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Abstract: Tool path smoothness is critical for ensuring the dynamic performance of robotic machining systems, as it directly influences 
machining efficiency and quality. In recent years, spline-based methods (e.g., Bézier-spline, B-spline, NURB-spline, and PH-spline) have 
been widely employed to achieve tool path smoothing. However, most existing studies have focused on achieving only G2 or C2 continuity 
of tool paths, leading to discontinuous jerk behavior and resulting in high-order resonance frequencies within the machining system.  
Although some attention has been given to the need for C3 continuity in tool paths, synchronization between tool tip position and  
orientation remains suboptimal due to the complex, high-dimensional nonlinear kinematics of robotic machining systems. An analytical C3  
continuous tool path smoothing method based on Catmull-Rom splines is developed in this study for robotic machining systems. The method 
smooths corners between adjacent discrete linear segments by inserting an adjustable Catmull-Rom (ACR) spline, with control points and 
adjustment parameters specifically designed to minimize deviation errors between the smoothed and original tool paths.  
Subsequently, the tool tip position and orientation are synchronized with the tool tip displacement, maintaining C3 continuity, by replacing 
the remaining linear segments with ACR splines. These splines' control points can be directly selected without requiring any iterative  
calculations, and synchronization error is guaranteed to be zero. The developed method involves a fully analytical calculation process, 
eliminating the need for iterative methods. Numerical simulations demonstrate that the tool paths generated by the developed method  
satisfy preset tolerances with smooth, continuous jerks in both workpiece and joint coordinate spaces, and that synchronization errors are 
indeed zero. 
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1. INTRODUCTION 

With advancements in robot technology, both the stiffness and 
accuracy of industrial robots have significantly improved. As a re-
sult, industrial robots are increasingly applied in the field of metal 
cutting [1, 2], particularly in the flexible machining of large aero-
space components, due to their advantages of low cost, high effi-
ciency, flexibility, and expansive workspace. Traditionally, industrial 
robots have been used for tasks such as transporting objects from 
one location to another, where only the final positioning accuracy 
was of concern. However, for contour motion tasks, such as tool 
path planning, it is essential to ensure both deviation error con-
straints and the continuity of the smoothed tool path throughout the 
entire trajectory. Consequently, tool path planning in these applica-
tions is far more complex than traditional point-to-point tasks, lead-
ing to growing research interest in recent years [3-5]. 

Discrete linear motion commands generated by Computer-
Aided Manufacturing (CAM) software are commonly employed in 
Computer Numerical Control (CNC) machining [6]. However, these 
commands lead to discontinuities in feedrate and theoretically infi-
nite acceleration at the corners due to tangential discontinuities. To 
ensure smooth and continuous feed drive motions, it is necessary 
to smooth these discrete linear motion commands to achieve high-

order geometric continuity before they are sent to the robot drives 
for machining. Tool path planning methods can be categorized 
based on the reference frame in which the tool path command po-
sitions are represented. These methods are generally classified 
into joint space and task space methods [7, 8]. In the joint space 
method, tool paths are defined within the joint space, and motion 
commands are smoothed directly for individual robot joints [9, 10]. 
This method has the advantage of directly driving the robot joints 
using the planned path without the need for kinematic transfor-
mations. However, it does not allow for intuitive collision checking 
and faces challenges in constraining the positional deviation errors 
of the tool’s orientation relative to the workpiece. To address these 
limitations, task space methods have been developed, wherein tool 
paths are defined in the workpiece coordinate system (WCS) as 
tool tip positions and orientations [11, 12]. Moreover, tool path 
smoothing methods can be further divided into global and local 
smoothing methods, depending on the spline construction method 
used. In the global smoothing method, the discrete linear com-
mands are represented by an entire spline [12, 13], which facilitates 
smoothness and continuity along the entire tool path. However, this 
method faces difficulties in evaluating and constraining the devia-
tion errors between the smoothed and original tool paths. In con-
trast, the local smoothing method introduces micro splines at the 
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corners between adjacent discrete segments [14, 15], achieving 
smoothness along the tool path while addressing the drawbacks 
associated with global smoothing methods. 

Several local smoothing methods have been developed for tool 
path smoothing in three, four, and five-axis machine tools to 
achieve various orders of motion continuity [16-18]. Among these, 
five-axis machine tools have garnered significant research interest 
due to their complex structures and kinematics. Jin et al. [19] de-
veloped a G2 continuous local smoothing method for five-axis tool 
paths using double G2 continuous cubic Bézier splines. Yan et al. 
[20] introduced a G2 continuous local smoothing method for five-
axis tool paths based on a pair of double cubic NURBS curves. 
Huang et al. [21] developed a real-time G2 continuous local 
smoothing method for five-axis tool paths by replacing corners of 
the tool position and tool orientation paths with cubic B-splines. 
Zhao et al. [22] developed an analytical C2 continuous local 
smoothing method for five-axis tool paths using an asymmetric cu-
bic B-spline and a pair of symmetric quartic spherical Bézier 
splines. Huang et al. [23] developed a C2 continuous local smooth-
ing method for five-axis tool paths using high-order continuous 
arithmetic with peak-constrained jerk. The transition splines devel-
oped in these studies [19-23] are either G2 or C2 continuous, en-
suring continuous acceleration but discontinuous jerk. As demon-
strated by Yuen et al. [24], discontinuous jerk can excite high-order 
resonance frequencies in the mechanical system, resulting in in-
creased vibrations and tracking errors. In response to this, Tulsyan 
et al. [25] developed an analytical C3 continuous local smoothing 
method for five-axis tool paths by introducing quintic and septic mi-
cro-splines to smooth the tool tip and tool orientation paths, respec-
tively. Yang et al. [26] also developed an analytical C3 continuous 
local smoothing method for five-axis tool paths using a specially 
designed quintic micro-spline. Hu et al. [27] presented a real-time 
C3 continuous local smoothing method for five-axis tool paths 
based on C3 continuous PH splines. Since the tool orientations of 
five-axis machines are influenced by only two rotary axes, the de-
viation error constraint and synchronization problem can be more 
easily solved analytically. In contrast, the tool orientation of robotic 
machining systems is influenced by all six rotary joints simultane-
ously, resulting in high-dimensional nonlinear orientation kinemat-
ics between the WCS and the robot's coordinate system. This sig-
nificantly complicates tool orientation smoothing and synchroniza-
tion compared to five-axis machine tools. More recently, Yang et al. 
[28] developed an analytical C2 continuous an analytical tool path 
smoothing algorithm for 6-DOF robots using 5th degree PH-spline. 
In this method, the tool tip position and orientation are smoothed 
within the WCS and synchronized by replacing the remaining linear 
segments with specially constructed PH-splines. 

In this study, an analytical C3 continuous tool path smoothing 
method based on Catmull-Rom (CR) splines is developed for ro-
botic machining. First, the tool orientation, originally represented by 
a rotation matrix, is transformed into three rotary angles to facilitate 
smooth interpolation. Second, the tool tip position and orientation 
are smoothed separately using the developed adjustable Catmull-
Rom (ACR) spline-based method, wherein deviation errors intro-
duced by local corner smoothing are constrained through control 
points. Additionally, the deviation errors caused by ACR smoothing 
are optimized using a simple yet efficient method. Third, the tool tip 
position and orientation are synchronized with the tool tip displace-
ment while maintaining C3 continuity by replacing the remaining lin-
ear segments with ACR splines. Notably, the control points for this 
process do not require additional computations, significantly reduc-
ing computational overhead.  The remainder of this study is 

structured as follows: Section 2 presents the mathematical repre-
sentation of tool tip position and orientation. Section 3 introduces 
the ACR spline-based corner smoothing method for tool tip position 
and orientation, including a brief overview of ACR splines and the 
deviation error optimization method. Section 4 details the synchro-
nization method for tool tip position and orientation. Numerical sim-
ulation results verifying the developed method are provided in Sec-
tion 5, followed by conclusions in Section 6. 

