bicubic interpolation, and basic spline. Nearest neighbor creates a 
coarse block pixel with the same intensity without any new pixel 
formation. This technique is computationally fast but may bring sig-
nificant distortion. Bilinear interpolation is a local smoothing over 
four neighboring pixels. It is unable to produce any undershoot or 
overshoot along edges. Compared to nearest neighbor interpola-
tion, it is more complicated and requires more processing time. 
Bicubic interpolation increases the perceived sharpness by making 
pixels close to edges noticeably brighter or darker. Bicubic interpo-
lation is generally regarded as the standard technique and is uti-
lised in the majority of image alteration tools since it yields notably 
better results than the bilinear method at comparable computing 
costs. Cubic B-spline yields reduced smoothing of high-resolution 



DOI 10.2478/ama-2025-0086                                                                                                                                                          acta mechanica et automatica, vol.19 no.4 (2025)  

 

771 

features in the image. When compared to bilinear interpolation al-
gorithms, the interpolation improvement may be worth the compu-
tational load. 

 

3.3. Image Fusion Methods 

Fusion methods provide a systematic methodology for fusing 
images. It encompasses a wide range of techniques and strategies 
that are detailed in Fig. 3. 

Fig. 3. Image fusion techniques 
  

Image Fusion Methods 

Spatial Domain 

Frequency 
Domain/Multi-scale 

decomposition 

Machine Learning 
(ML) 

1. Maximum Pixel Value 
2. Averaging 
3. Minimum Pixel Value 
4. Max-Min 
5. Simple Block Replace 
6. Weighted averaging 
7. Principal Component Analysis 
8. Intensity Hue Saturation 
9. Brovey Transform 
10. Guided Filtering 
11. Histogram equalization 
12. Independent Component   
      Analysis 
 

Shallow-ML 

Deep Learning 

1. Support vector machines 
2. Fuzzy logic 
3. Sparse representation 

1. Artificial Neural networks 
2. Adaptive PCNN 
3. Fully convolution network 
4. Multi-level features CNN 
5. Metaheuristic 

Pyramid Transform 

Multiscale geometric 
analysis 

Wavelets 

1. Laplacian/Gaussian Pyramid 
2. Gradient Pyramid 
3. Ratio of low pass pyramid 
4. Filter subtract decimate 
5. Morphological Pyramid 
6. Weighted averaging 
7. Contrast Pyramid 

1. Discrete Cosine Transform 
2. Discrete wavelet Transform 
3. Redundant wavelet Transform 
4. Discrete Cosine Harmoni 
5. Multiwavelet transform 
6. Weighted averaging 

1. Curvelet 
2. Contourlet 
3. Shearlet 
4. NSCT 
5. NSST 
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3.3.1. Spatial-domain image fusion methods 

Spatial domain image fusion methods operate by combining 
pixel intensity values. These methods are simple and computation-
ally fast. However, the quality of the fused image is not satisfactory 
as there are spectral deteriorations [20][21]. The merits and demer-
its of spatial domain fusion methods are given in Tab. 1. Tech-
niques such as weighted averaging, Principal Component Analysis 
(PCA), and Intensity–Hue–Saturation (IHS) transformation have 
been widely used for fusing EO/IR images due to their simplicity 
and low computational cost. Although IHS and PCA are computa-
tionally efficient and rely on simple feature transformations, they 
exhibit limited adaptability to complex illumination variations. The 
underlying fusion rules in these methods operate primarily on inten-
sity or component features, which can lead to spectral distortion 
and loss of fine detail under varying conditions. 

 
Tab.  1. Advantages and disadvantages of Spatial Domain Methods 

Fusion Method Advantages Disadvantages 

Averaging – Image 

fusion by pixel 

averaging [22,23] 

This is a basic 

method to identify 

and put into practice 

if the images are 

from the same 

sensor with lot of 

contrast and 

brightness. It 

involves a low 

computational cost 

The fused image 

quality is reduced. 