2. REPRESENTATION OF TOOL TIP POSITION  
AND ORIENTATION 

For the robotic machining system as shown in Fig. 1, the trans-
fer matrix of tool frame related to workpiece frame can be repre-
sented by a homogeneous transformation matrix: 

𝑻 = [
𝑹 𝒑
0 1

]                                               (1) 

where𝑹and𝒑denote the rotation matrix and translation offset vec-
tor, respectively. 
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Fig. 1.   Transformation of tool frame related to workpiece frame in ro-

botic machining system 

The tool tip position and orientation of industrial robot in the 
WCS can be determined by: 

𝒑 = [𝑥, 𝑦, 𝑧]𝑇 ,  𝑹 = [

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

]                    (2) 

The tool tip position of the industrial robot can be smoothed di-

rectly in the displacement space of [𝑥,𝑦, 𝑧]𝑇. However, to satisfy 

the mathematical constraint of the unit orthogonal transformation of 
tool orientation, the rotation matrix 𝑅 should firstly be transformed 
as three rotary angles [𝛼, 𝛽, 𝛾]𝑇 that rotated around the fixed 
global coordinate system as shown in Fig. 2, and then the tool ori-
entation of the industrial robot can be smoothed in the rotation 
space of [𝛼, 𝛽, 𝛾]𝑇. 



Xu-Lin Cai, Wen-An Yang, You-Peng You                                                                                                                                                                 DOI 10.2478/ama-2025-0088 
A Catmull-Rom Spline Based Analytical C3 Continuous Tool Path Smoothing Method for Robotic Machining 

792 

X

Y

Z

X 

Y 

Z 

α

 

X

Y

Z

X 

Y 

Z 

β

 
X

Y

Z

X 

Y 

Z 

γ

 

a) Rotation 

around Z-axis 

b) Rotation 

around Y-axis 

c) Rotation 

around X-axis 

Fig. 2. Rotation around fixed global coordinate system 

𝑹 = 𝑅𝑍(𝛼)𝑅𝑌(𝛽)𝑅𝑋(𝛾) =

[

𝐶𝛼𝐶𝛽 −𝑆𝛼𝐶𝛾 + 𝐶𝛼𝑆𝛽𝑆𝛾 𝑆𝛼𝑆𝛾 + 𝐶𝛼𝑆𝛽𝐶𝛾
𝑆𝛼𝐶𝛽 𝐶𝛼𝐶𝛾 + 𝑆𝛼𝑆𝛽𝑆𝛾 −𝐶𝛼𝑆𝛾 + 𝑆𝛼𝑆𝛽𝐶𝛾
−𝑆𝛽 𝐶𝛽𝑆𝛾 𝐶𝛽𝐶𝛾

]                  (3) 

where 𝑆𝛼 , 𝑆𝛽 , 𝑆𝛾 , 𝐶𝛼 , 𝐶𝛽 and 𝐶𝛾 de-

note𝑠𝑖𝑛 𝛼,𝑠𝑖𝑛 𝛽,𝑠𝑖𝑛 𝛾,𝑐𝑜𝑠 𝛼,𝑐𝑜𝑠 𝛽and𝑐𝑜𝑠 𝛾, respectively. It is 
not difficult to obtain the following relations by combining Eq. (2) 
and Eq. (3): 

{
𝛽 =

𝜋

2
𝛼=0

𝛾=atan2(𝑟12, 𝑟22)

𝑖𝑓 𝛽 =
𝜋

2
 

{
𝛽 = −

𝜋

2
𝛼=0

𝛾=atan2(−𝑟12, 𝑟22)

𝑖𝑓 𝛽 = −
𝜋

2
 

{
 
 

 
 𝛽=atan2(−𝑟31, √𝑟11

2 + 𝑟21
2 )

𝛼=atan2(
𝑟21

𝐶𝛽
,
𝑟11

𝐶𝛽
)

𝛾=atan2(
𝑟32

𝐶𝛽
,
𝑟33

𝐶𝛽
)

𝑖𝑓 𝛽 ≠ ±
𝜋

2
               (4)                     

The flowchart of the developed ACR-spline-based tool path 
smoothing method for robotic machining system is shown in Fig. 3. 
In the tool path smoothing process, the maximum deviation errors 
of both tool tip position and orientation caused by local smoothing 
should be constrained. Besides, the tool tip position and orientation 
should be synchronized to the tool tip displacement with C3 conti-
nuity by replacing the remaining linear segments with ACR spline. 

Input: discrete linear commands

Adjustment parameters 

optimization of ACR 

spline  (section 3.4)
Adjustment parameters 

optimization of ACR 

spline  (section 3.4)

Tool orientation 

transformation  (section 2)

Tool tip position 

smoothing and deviation 

error constraints

 (section 3.2)

Tool orientation smoothing 

and deviation error 

constraints (section 3.3)

Orientation and position synchronization (section 4)

Output: smoothed tool path
 

Fig. 3. Flowchart of the proposed tool path smoothing method 

3. ANALYTICAL C3 CONTINUOUS CORNER SMOOTHING 
METHOD 

In this section, a novel C3 continuous corner smoothing method 
based on ACR spline is developed. The ACR spline used in this 
method is derived from the quasi-CR spline function described in 
[30]. The developed ACR-spline-based tool path smoothing method 
not only achieves C3 continuity but also effectively controls devia-
tion errors while preventing cusps and self-intersections through 
the optimization of two introduced adjustment parameters. Further-
more, the inserted splines and their control points are determined 
analytically, and the control points of the splines used to replace the 
remaining linear segments can be selected directly without requir-
ing additional computations, thereby enhancing computational effi-
ciency. 

3.1. ACR spline 

In this subsection, a mathematical operation of ACR spline is 
described to realize not only C3 continuity of spline, but also control 
the deviation error, avoid cusps and self-intersections. 

For control points (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖), 𝑖 = 0,1, . . . , 𝑛, the CR spline in 
𝑥 ∈ [𝑥𝑖 , 𝑥𝑖+1]can be expressed as: 

{
𝑅𝑦,𝑖(𝑥) = ∑ 𝑏𝑗 (

𝑥−𝑥𝑖

𝛥𝑥
)3

𝑗=0 𝑦𝑖+𝑗−1

𝑅𝑧,𝑖(𝑥) = ∑ 𝑏𝑗 (
𝑥−𝑥𝑖

𝛥𝑥
)3

𝑗=0 𝑧𝑖+𝑗−1 𝑖 = 1,2, . . . , 𝑛 − 2
   (5) 

where 𝛥𝑥 = 𝑥𝑖+1 − 𝑥𝑖 , 𝑖 = 0,1, . . . , 𝑛 − 1 ,𝑏𝑗(𝑡)denote three 

basic functions related to the spline in this interval and will be de-
tailed in following. 

It should be noted that the use of the symbol x in Eq. (5) does 
not imply that the developed ACR spline construction relies on the 
Cartesian x-coordinate. Here, x, y and z simply denote the three 
components of a chosen orthogonal coordinate system, and the 
formulation in Eq. (5) uses x only as a representative example for 
clarity of exposition. In practice, the ACR spline is applied inde-
pendently to each scalar component of any orthogonal coordinate 
representation, including Cartesian coordinates [𝑥, 𝑦, 𝑧] (Section 
3.2) or rotational parameters such as Euler angles [𝛼, 𝛽, 𝛾] (Sec-
tion 3.3). Therefore, the method is not restricted to the x-channel, 
and the case x=0 does not constitute a degenerate situation: as 
long as the remaining coordinates (e.g., y or z) are available, the 
spline can be constructed and evaluated in exactly the same man-
ner. The same basis functions apply to every coordinate compo-
nent, and the choice of which component is illustrated is merely for 
notational simplicity, not a structural dependency of the algorithm. 

3.1.1. Basis functions of the ACR spline 

To achieve C3 continuity and adjustability of the constructed CR 
spline, the order of its basis functions is set to seven, with two pa-
rameters introduced to enhance flexibility. Additionally, these basis 
functions must satisfy key properties, including unitary, symmetry, 
and continuity. By formulating linear equations involving the coeffi-
cients of the basis functions, the required basis functions can be 
derived by solving these equations, yielding the following results: 
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{
 
 

 
 𝑏0(𝑡) = 𝜅𝑙0(𝑡) + 𝜆𝑚0(𝑡)

𝑏1(𝑡) = 𝜅𝑙1(𝑡) + 𝜆𝑚1(𝑡) + 𝑛1(𝑡)

𝑏2(𝑡) = −𝜅𝑙0(𝑡) + 𝜆𝑚2(𝑡) + (1 − 𝑛1(𝑡))

𝑏3(𝑡) = −𝜅𝑙1(𝑡) − 𝜆(𝑚0(𝑡) +𝑚1(𝑡) +𝑚2(𝑡))

             (6) 

where 𝑡 ∈ [0,1], 𝜅, 𝜆 ∈ 𝑅are introduced adjustment parameters 
and: 

{
  
 

  
 

𝑙0(𝑡) = −𝑡 + 20𝑡
4 − 45𝑡5 + 36𝑡6 − 10𝑡7

𝑙1(𝑡) = 15𝑡
4 − 39𝑡5 + 34𝑡6 − 10𝑡7

𝑚0(𝑡) = 𝑡
2 − 10𝑡4 + 20𝑡5 − 15𝑡6 + 4𝑡7

𝑚1(𝑡) = −2𝑡
2 + 25𝑡4 − 54𝑡5 + 43𝑡6 − 12𝑡7

𝑚2(𝑡) = 𝑡
2 − 20𝑡4 + 48𝑡5 − 41𝑡6 + 12𝑡7

𝑛1(𝑡) = 1 − 35𝑡
4 + 84𝑡5 − 70𝑡6 + 20𝑡7

               (7) 

It is not difficult to obtain from Eq. (6): ∑ 𝑏𝑖(𝑡)
3
𝑖=0 = 1and 

𝑏𝑖(1 − 𝑡) = 𝑏3-𝑖(𝑡), which verifies the unitary and symmetry of 
the constructed basis functions, respectively; besides, the following 
relationship can be obtained, which is of great importance to verify 
the interpolate property and continuity of the ACR spline: 

{
𝑏0(0) = 0, 𝑏1(0) = 1, 𝑏2(0) = 0, 𝑏3(0) = 0

𝑏0(1) = 0, 𝑏1(1) = 0, 𝑏2(1) = 1, 𝑏3(1) = 0
                     (8) 

{
𝑏0
′ (0) = −𝜅, 𝑏1

′ (0) = 1, 𝑏2
′ (0) = 𝜅, 𝑏3

′ (0) = 0

𝑏0
′ (1) = 0, 𝑏1

′ (1) = −𝜅, 𝑏2
′ (1) = 0, 𝑏3

′ (1) = 𝜅
                 (9)  

{
𝑏0
′′(0) = 2𝜆, 𝑏1

′′(0) = −4𝜆, 𝑏2
′′(0) = 2𝜆, 𝑏3

′′(0) = 0

𝑏0
′′(1) = 0, 𝑏1

′′(1) = 2𝜆, 𝑏2
′′(1) = −4𝜆, 𝑏3

′′(1) = 2𝜆
        (10)         

{
𝑏0
′′′(0) = 0, 𝑏1

′′′(0) = 0, 𝑏2
′′′(0) = 0, 𝑏3

′′′(0) = 0

𝑏0
′′′(1) = 0, 𝑏1

′′′(1) = 0, 𝑏2
′′′(1) = 0, 𝑏3

′′′(1) = 0
               (11) 

3.1.2. Properties of ACR spline 

Interpolate property: Let the original control-point sequence be 
(𝑥0, 𝑦0, 𝑧0) … (𝑥𝑛 , 𝑦𝑛 , 𝑧𝑛) . If two auxiliary control points 
(𝑥−1, 𝑦−1, 𝑧−1) and (𝑥𝑛+1, 𝑦𝑛+1, 𝑧𝑛+1) are appended to Eq. (5), 
then synthesizing Eq. (5) and Eq. (8) yields the interpolation prop-
erty at the endpoints: 

{
 
 

 
 𝑅𝑦,𝑖(𝑥𝑖) = 𝑦𝑖
𝑅𝑦,𝑖(𝑥𝑖+1) = 𝑦𝑖+1
𝑅𝑧,𝑖(𝑥𝑖) = 𝑧𝑖
𝑅𝑧,𝑖(𝑥𝑖+1) = 𝑧𝑖+1 𝑖 = 1,2, . . . , 𝑛 − 1

                     (12) 

which means that ACR splines always interpolates these given con-
trol points. 

Continuity: It can be derived by combining Eq. (5) with Eqs. (9)-
(11): 

{
 
 
 
 

 
 
 
 𝑅𝑦,𝑖

′ (𝑥𝑖+1) =
𝜅

𝛥𝑥
(𝑦𝑖+3 − 𝑦𝑖+1) = 𝑅𝑦,𝑖+1

′ (𝑥𝑖+1)

𝑅𝑧,𝑖
′ (𝑥𝑖+1) =

𝜅

𝛥𝑥
(𝑧𝑖+3 − 𝑧𝑖+1) = 𝑅𝑧,𝑖+1

′ (𝑥𝑖+1)

𝑅𝑦,𝑖
′′ (𝑥𝑖+1) =

2𝜆

𝛥𝑥2
(𝑦𝑖+1 − 2𝑦𝑖+2 + 𝑦𝑖+3) = 𝑅𝑦,𝑖+1

′′ (𝑥𝑖+1)

𝑅𝑧,𝑖
′′ (𝑥𝑖+1) =

2𝜆

𝛥𝑥2
(𝑧𝑖+1 − 2𝑧𝑖+2 + 𝑧𝑖+3) = 𝑅𝑧,𝑖+1

′′ (𝑥𝑖+1)

𝑅𝑦,𝑖
′′′ (𝑥𝑖+1) = 0 = 𝑅𝑦,𝑖+1

′′′ (𝑥𝑖+1)

𝑅𝑧,𝑖
′′′ (𝑥𝑖+1) = 0 = 𝑅𝑧,𝑖+1

′′′ (𝑥𝑖+1)

    

                                                                                                   (13) 
which means that ACR spline always satisfies C3 continuity. 
Adjustability: Since the basis function shown in Eq. (6) contains 

two parameters𝜅 and𝜆 , the shape of the ACR spline can be 

adjusted by changing the values of𝜅and𝜆while all related control 

points remain unchanged. 
Local property: As can be seen from Eq. (5), each ACR spline 

function 𝑅𝑖(𝑥) is only affected by four control points 
(𝑥𝑖+𝑗 , 𝑦𝑖+𝑗 , 𝑧𝑖+𝑗), where𝑗 = 0,1,2,3. Therefore, when the adjust-

ment parameters𝜅and𝜆are selected, the change of the one control 
point will affect the shape of four segments ACR spline related to it. 