The output images 

are hazy and so not 

suitable for real-time 

applications. Also, 

edges and image 

information are lost 

Minimum pixel 

value [22] 

The fused image is 

good if the inputs 

have dark shades 

Fused images are 

characterised by low 

contrast and blurred 

Simple block 

replacement [24] 

Incredibly easy to 

understand and 

apply 

The fused image has 

a random variation of 

brightness and color 

information. Fine 

detail of the image is 

less 

Maximum pixel 

value [22,23] 

The low pixel values 

are rejected, and the 

highest pixel value is 

used to create the 

fused method.  So 

this method is 

susceptible to 

artifacts and 

distortion 

The contrast of the 

fused image is 

decreased 

Max-min [24] 

Easy to implement, 

and the 

computational time is 

less 

The efficiency of 

fusion is reduced, 

and the output image 

has rough edges due 

to blocking artifacts 

and isolated spots 

Weighted averaging 

[25] 

This method is easy 

to apply and robust. 

The signal-to-noise 

ratio is enhanced in 

the fused image 

It is more suitable for 

multifocus images 

PCA [26,27] 

This approach gives 

excellent spatial 

quality and robust 

Fused images show 

chromatic aberration 

and spectral 

degradation 

IHS [23] 

The colour, 

resolution and 

features are 

improved in the 

output image. The 

processing time is 

quick with high 

sharpening 

Only three 

multispectral bands 

are analysed. So 

chromatic aberration 

occurs in the fused 

image 

Brovey [24] 

Extremely easy and 

fast processing 

method 

 

RGB pictures are 

generated with high 

contrast, which 

causes color 

distortion 

Guided filtering [28] 

This method is 

suitable for real-time 

applications and 

provides better 

performance in 

image smoothing 

The method does not 

apply to sparse input 

data. Some edges 

may have halos. 

Also, there will be a 

mismatch in the color 

and depth details 

between the input 

and fused image 

3.3.2. Transform-domain image fusion methods 

Frequency domain methods are also known as Multi-Scale De-
composition (MSD) [29]-[30]. All the MSD methods involve three 
major steps. First, the base level features and detail level features 
can be analysed separately by decomposing the source image into 
low-frequency and high-frequency sub-bands using an appropriate 
multi-scale transform. The most commonly used transforms are 
pyramids, contourlets, discrete wavelets, shearlets and dual-tree 
complex wavelets. Second, the decomposed coefficients are inte-
grated using a specific fusion rule. Third, inverse transforms are 
used to obtain the fused image. In the frequency domain or MSD 
methods, the spectral distortion is reduced and produces better 
SNR than the spatial domain methods. Tab. 2 shows the pros and 
cons in the different MSD methods. Geometric analysis-based 
MSD methods are effective in image representation. The most sa-
lient features in images are retained in MSD-based edge-preserv-
ing filters, including bilateral filters and guided filters. The success 
of transform-based methods depends on the decomposition level. 
If the level is low, there will be a lack of spatial details from the 
source image. On the contrary, if the level is high, fusion would be 
more sensitive to noise and it will be difficult to make accurate reg-
istration. 

In the sparse transformation method, the source images are not  
decomposed into low-frequency and high-frequency bands, but in-
stead, both frequency bands are assumed to have similar sparse 
coefficients. The sparse representations take advantage of the 
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regularity of source images and create coefficients of small ampli-
tude [31][32][33]. The sparse coefficients are the important param-
eters that provide a final image by improving the contrast of the 
image by preserving the structure and visual information of the 
source images. However, the drawback of the sparse representa-
tion technique is that it cannot preserve fine details, and it is sus-
ceptible to misregistration errors. Despite the merits of individual 
fusion methods, the limitations have spurred interest in hybrid 
transformation strategies. Two transformation techniques, such as 
curvelet-wavelet, MSD-Sparse representation methods, and Prin-
cipal Component Analysis - Intensity Hue Saturation, are combined 
in hybrid transformation methodologies. 