Avoidance of cusps and self-intersections: The ACR construc-
tion employed in this work incorporates analytical design choices 
that intrinsically avoid cusps and self-intersections without requiring 
additional iterative procedures. Specifically, the control points used 
to anchor an inserted ACR spline at a corner are placed on the in-
cident linear segments and arranged symmetrically with respect to 
the corner bisector; the explicit control-point construction is given in 
Eq. (14). This symmetric placement ensures geometric balance of 
the control polygon and prevents abrupt sign changes of the tan-
gent direction at the corner, which is a principal cause of cusps.  

In addition, the portion of each linear segment reserved for 
spline insertion is strictly bounded by the segment-span constraints 
stated in the paper: the inserted spline occupies no more than one 
third of a shared linear segment (see Eqs. (16)–(17)). These ana-
lytic length bounds limit excessive local bending on short segments 
and therefore reduce the geometric conditions that can lead to self-
intersection.  

Finally, the two adjustment parameters κ and λ that define the 
ACR basis functions control local convexity and curvature concen-
tration. In the present method κ and λ are chosen by the optimiza-
tion routine described in Section 3.4 so that the ACR shape mini-
mizes the prescribed deviation metrics while remaining within pre-
scribed parameter bounds; this constrained parameter selection 
further prevents curvature concentrations that could induce cusps 
or self-intersections. The combination of (i) analytic, symmetric con-
trol-point placement (Eq. (14)), (ii) explicit segment-span limits 
(Eqs. (16)–(17)), and (iii) constrained κ/λ adjustment via the optimi-
zation described in Section 3.4 is the basis upon which the manu-
script guarantees the absence of cusps and self-intersections for 
the constructed ACR corner splines. 

3.1.3.  Advantages of Using the Catmull–Rom Spline  
  for Corner Smoothing 

The CR spline is adopted in this study mainly because it pro-
vides several properties that are particularly suitable for local corner 
smoothing in tool-path planning. In addition, the ACR formulation 
used here—obtained by introducing two shape parame-

ters𝜅and𝜆 into the basis functions—retains the classic CR ad-

vantages while adding useful degrees of freedom for practical tool-
path control. 

− Interpolation of data points. The CR splines are interpolatory 
and the curve passes through its control points. This property 
ensures that discrete tool tip positions and orientations at 
commanded tool tip points and tool orientations are pre-
served and that smoothing does not shift the programmed 
trajectory. Compared with B-splines/NURBS, this avoids 
solving global interpolation systems and simplifies local cor-
ner treatment. 

− Locality and analytically assignable control points. The CR 
splines have strictly local support: manipulation of a single 
control point affects only neighboring spline pieces. This lo-
cality enables analytical assignment and local adjustment of 
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control points at each corner without affecting distant portions 

of the path. The ACR retains this local property, so𝜅and𝜆can 
be tuned locally to alter curvature and convexity only in the 
intended corner region. 

− Adjustable shape for cusp/self-intersection avoidance. The 
two parameters in ACR directly control higher-order basis co-
efficients and therefore the local curvature and inflection be-
havior of the inserted micro-spline. This extra tunability per-
mits analytic enforcement of convexity constraints and reduc-
tion of local curvature peaks, which helps to avoid cusps and 
self-intersections without resorting to global re-fitting. In our 
algorithm these parameters are chosen (analytically or via the 
local optimization in Section 3.4) to minimize deviation error 
while satisfying curvature/clearance constraints. 

− High-order smoothness with analytic control. Although a 
standard CR produces C1 continuity by construction, the ACR 
basis (7th-order with parameterization) enables analytic con-
trol of derivatives up to third order at junctions when control 
points are assigned according to the scheme in Section 3.2–
3.4. Achieving equivalent C3 behavior with Bézier, Hermite or 
PH splines typically requires higher-degree polynomial 
pieces or constrained optimizations; ACR provides a compact 
analytic alternative that is straightforward to enforce locally. 

− Parameterization flexibility and numerical stability. The ACR 
supports different parameterizations (e.g. chordal/ centripe-
tal) which reduce oscillations and the risk of unwanted loops 
that may appear with uniform parameterization. The combi-

nation of centripetal parameterization and local (𝜅,𝜆) tuning 

enhances numerical robustness in corner regions. 

− Computational efficiency and practical deployment. The ACR 
admits explicit analytic expressions for positions and deriva-
tives and—importantly—permits closed-form selection rules 
for many control points. This reduces computational burden 
compared to optimization-heavy methods (e.g. global 
NURBS fitting or constrained quintic blends), making the 
method more suitable for near-real-time tool-path prepro-
cessing on CNC/robotic controllers. For segments where 
computation cost must be minimized, the adjustment param-
eters can be set to nominal values and only problematic cor-
ners are tuned. 

− Compatibility with arc-length reparameterization and 
feedrate/jerk control. Because analytic derivatives are availa-
ble, ACR integrates readily with arc-length reparameteriza-
tion and feedrate scheduling procedures to enforce curvature 
and jerk limits—facilitating construction of C3 continuous tra-
jectories that are synchronized in both position and orienta-
tion. 

In summary, the ACR spline combines the interpolatory accu-
racy and local control of classical CR splines with additional, ana-
lytically tunable shape parameters that improve robustness (anti-
self-intersection), enable local curvature shaping, and retain com-
putational simplicity—features that together make ACR particularly 
well suited for corner smoothing in robotic machining. 

 

3.2. Tool tip position corner smoothing method 

In this subsection, the tool-tip position corner 
∠𝑃𝑖−1𝑃𝑖𝑃𝑖+1shown in Fig. 4 is chosen as an example to illustrate 

the developed tool tip smoothing method, where 𝑃𝑖−1 , 𝑃𝑖 and 
𝑃𝑖+1are three end points of the adjacent linear segments. The ACR 
spline described in Section 3.1 is utilized to smooth the tool-tip po-
sition at this transition corner under the positional error tolerance 
𝜀𝑝 . Here 𝜀𝑝 is defined in the Cartesian coordinate system and has 

units of length. 
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Fig. 4. Corner smoothing of tool tip position 

In order to ensure the tangential continuity of the constructed 
ACR spline and the original line segment, considering the continuity 
and local property of the constructed CR spline, the control points 

𝑸0 − 𝑸3and 𝑸7 −𝑸10 

are located on the linear segments 

𝑷𝑖−1𝑷𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝑷𝑖𝑷𝑖+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, respectively.  

Besides, to realize the geometric symmetry of the inserted ACR 
splines with respect to the bisector of the angle formed by adjacent 
position segments, and to avoid cusps and self-intersections at the 
same time, the following control points are constructed: 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

𝑸5 = 𝑷𝑖 + 𝑻𝑝𝑚𝐿𝑝

𝑸3 = 𝑷𝑖 −
2𝑻𝑝0𝐿𝑝

𝑠𝑖𝑛(
𝜃𝑝

2
)

𝑸7 = 𝑷𝑖 +
2𝑻𝑝1𝐿𝑝

𝑠𝑖𝑛(
𝜃𝑝

2
)

𝑸2 = 1.5𝑸3 − 0.5𝐏𝑖
𝑸8 = 1.5𝑸7 − 0.5𝐏𝑖
𝑸1 = 2𝑸3 −𝑷𝑖
𝑸9 = 2𝑸7 −𝑷𝑖

𝑸0 = 2.5𝑸3 − 1.5𝑷𝑖
𝑸10 = 2.5𝑸7 − 1.5𝑷𝑖
𝑸4=0.9𝐑𝑝1+0.1𝐑𝑝2
𝑸6=0.1𝐑𝑝1+0.9𝐑𝑝2

                                     (14) 

 
 
 
 
 

vindhya a
Comment on Text
one



DOI 10.2478/ama-2025-0088                                                                                                                                                          acta mechanica et automatica, vol.19 no.4 (2025)  

 

795 

where 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝑻𝑝0 =

𝑷𝑖−1𝑷𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

‖𝑷𝑖−1𝑷𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖

𝑻𝑝1 =
𝑷𝑖𝑷𝑖+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

‖𝑷𝑖𝑷𝑖+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖

𝑻𝑝𝑚 =
(𝑻𝑝1−𝑻𝑝0)

‖𝑻𝑝1−𝑻𝑝0‖

𝑹𝑝1 =
𝑸3

3
+ 2

(𝑷𝑖−
𝑻𝑝0𝐿𝑝

𝑠𝑖𝑛(
𝜃𝑝
2
)

)

3

𝑹𝑝2 =
𝑸7

3
+ 2

(𝑷𝑖+
𝑻𝑝1𝐿𝑝

𝑠𝑖𝑛(
𝜃𝑝
2
)

)

3

𝐿𝑝 ≤ 𝜀𝑝

                                                  (15) 

where 𝜃𝑝=arccos(𝑻𝑝0𝑻𝑝1). 

Since each linear segment is shared by two corners (except of 
the first and the last linear segments), therefore, one third of the 
segment is retained to adjust the synchronization of the tool tip po-
sition and tool orientation, that is, the linear segment used to con-
struct ACR spline should be less than one third of the total length 
of the segment: 

{
‖𝑸0𝑷𝑖⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ‖ ≤

‖𝑷𝑖−1𝑷𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖

3

‖𝑷𝑖𝑸10⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ‖ ≤
‖𝑷𝑖𝑷𝑖+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖

3

                                       (16) 

Substituting Eq. (14) into Eq. (16) and combining with the error 

tolerance constraint of𝐿𝑝 ≤ 𝜀𝑝, the final constraints of𝐿𝑝can be 

obtained as: 

𝐿𝑝 = 𝑚𝑖𝑛 (𝜀𝑝,
‖𝑷𝑖−1𝑷𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖ 𝑠𝑖𝑛(

𝜃𝑝

2
)

12‖𝑻𝑝0‖
,
‖𝑷𝑖𝑷𝑖+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖ 𝑠𝑖𝑛(

𝜃𝑝

2
)

12‖𝑻𝑝1‖
)           (17) 

3.3. Tool orientation corner smoothing method 

In this subsection, the tool orientation corner 
∠𝛹𝑖−1𝛹𝑖𝛹𝑖+1shown in Fig. 5 is chosen as an example to illustrate 
the developed tool orientation smoothing method, where 𝛹𝑖−1 , 
𝛹𝑖and 𝛹𝑖+1are three end point orientations of the adjacent linear 
segments (expressed in the chosen Euler-angle convention). The 
ACR spline described in Section 3.1 is utilized to smooth the tool 
orientation at this transition corner under the orientation error toler-

ance𝜀𝑜 . Here𝜀𝑜 is an angular tolerance defined on the Euler-angle 

coordinates and has units of radians. 
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Fig. 5. Corner smoothing of tool orientation 

Similar to the method of determining control points of tool tip 
spline described in last subsection, the control points of the tool 
orientation ACR spline can be determined by following equations: 

{
 
 
 
 
 
 

 
 
 
 
 
 

𝜱5 = 𝜳𝑖 +𝑻𝑜𝑚𝐿𝑜

𝜱3 = 𝜳𝑖 −
2𝑻𝑜0𝐿𝑜

𝑠𝑖𝑛(
𝜃𝑜
2
)

𝜱7 = 𝜳𝑖 +
2𝑻𝑜1𝐿𝑜

𝑠𝑖𝑛(
𝜃𝑜
2
)

𝜱2 = 1.5𝜱3 − 0.5𝚿𝑖
𝜱8 = 1.5𝜱7 − 0.5𝚿𝑖
𝜱1 = 2𝜱3 −𝜳𝑖

𝜱9 = 2𝜱7 −𝜳𝑖

𝜱0 = 2.5𝜱3 − 1.5𝜳𝑖

𝜱10 = 2.5𝜱7 − 1.5𝜳𝑖

𝜱4=0.9𝐑𝑜1+0.1𝐑𝑜2
𝜱6=0.1𝐑𝑜1+0.9𝐑𝑜2

                                                        

(18)                              

where 

{
 
 
 
 
 
 

 
 
 
 
 
 𝑻𝑜0 =

𝜳𝑖−1𝜳𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

‖𝜳𝑖−1𝜳𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖

𝑻o1 =
𝜳𝑖𝜳𝑖+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

‖𝜳𝑖𝜳𝑖+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖

𝑻𝑜𝑚 =
(𝑻𝑜1−𝑻𝑜0)

‖𝑻𝑜1−𝑻𝑜0‖

𝑹𝑜1 =
𝜱3

3
+ 2

(𝜳𝑖−
𝑻𝑜0𝐿𝑜

𝑠𝑖𝑛(
𝜃𝑜
2 )
)

3

𝑹𝑜2 =
𝜱7

3
+ 2

(𝜳𝑖+
𝑻𝑜1𝐿𝑜

𝑠𝑖𝑛(
𝜃𝑜
2 )
)

3

𝐿𝑜 ≤ 𝜀𝑜

                                                  (19) 

where 𝜃𝑜=arccos(𝑇𝑜0𝑇𝑜1). 
Besides, one third of the segment should be retained to adjust 

the synchronization of the tool tip position and tool orientation: 

{
‖𝜱0𝜳𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖ ≤

‖𝜳𝑖−1𝜳𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖

3

‖𝜳𝑖𝜱10
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖ ≤

‖𝜳𝑖𝜳𝑖+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖

3

                                                            

(20) 

Substituting Eq. (18) into Eq. (20) and combining with the error 

tolerance constraint of, the constraints of𝐿𝑜can be obtained as: 

𝐿𝑜 = 𝑚𝑖𝑛 (𝜀𝑜 ,
‖𝜳𝑖−1𝜳𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖ 𝑠𝑖𝑛(

𝜃𝑜
2
)

12‖𝑻𝑜0‖
,
‖𝜳𝑖𝜳𝑖+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖ 𝑠𝑖𝑛(

𝜃𝑜
2
)

12‖𝑻𝑜1‖
)                 

(21) 

It must be noted that𝜀𝑜 in Eq. (21) denotes an angular tolerance 

in the Euler-angle parameterization (units: radians), whereas posi-

tional tolerance in𝜀𝑝Section 3.2 is defined in the Cartesian coordi-

nate (units: length) system. In practical application, the tool orien-
tation error should be constrained in WCS, as shown in Fig. 6, while 

the error tolerance parameter 𝜀𝑜utilized in Eq. (21) is constrained 

in the Cartesian coordinate system. Therefore, the relationship be-

tween𝜀𝑜and the tool orientation error𝜀𝑜𝑤 in the WCS should be 

established. 
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Fig. 6. Tool orientation error in the WCS 

The tool orientation 𝑶𝑤 = [𝑂𝑖 , 𝑂𝑗 , 𝑂𝑘]in the WCS can be ex-

pressed as: 