Tab.  2. Advantages and Disadvantages of Frequency Domain Methods 

Fusion Method Advantages Disadvantages 

Morphological pyramid 
[34] 

Laplacian/Gaussian 
pyramid [34,35] 

Gradient pyramid [36] 

Low-pass pyramid ratio 
[37] 

Filter subtract decimate 
[36] 

Provide better 
image quality 

The fused image is 
affected by the 

number of 
breakdown levels. 
Also, there is no 

direction 
information, so 
detailed image 
information in 

different directions 
cannot be extracted. 

Discrete cosine 
transform (DCT)  [38] 

 

The images are 
decomposed into a 

series of cosine  
waveforms 

representing 
different spatial 

frequency 
components. This 

compact 
representation 
makes DCT 

suitable for real-
time applications 

The fused image is 
blurred, and 

blocking artifacts 
are generated. 

 

Discrete wavelet 
technique with Haar 

fusion [39] 

 

Spectral distortions 
are decreased, 

and a fused image 
with better SNR is 

produced. 

 

The spatial 
resolution of the 
fused image is 

lower. The 
anisotropy of the 

source image is not 
represented. 

Kekre’s wavelet 
transform fusion [40,41] 

 

Irrespective of the 
size of the images, 
the fused image is 
more informative 

Computation 
complexity is high 

Kekre’s hybrid wavelet-
based transform fusion 

[42,43] 

 

 

Fused image 
results are better 

with more temporal 
and frequency 

features with multi-
resolution 
properties. 

If the images are an 
integer power of 

two, this approach 
cannot be used 

Stationary wavelet 
transform (SWT) [44-

46] 

At decomposition 
level 2, better 

results are 
obtained 

High computational 
time 

 

Curvelet Transform [47] 

 

Best suits for edge 
representation 

High computational 
time 

3.3.3.  AI-based and Deep Learning fusion methods 

 Modern technology has advanced significantly in analysis and de-
cision-making with the incorporation of Artificial Intelligence (AI) 
and Deep Learning (DL) into electro-optical/infrared (EO/IR) sys-
tems [48][49]. The ability to automate and accelerate image analy-
sis is one of the main benefits of integrating AI and DL into EO/IR 
systems. Large volumes of data from EO/IR sensors may be quickly 
processed by AI algorithms, which can then identify patterns, ab-
normalities, and things of interest that human operators might find 
difficult to identify. However, DL algorithms provide improved accu-
racy over time by permitting the systems to learn from data and 
familiarise themselves with changing environments.    

Tab. 3 specifies the advantages and disadvantages of various 
deep learning models. The primary benefit of deep learning-based 
EO/IR image fusion is that it eliminates the laborious process of 
manually selecting parameters, demonstrates advanced perfor-
mance for the complex interaction between data, and facilitates the 
acquisition of better fusion outcomes. In DL-based image fusion 
methods, Convolution Neural Networks (CNN) were widely used. 
The current development in the CNN-based deep learning frame-
work [50] has been shown to be effective in handling spatial and 
temporal information in multimodal images. CNNs enhance the ac-
curacy with improved computation capabilities and quantitative 
evaluation metrics. Also, the misregistration issues, either due to 
the movement of objects or the shaking of the camera, are solved. 
However, the efficiency is degraded in challenging situations like 
dark environments and bad atmospheric conditions. In dark envi-
ronments, extracting the relevant features is highly challenging and 
in bad atmospheric conditions, such as fog, the contrast and image 
quality may be reduced. Furthermore, their reliance on annotated 
datasets restricts their suitability for real-time surveillance applica-
tions. Comparatively, Convolution Sparse Representation (CSR) 
offers better robustness to registration errors but remains data-in-
tensive.  Stacked Autoencoders (SAE) reduce data dependency at 
the cost of slower training speed and limited scalability. Overall, the 
critical analysis highlights a trade-off between the fused image 
quality, data requirement and computational efficiency, emphasiz-
ing the need for hybrid and lightweight models in challenging EO/IR 
environments. 