𝑶𝑤 = 𝑹 ⋅ 𝒓𝑜𝑡                                                                            
(22) 

where the tool orientation matrix 𝑅 has been obtained in Eq. (3), 
𝑟𝑜𝑡denotes the tool orientation vector related to the tool coordinate 
system and assumed that the tool center line is coincided with the 
z direction of the tool coordinate system, i.e. 𝑟𝑜𝑡 = [0,0,1]

𝑇 . 
Hence, the following relationship can be obtained: 

{

𝑂𝑖 = 𝑆𝛼𝑆𝛾 + 𝐶𝛼𝑆𝛽𝐶𝛾
𝑂𝑗 = −𝐶𝛼𝑆𝛾 + 𝑆𝛼𝑆𝛽𝐶𝛾
𝑂𝑘 = 𝐶𝛽𝐶𝛾

                                                        (23) 

The deviation of the tool orientation vector induced by the local 
smoothing in the WCS, as shown in Fig. 6, should satisfy the fol-
lowing relationship: 

𝛥𝑶 ≤ 2𝑠𝑖𝑛 (
𝜀𝑜𝑤

2
)                                       (24) 

The approximate relationship between the deviation of tool ori-
entation vector and rotary angles can be expressed as: 

𝛥𝑶 ≈ 𝑱𝑜𝜺𝑜                                                                           (25) 

which represents the first-order Taylor linearization of the orienta-
tion mapping, where higher-order terms have been omitted. More 
precisely, one may write 𝛥𝛰 = 𝐽𝑜𝜀𝑜 + 𝑟(𝜺𝑜) with ‖𝑟(𝜺𝑜)‖ =
𝒪(‖𝜺𝑜‖

2). The relations that follow should therefore be inter-
preted as approximate bounds under the small-angle/small-devia-
tion assumption. 𝑱𝑜is the Jacobian matrix of the tool orientation and 
can be expressed as the following form by combining Eq. (23) and 
Eq. (25): 

𝑱𝑜 =

[
 
 
 
 
𝜕𝑂𝑖

𝜕𝛼

𝜕𝑂𝑖

𝜕𝛽

𝜕𝑂𝑖

𝜕𝛾

𝜕𝑂𝑗

𝜕𝛼

𝜕𝑂𝑗

𝜕𝛽

𝜕𝑂𝑗

𝜕𝛾

𝜕𝑂𝑘

𝜕𝛼

𝜕𝑂𝑘

𝜕𝛽

𝜕𝑂𝑘

𝜕𝛾 ]
 
 
 
 

=

[

𝐶𝛼𝑆𝛾 − 𝑆𝛼𝑆𝛽𝐶𝛾 𝐶𝛼𝐶𝛽𝐶𝛾 𝑆𝛼𝐶𝛾 − 𝐶𝛼𝑆𝛽𝑆𝛾
𝑆𝛼𝑆𝛾 + 𝐶𝛼𝑆𝛽𝐶𝛾 𝑆𝛼𝐶𝛽𝐶𝛾 −𝐶𝛼𝐶𝛾 − 𝑆𝛼𝑆𝛽𝑆𝛾

0 −𝑆𝛽𝐶𝛾 −𝐶𝛽𝑆𝛾

]               (26) 

Since the tool orientation error 𝛥𝑶 is defined as the minimum 
deviation between the original tool orientation vector and the con-
structed spline, it can be obtained that: 

𝛥𝑶 ≤ ‖𝑱𝑜(𝜳𝑖 −𝜱5)‖ + 𝒪(‖𝜺𝑜‖
2)                                (27) 

Substitute Eq. (18) and Eq. (24) into the above equation: 

𝜀𝑜 ≤
2 𝑠𝑖𝑛(

𝜀𝑜𝑤
2
)

‖𝑱𝑜𝑻𝑜𝑚‖
+𝒪(‖𝜺𝑜‖

2)                                            (28) 

Under small-angle assumption, higher-order terms are negligi-
ble, and substitute Eq. (28) into Eq. (21), the final constraints 

of𝐿𝑜can be obtained as: 

𝐿𝑜 = 𝑚𝑖𝑛 (
2𝑠𝑖𝑛(

𝜀𝑜𝑤
2
)

‖𝑱𝑜𝑻𝑜𝑚‖
,
‖𝜳𝑖−1𝜳𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖ 𝑠𝑖𝑛(

𝜃𝑜
2
)

12‖𝑻𝑜0‖
,
‖𝜳𝑖𝜳𝑖+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖ 𝑠𝑖𝑛(

𝜃𝑜
2
)

12‖𝑻𝑜1‖
)   

(29) 

3.4. Constraint of the tool tip and tool orientation error 

Smoothing the tool tip position and orientation at transition cor-
ner by using the developed ACR spline will not only result in 

smoothing error 𝜀𝑝 and 𝜀𝑜 , but also the deviation between the 

spline segment and the linear segment 𝑒𝑝 and 𝑒𝑜due to the local 

property of the ACR spline (e.g. the spline between control points 
𝑄2 and 𝑄3 is affected by 𝑄4), as shown in Fig. 7. Therefore, it is 

necessary to control the deviation error 𝑒𝑝 and 𝑒𝑜 by adjusting 

the shape of spline, and an analytical optimization method is devel-

oped to minimize𝑒𝑝and𝑒𝑜by optimizing the adjustment parame-

ters 𝜅 and 𝜆 in this subsection. 

Pi-1

Pi+1

Q0 Q1 Q2Q3
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Q6

Q7
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Q9

Q10

Q5
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Linear segment
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x
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z
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ep

a) corner smoothing of tool tip 
position 
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Φ7

Φ8

Φ9
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eo
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Φ7

Φ8

b) corner smoothing of tool 
orientation 

Fig. 7. The deviation between spline segment and linear segment 

Taking the spline segment and linear segment between control 
points 𝑄2 = (𝑥2, 𝑦2, 𝑧2) and 𝑄3 = (𝑥3, 𝑦3, 𝑧3)as an example, 
the error between the spline segment and the original linear seg-
ment can be defined as: 

𝑒𝑝(𝜅, 𝜆) = ∫ (𝑅𝑦,2(𝑥) − 𝑦(𝑥))
2

+ (𝑅𝑧,2(𝑥) − 𝑧(𝑥))
2

𝑑𝑥
𝑥3

𝑥2
                

                                                                                                   (30) 

where 𝑅𝑦,2(𝑥)and𝑅𝑧,2(𝑥)are ACR spline functions in the inter-

val 𝑥 ∈ [𝑥2, 𝑥3] with control points 𝑄1 , 𝑄2 , 𝑄3 and  𝑄4, 
𝑦(𝑥) and  𝑧(𝑥) are the functions of linear segment be-
tween 𝑄2 and 𝑄3, can be expressed as: 

{
𝑦(𝑥) = 𝑦2 +

(𝑦3−𝑦2)(𝑥−𝑥2)

𝑥3−𝑥2

𝑧(𝑥) = 𝑧2 +
(𝑧3−𝑧2)(𝑥−𝑥2)

𝑥3−𝑥2

                                 (31) 

The ACR spline functions  𝑅𝑦,2(𝑥) and 𝑅𝑧,2(𝑥) in the 

Windows
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interval𝑥 ∈ [𝑥2, 𝑥3]can be rewritten as the following form by sub-
stituting Eq. (6) into Eq. (5): 

{
𝑅𝑦,2(𝑥) = 𝐴𝑦,2(𝑥)𝜅 + 𝐵𝑦,2(𝑥)𝜆 + 𝐶𝑦,2(𝑥)

𝑅𝑧,2(𝑥) = 𝐴𝑧,2(𝑥)𝜅 + 𝐵𝑧,2(𝑥)𝜆 + 𝐶𝑧,2(𝑥)
                    (32) 

where 

{
 
 
 