Tab. 3. Advantages and Disadvantages of Deep Learning Methods 

Fusion Method Advantages Disadvantages 

Convolution Neural 
Network [51-53] 

 

Features are 
extracted and learnt 

from the training 
data without human 

assistance 

Computational 
speed is low 

 

CSR [54] 
This method is less 

sensitive to 
misregistration 

Enormous 
training data 

required 

SAE [55] 
 

Limited data 
required for 

supervised learning 

The model 
training speed 

depends on the 
processor 

3.4. Fusion rules 

Fusion rule is a specific guideline or mathematical procedure 
that dictates how information from multiple input images or sources 
is combined to create a single fused image [56]. A fusion rule is 
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within a fusion method to combine information from EO/IR images, 
and it emphasises interesting attributes while suppressing irrele-
vant attributes, as shown in Fig. 4. The multi-scale coefficients de-
rived from the decomposition method are merged depending on the 
fusion rule. The fused image quality is highly influenced by the fu-
sion rule. A good fusion rule leads to better results of fusion. Nev-
ertheless, creating a single fusion rule that works for every applica-
tion is not feasible.     

3.4.1. Fusion rule components 

Fusion rule comprises four major components: i) activity level 
measurement ii) coefficient grouping, iii) coefficient combination, 
and iv) consistency verification. The quality of each part of the input 
image is determined in the activity level measurement. The input 
images are transformed to salient features by window-based, re-
gion-based based or coefficient-based measures. In a window-
based measure, a small squared window is placed over the image 
with the coefficient under consideration employed at the centre. 
Rank filter and weighted average methods are common examples 
of window-based measures. In coefficient-based measures, each 
coefficient is quantified separately. The region-based measure is 
parallel to the window-based measure except that region-based 
methods have odd shapes. 

 Coefficient grouping provides the details about the association 
between pixels of source images that are presented at the same 
decomposition level. The coefficient combination combines the co-
efficients of each image source to get the coefficients of the fused 
image. These rules are applied to the input image coefficient to get 
the final fused pixel via maximum, average or weighted average. 
Consistency verification ensures neighboring coefficients are fused 
with the same rule for a more accurate outcome.   

 
 

Fig. 4 Generic structure of fusion rules 

4. ASSESSMENT OF PERFORMANCE AND INTRINSIC 
CHALLENGES IN IMAGE FUSION 

Once the fusion process is complete, the performance of the 
fusion method adopted is assessed by two measures. The first 
measure is visual observation, and the second is to use evaluation 
metrics that involve mathematical formulas. There are different 
types of qualitative and quantitative evaluation metrics to evaluate 
the quality of the fused image. Tab. 4 lists the various evaluation 
metrics. The equations for the evaluation metrics can be obtained 
from [57,58]. Tab. 5 shows the performance evaluation metrics of 
quite a few fusion methods for visible and IR data sets. When paired 
with the aesthetic qualities of the fusion results, the congeneric 
values of the IY-Net algorithm appear to be acceptable even though 
they are not ideal. The time required for computation is a crucial 
factor in evaluating an algorithm’s overall performance. The IY-Net 
algorithm is 94% faster.  

Tab. 4.  Performance Evaluation Metrics 

S. No. Category Metric 
Desired value for 

good performance 
Remarks 

1 
Information 

theory 

Cross entropy (CE) Low 
Evaluates the similarity of information shared between 

the EO/IR image and the fused image 

Entropy (EN) High 
Measures the average amount of information or detail 

contained in the fused image 

Mutual information (MI) High 
Quantifies the degree of statistical dependence between 

the source and fused images. 

Peak signal-to-noise ratio (PSNR) High Fused image distortion 

2 
Structural 
similarity 

Universal image quality index, SSIM 
(Structural Similarity Index Metric) 

High 
Image loss (correlation loss, luminance loss) and 

distortion (contrast distortion) 

Root Mean Squared Error (RMSE) Low 
Calculate the variation in the source image and the fused 

image 

3 Image feature 

Average gradient (AG) High 
Insights into image clarity and fusion texture 

characteristics 

Edge intensity (EI) High Quantifies image edge intensity 

Standard deviation (SD) High 
Provide details on the factors linked with image quality -

distribution of information and contrast 

Spatial frequency (SF) High Information on the overall activity and clarity of the image 

Gradient-based fusion performance, 
QAB/F 

High 
Assesses the degree to which the gradient or edge 
details from the source images are preserved in the 

fused image 
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Tab. 5. Quantitative results of various methods [59] – [62] 

Data set Algorithm PSNR SSIM EN MI AG SD SF Running 
time (s) 

Multimodal 
image 

Dense Fuse 60.27 0.72 6.84 13.67 4.24 - - 9.85 

CNN 62.21 0.69 7.31 14.67 5.76 - - 33.25 

ResNet 64.23 0.73 6.73 13.46 3.64 - - 4.53 

Convolution Sparse representation - 0.864 6.22 1.90 - 21.46 - - 

Anisotropic diffusion - 0.94 6.18 1.94 - 20.58 - - 

Fourth-order partial differential equation - 0.86 6.25 1.73 - 21.33 - - 

Total variation and augmented Lagrangian - 0.91 6.21 1.92 - 21.08 - - 

Bayes Fusion - 0.94 6.43 2.45 - 26.28 - - 

Deep convolutional sparse coding - - 6.91 2.50 4.22 46.97 - - 

DeepFuse - - 6.86 2.30 3.60 32.25 - - 

Saliency Detection - - 6.67 1.72 3.98 28.04 - - 

FusianGAN - - 6.58 2.34 2.42 29.04 - - 

DLF - - 6.38 2.15 2.72 22.94 - - 

Fast and efficient zero learning - - 6.63 2.23 2.55 28.09 - - 

Discrete Wavelet Transform (DWT) - - 6.44 - 3.09 - 8.16 0.76 

Non-subsampled contourlet transform 
(NSCT) 

- - 7.17 - 5.02 - 12.78 2.03 

Multi-Focus image fusion (MFCNN) - - 6.61 - 3.61 - 9.55 0.38 

CNN integration (ECNN) - - 7.10 - 5.48 - 18.34 0.34 

Unsupervised depth model for image 
fusion (SESF) 

- - 7.31 - 7.26 - 24.91 0.31 

IY-Net - - 6.81 - 4.84 - 12.53 0.16 

*Best values in Bold and 2nd best underlined 

5. COMPARATIVE ANALYSIS OF THE FUSION METHODS 
AND INSIGHTS 

A comparative assessment of traditional, multi-scale, and AI-
based image fusion techniques reveals a clear evolution in both 
methodological complexity and fusion quality. Traditional spatial-
domain approaches, such as averaging, IHS, and PCA, are com-
putationally efficient and easy to implement but often produce fused 
images with blurred edges, spectral distortion, and limited robust-
ness under varying illumination. These limitations motivated the de-
velopment of multi-scale or transform-domain methods such as 
wavelet, contourlet, and Laplacian pyramid fusion, which provide 
better edge preservation and detail enhancement by separating 
spatial and frequency components. However, these methods still 
rely on manually designed fusion rules, and their performance 
tends to degrade when applied to dynamically changing or noisy 
environments. 

The advent of deep learning and AI-based fusion frameworks 
marks a significant paradigm shift from hand-crafted feature extrac-
tion to data-driven representation learning. Convolutional neural 
networks (CNNs), GAN-based architectures, and hybrid deep-
learning models such as DenseFuse have demonstrated substan-
tial improvements in fusion quality, achieving higher PSNR, SSIM, 
and mutual information values compared to traditional and multi-
scale methods. These models can automatically learn optimal fu-
sion rules and adapt to diverse image characteristics without man-
ual intervention. Nevertheless, their deployment in real-world sur-
veillance and gimbal systems remains constrained by high compu-
tational demands, data dependency, and limited interpretability. 