 
 
 
𝐴𝑦,2(𝑥) = 𝑙0(𝑡)𝑦1 + 𝑙1(𝑡)𝑦2 − 𝑙0(𝑡)𝑦3 − 𝑙1(𝑡)𝑦4

𝐵𝑦,2(𝑥) = 𝑚0(𝑡)𝑦1 +𝑚1(𝑡)𝑦2 +𝑚2(𝑡)𝑦3 − (𝑚0(𝑡) + 𝑚1(𝑡) + 𝑚2(𝑡))𝑦4

𝐶𝑦,2(𝑥) = 𝑛1(𝑡)𝑦2 + (1 − 𝑛1(𝑡))𝑦3
𝐴𝑧,2(𝑥) = 𝑙0(𝑡)𝑧1 + 𝑙1(𝑡)𝑧2 − 𝑙0(𝑡)𝑧3 − 𝑙1(𝑡)𝑧4

𝐵𝑧,2(𝑥) = 𝑚0(𝑡)𝑧1 +𝑚1(𝑡)𝑧2 +𝑚2(𝑡)𝑧3 − (𝑚0(𝑡) + 𝑚1(𝑡) + 𝑚2(𝑡))𝑧4

𝐶𝑧,2(𝑥) = 𝑛1(𝑡)𝑧2 + (1 − 𝑛1(𝑡))𝑧3

        

                                                                                                   (33) 

where 𝑡 =
(𝑥−𝑥2)

(𝑥3−𝑥2)
, The following optimization model can be de-

rived by substituting Eq. (32) into Eq. (30): 

{
𝑚𝑖𝑛 𝑒𝑝(𝜅, 𝜆) = 𝐷1𝜅

2+ 𝐷2𝜆
2+𝐷3𝜅𝜆 + 𝐷4𝜅 + 𝐷5𝜆 + 𝐷6

𝑠. 𝑡. 𝜅, 𝜆 ∈ 𝑅
           

                                                                                                   (34) 
where  

{
 
 
 
 
 

 
 
 
 
 𝐷1 = ∫ ((𝐴𝑦,2(𝑥))

2

+ (𝐴𝑧,2(𝑥))
2

) 𝑑𝑥
𝑥3
𝑥2

𝐷2 = ∫ ((𝐵𝑦,2(𝑥))
2

+ (𝐵𝑧,2(𝑥))
2

) 𝑑𝑥
𝑥3
𝑥2

𝐷3 = ∫ (𝐴𝑦,2𝐵𝑦,2 + 𝐴𝑧,2𝐵𝑧,2)𝑑𝑥
𝑥3
𝑥2

𝐷4 = ∫ (𝐴𝑦,2(𝑥) (𝐶𝑦,2(𝑥) − 𝑦(𝑥)) + 𝐴𝑧,2(𝑥) (𝐶𝑧,2(𝑥) − 𝑧(𝑥))) 𝑑𝑥
𝑥3
𝑥2

𝐷5 = ∫ (𝐵𝑦,2(𝑥) (𝐶𝑦,2(𝑥) − 𝑦(𝑥)) + 𝐵𝑧,2(𝑥) (𝐶𝑧,2(𝑥) − 𝑧(𝑥)))𝑑𝑥
𝑥3
𝑥2

𝐷6 = ∫ ((𝐶𝑦,2(𝑥) − 𝑦(𝑥))
2

+ (𝐶𝑧,2(𝑥) − 𝑧(𝑥))
2

) 𝑑𝑥
𝑥3
𝑥2

     

                                                                                                   (35) 
It is not difficult to obtain that 𝑒𝑝(𝜅, 𝜆) ≥ 0, thus the minimum 

of 𝑒𝑝(𝜅, 𝜆)can be solved by: 

{

𝜕𝑒𝑝(𝜅,𝜆)

𝜕𝜅
= 0

𝜕𝑒𝑝(𝜅,𝜆)

𝜕𝜆
= 0

                                             (36) 

By combining with Eq. (34): 

{
𝐷1𝜅 + 𝐷3𝜆 = −𝐷4
𝐷3𝜅 + 𝐷2𝜆 = −𝐷5

                                            (37) 

The adjustment parameters 𝜅 and 𝜆 corresponding to the min-

imum deviation error 𝑒𝑝 can be obtained by solving Eq. (37). 

4. SYNCHRONIZATION OF THE TOOL ORIENTATION AND 
TOOL TIP POSITION 

In order to guarantee the C3 continuity of the smoothed tool 
path and joints of robot, the varying rate of the tool orientation 
should be synchronized with the speed of the tool tip displacement. 
The developed ACR spline is utilized to replace the remaining po-
sition and orientation linear segments after smoothing, as shown in 
Fig. 8, where  𝑄0,𝑖 ,𝑄1,𝑖 ,𝑄2,𝑖  and  𝑄3,𝑖 are control points of the 

smoothed position curves of the 𝑖th corner, 
𝑄7,𝑖−1 , 𝑄8,𝑖−1 , 𝑄9,𝑖−1 and  𝑄10,𝑖−1 are control points of the 

smoothed position curves of the (𝑖 − 1)thcorner, the linear seg-
ment between 𝑄10,𝑖−1and 𝑄0,𝑖  is the remaining position linear 

segment between two corners. Similarly, 𝛷0,𝑖 , 𝛷1,𝑖 , 𝛷2,𝑖 and 
𝛷3,𝑖  are control points of the smoothed orientation curves of 

the𝑖thcorner, 𝛷7,𝑖−1,𝛷8,𝑖−1, 𝛷9,𝑖−1and 𝛷10,𝑖−1are control points 

of the smoothed orientation curves of the (𝑖 − 1)thcorner, the lin-
ear segment between 𝛷10,𝑖−1and 𝛷0,𝑖is the remaining orientation 

line between two corners. 
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Fig. 8. Synchronization of the tool tip position and orientation 

Due to local property of ACR spline, the curve between control 
points 𝑄1,𝑖  and 𝑄2,𝑖 is just affected by 𝑄0,𝑖,𝑄0,𝑖,𝑄1,𝑖,𝑄2,𝑖 and 𝑄3,𝑖, 
which are all located on the original linear segment, thus, this curve 
is exactly coincident with the original linear segment. Similarly, the 

curves between control points 𝑄8,𝑖−1and  𝑄9,𝑖−1 ,𝛷1,𝑖 and  𝛷2,𝑖 , 

𝛷8,𝑖−1and 𝛷9,𝑖−1are all coincident with the original linear segment. 

Therefore, C3 continuity between the remaining position (orienta-
tion) linear segments and the smoothed curve segment can be re-
alized if the control points of the remaining segment are located on 
the original linear segment. 

In this study, the developed ACR splines are utilized to replace 
the remaining position and orientation linear segments. For the 
sake of simplicity, the control points 𝑄8,𝑖−1 ,𝑄9,𝑖−1 ,𝑄10,𝑖−1 ,

,0 iQ

𝑄0,𝑖, 1,iQ 𝑄1,𝑖and 𝑄2,𝑖  of the two adjacent curve segments are con-

sidered as the control points of the remaining position linear seg-
ments, and rewritten as 𝑈0 ,𝑈1 , 2U 𝑈3 ,𝑈4 and 𝑈5 , as shown in  

Figure 8.  
Similarly, the control points 𝛷8,𝑖−1, 𝛷9,𝑖−1,𝛷10,𝑖−1, 𝛷0,𝑖,𝛷1,𝑖   

and 𝛷2,𝑖  of the two adjacent curve segments are considered as the 

control points of the remaining orientation linear segments, and re-
written as 𝑉0,𝑉1, 2V 𝑉3,𝑉4  and 𝑉5. 