Overall, the comparative evaluation indicates a fundamental 
trade-off between fusion quality, computational efficiency, and in-
terpretability. Traditional methods remain suitable for real-time or 

resource-limited applications, while multi-scale techniques offer a 
balance between performance and complexity. The progression 
from traditional methods to deep learning–based fusion reflects a 
paradigm shift from handcrafted design to data-driven optimization. 
Despite measurable gains in image quality, the computational bur-
den and lack of interpretability in DNNs hinder real-time adoption. 
Thus, future research should focus on hybrid architectures that bal-
ance fusion accuracy, transparency, and efficiency. This analysis 
highlights the growing need for hybrid and lightweight fusion frame-
works that can integrate the interpretability of traditional and trans-
form-based methods with the adaptive learning capabilities of deep 
models. Such approaches will be critical for advancing EO/IR fusion 
in real-time defense, surveillance, and autonomous vision systems. 

6. BENCHMARKING DATASETS 

Some public databases containing visible and infrared image 
pairs are listed in Tab. 6. The Netherlands Organization for Applied 
Scientific Research (TNO) dataset comprises visual and infrared 
nighttime images of numerous military and surveillance 
circumstances. It shows different objects and targets with rural and 
urban backgrounds. The KAIST multispectral dataset contains 
color and thermal pairs taken from vehicles. All the pairs include 
human annotations and temporal alignment between bounding 
boxes. Visual and Image Fusion Benchmark (VIFB) provides a 
platform for a comprehensive comparison of VIF algorithms. There 
are 21 image pairs, 20 image fusion algorithms and 13 evaluation 
metrics in VIFB. Among the existing datasets, LLVIP (A Visible-
infrared Paired Dataset for Low-light Vision) stands to be the largest 
dataset featuring 15488 spatially and temporally aligned image 
pairs with dark scenes.  
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Tab. 6.  Benchmarking datasets 

S.No
. 

Database 
Name 

Year Web Address 

1. TNO 2014 https://figshare.com/articles/dataset
/TNO_Image_Fusion_Dataset/1008
029 

2. KAIST 2015 https://soonminhwang.github.io/rgbt
-ped-detection/ 

3. VIFB 2020 https://github.com/xingchenzhang/
VIFB 

4. LLVIP 2021 https://bupt-ai-cz.github.io/LLVIP/ 

7. CHALLENGES INHERENT TO EO/IR IMAGE FUSION 

The challenges intrinsic to the EO/IR image fusion are  

− Imperfect environmental conditions - The images might have 
been obtained from unfavourable conditions. So, the input 
images may comprise under-exposure and serious noise due 
to weather and illumination conditions. So, pre-processing 
steps such as noise reduction, radiometric calibration, and 
contrast enhancement [63] are required to improve the quality 
of the fused image. 

− Object motion and misalignment - The sensors capture the 
images while the objects are moving. As a result, fused images 
are created with wraith artifacts.  So, it is extremely challenging 
for precise and accurate image registration. 

− Spectral and resolution disparities - Due to the prominent 
spectral difference and resolution disparities among the input 
images, selecting an appropriate fusion algorithm becomes 
crucial. The choice of algorithm significantly influences the 
quality and information content of the fused image. 

− Computational efficiency - The image fusion algorithm must be 
computationally effective in merging the information from the 
source images to get the fused image, engaging continuous 
real-time monitoring.  

− Target saliency preservation - Target saliency refers to the 
emphasis placed on specific objects or features within an image 
during the fusion process. The target saliency should be 
maintained to enhance the visibility and importance of particular 
elements in the fused image. The choice of fusion rules or 
methods plays a crucial role in achieving target saliency. The 
fusion rule should be chosen so that it accentuates the features 
or regions of interest while preserving the complementary 
information from both the visible and IR images. 

8. LIMITATIONS AND FUTURE WORK 

The major factors that are expected from the fusion methods 
for surveillance applications are i) The algorithms should effectively 
integrate the data from EO/IR images. ii) The fusion method must 
be computationally efficient for performing real-time surveillance. iii) 
The developed fusion methods should be robust to serious noise 
and underexposure conditions while achieving high quality fused 
image. Although there are various image fusion methods at 
present, there are still many open-ended challenges that need to 
be addressed. 

− Dependence on image registration - The images obtained from 
EO/IR sensors will have some spatial errors. So it is important 
to perform image registration before image fusion. However, 
most of the image fusion algorithms are based on pre-
registered images. 

− Noise sensitivity - The image obtained from the IR sensor is 
generally disturbed by noise. Although the present time fusion 
algorithms have good metrics for noiseless images, their 
performance on noisy images has not yet been determined. 

− Resolution disparity - The image resolution from EO/IR sensors 
is different.To achieve efficient fusion, it is difficult to get over 
the resolution disparity and fully utilize the information in 
several source images [64]. The issues related to the selection 
of the upsampling strategy and position of upsampling are 
unresolved, despite the fact that various techniques have been 
put forth to address varying resolution image fusion. More 
crucially, the goal is to naturally combine the features of image 
fusion and super-resolution work to create deep networks. 

− Data scarcity for deep learning models - Deep learning neural 
networks, such as CNN, GAN, and Transformers, require large, 
diverse, and labelled datasets to train effectively. Thermal 
datasets are scarce in the constructed dataset. So, the DNN-
based fusion methods may be inferior to the traditional methods 
due to insufficient data for training. Therefore, a larger dataset 
needs to be constructed for sufficient training of DNNs  

− Model complexity and real-time limitations - Network 
architectures are becoming increasingly complex in the pursuit 
of improved fusion performance. However, lightweight and 
computationally efficient deep learning–based solutions 
tailored for industrial applications remain limited, posing 
challenges for real-time and large-scale deployments. 
Future EO/IR fusion systems are expected to evolve towards: 

− Transfer learning -Transfer learning by using deep neural 
networks has been a potential option for surveillance 
applications. This approach can address data insufficiency by 
leveraging pretrained models. It might help with the human 
annotation issue, which is considered to be complex and 
expensive. Future fusion technologies may possibly include 
ideas of knowledge transfer for improvement.  

− Hybrid and context-aware fusion frameworks -  Combining 
mult-scale transforms with CNNs, or integrating optimisation-
based and deep learning approaches, can achieve better 
robustness across varying environmental conditions. Such a 
framework can dynamically blend fusion rules based on scene 
content. 

− Explainable AI – Incorporating such models will enhance the 
interpretability of deep fusion outputs for defence and 
surveillance missions where transparency is critical. 

− Integration with object detection and tracking pipelines – Joint 
fusion and perception architectures can improve object 
detection and tracking under low-light or occluded conditions, 
providing semantic understanding alongside fused imagery. 

− Cross-modal attention mechanisms and transformer-based 
architectures – These models demonstrate the effectiveness of 
global information perception in multimodal image fusion. It can 
handle long-range dependencies and complex spatial 
relationships between modalities. 

https://github.com/xingchenzhang/VIFB
https://github.com/xingchenzhang/VIFB
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− Multi-sensor fusion ecosystems - Future research will likely 
integrate EO/IR data with radar, LiDAR, or hyperspectral 
imagery to achieve a holistic situational awareness. 
 

9. CONCLUSION 

The continuing challenge in surveillance operations is, 
maintaining a technological edge in EO/IR imaging systems. In 
addition to improving the individual sensor technologies, 
maintaining the technological edge also depends on fusing the 
images from the two sensors and sharing the information in real-
time. Presently, it has been demonstrated that image fusion 
algorithms are useful tools for improving image information for 
visual interpretation. Pixel-level-based image fusion techniques are 
widely used to analyze multimodal images. In MSD fusion methods, 
the spatial structures are represented with wavelets, edge-
preserving filtering, etc. Further, the fusion performance has been 
improved by considering the high correlation among neighboring 
pixels. Nevertheless, several issues still affect image fusion and 
objective fusion performance evaluation. These issues include 
picture noise, disparities in image resolution, unfavorable 
environmental circumstances, computational complexity, moving 
objects, and imaging hardware constraints. Thus, it is anticipated 
that in the years to come, new studies and useful applications 
based on image fusion will continue to expand. 
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