In addition to the abovementioned constraints, to satisfy the C3 
continuous synchronization of the tool orientation with respect to 
the tool tip position, as shown in Figure 8, the first, second and third 
order differentials of the tool orientation 𝑅(𝛼) relative to the tool tip 
displacement𝑠should be equal at the intersection of the junction 
between the curve segment and the linear segment.  

At the junction point 𝑉1shown in Fig. 8, on the curve side, dif-
ferentials of the tool orientation with respect to the tool tip displace-
ment are: 

{
 
 
 
 

 
 
 
 
𝜕𝑹𝑖−1(𝛼)

𝜕𝑠
|
𝛼=𝛼9,𝑖−1

= (
𝜕𝑹𝑖−1(𝛼)

𝜕𝛼

𝜕𝛼

𝜕𝑠
)
𝛼=𝛼9,𝑖−1

𝜕2𝑹𝑖−1(𝛼)

𝜕𝑠2
|
𝛼=𝛼9,𝑖−1

= (
𝜕2𝑹𝑖−1(𝛼)

𝜕𝛼2
(
𝜕𝛼

𝜕𝑠
)
2

+
𝜕𝑹𝑖−1(𝛼)

𝜕𝛼

𝜕2𝛼

𝜕𝑠2
)
𝛼=𝛼9,𝑖−1

𝜕3𝑹𝑖−1(𝛼)

𝜕𝑠3
|
𝛼=𝛼9,𝑖−1

= (
𝜕3𝑹𝑖−1(𝛼)

𝜕𝛼3
(
𝜕𝛼

𝜕𝑠
)
3

+3
𝜕2𝑹𝑖−1(𝛼)

𝜕𝛼2
𝜕𝛼

𝜕𝑠

𝜕2𝛼

𝜕𝑠2
+
𝜕𝑹𝑖−1(𝛼)

𝜕𝛼

𝜕3𝛼

𝜕𝑠3
)
𝛼=𝛼9,𝑖−1

 

  (37) 
On the linear side, differentials of the tool orientation with re-

spect to the tool tip displacement are: 
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{
  
 

  
 
𝜕𝑹̃𝑖−1(𝛼)

𝜕𝑠
|
𝛼=𝛼9,𝑖−1

= (
𝜕𝑹̃𝑖−1(𝛼)

𝜕𝛼

𝜕𝛼

𝜕𝑠
)
𝛼=𝛼9,𝑖−1

𝜕2𝑹̃𝑖−1(𝛼)

𝜕𝑠2
|
𝛼=𝛼9,𝑖−1

= (
𝜕2𝑹̃𝑖−1(𝛼)

𝜕𝛼2
(
𝜕𝛼

𝜕𝑠
)
2

+
𝜕𝑹̃𝑖−1(𝛼)

𝜕𝛼

𝜕2𝛼

𝜕𝑠2
)
𝛼=𝛼9,𝑖−1

𝜕3𝑹̃𝑖−1(𝛼)

𝜕𝑠3
|
𝛼=𝛼9,𝑖−1

= (
𝜕3𝑹̃𝑖−1(𝛼)

𝜕𝛼3
(
𝜕𝛼

𝜕𝑠
)
3

+3
𝜕2𝑹̃𝑖−1(𝛼)

𝜕𝛼2

𝜕𝛼

𝜕𝑠

𝜕2𝛼

𝜕𝑠2
+

𝜕𝑹̃𝑖−1(𝛼)

𝜕𝛼

𝜕3𝛼

𝜕𝑠3
)
𝛼=𝛼9,𝑖−1

  

                                                                                                   (38) 
Since the control points related to the ACR spline between con-

trol points 𝛷8,𝑖−1and 𝛷9,𝑖−1,𝑉1and 𝑉2are all located on the origi-

nal linear segment. Therefore, in order to realize the synchronous 
control of the tool tip position and tool orientation related the tool tip 
displacement, it is necessary to insert four additional control points 
𝑈6,𝑈7and 𝑉6,𝑉7, as shown in Fig. 8, and the following formulas 
must be satisfied: 

‖𝑼0𝑼1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ = ‖𝑼1𝑼2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ = ‖𝑼2𝑼6⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗⃗  ⃗‖ 

‖𝑼5𝑼4⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗⃗  ⃗‖ = ‖𝑼4𝑼3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗⃗  ⃗‖ = ‖𝑼3𝑼7⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗⃗  ⃗‖ 

‖𝑽0𝑽1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗⃗  ‖ = ‖𝑽1𝑽2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗⃗  ‖ = ‖𝑽2𝑽6⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ 

‖𝑽5𝑽4⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ = ‖𝑽4𝑽3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ = ‖𝑽3𝑽7⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖                           (39) 

The specific derivation steps of Eq (13) are detailed in Appendix 
A, and then the following equations can be obtained: 

 

{
 
 

 
 
𝜕𝑹𝑖−1(𝛼)

𝜕𝑠
|
𝛼=𝛼9,𝑖−1

=
𝜕𝑹̃𝑖−1(𝛼)

𝜕𝑠
|
𝛼=𝛼9,𝑖−1

𝜕2𝑹𝑖−1(𝛼)

𝜕𝑠2
|
𝛼=𝛼9,𝑖−1

=
𝜕2𝑹̃𝑖−1(𝛼)

𝜕𝑠2
|
𝛼=𝛼9,𝑖−1

= 0

𝜕3𝑹𝑖−1(𝛼)

𝜕𝑠3
|
𝛼=𝛼9,𝑖−1

=
𝜕3𝑹̃𝑖−1(𝛼)

𝜕𝑠3
|
𝛼=𝛼9,𝑖−1

= 0

                   (40) 

For computational efficiency we adopt the nominal choice𝜅 =
𝜆 = 0when constructing the ACR basis for the remaining linear 
segments; this nominal choice reduces the basis to the standard 
CR form while retaining analytic expressions for positions and de-
rivatives. Importantly, choosing 𝜅 = 𝜆 = 0does not cause a van-
ishing first derivative or a parametric singularity under normal (non-
degenerate) geometric conditions: because the remaining linear 
segments have non-zero span and the control points used for the 
remaining-segment construction are distinct points lying on the 
original linear segment (see Figure 8 and Eq. (39)–(40)), the chord 
lengths are positive and the resulting CR basis yields non-zero local 
derivatives. In other words, derivative values on these remaining 
segments are determined by the control-point geometry (not 

by𝜅,𝜆alone), and therefore C1–C3 matching conditions remain en-

forceable when𝜅 = 𝜆 = 0. 
The implementation includes a simple detection-and-fallback 

step to handle the geometric degenerate cases that can produce 
near-zero parametric derivatives (for example, coincident control 
points or zero-length linear segments). Before finalizing the remain-
ing-segment construction the algorithm computes the magnitude of 
the first derivative on the remaining segment. If ‖𝑅′(𝑠)‖ < 𝜏 

(with𝜏a small numerical threshold), one of two light-weight reme-

dies is applied: (i) restore small nominal shape perturbation by set-
ting𝜅 = 𝜅𝑒𝑝𝑠 or𝜆 = 𝜆𝑒𝑝𝑠 with𝜅eps, 𝜆eps ∈ [10

−6, 10−3] ; or (ii) 

apply a tiny geometric perturbation to the remaining-segment con-

trol points (move them along the segment by a distance𝛿 ≪ 𝜀𝑝). 

Either remedy restores a non-zero derivative while preserving de-
viation bounds. This fallback is algorithmic (post-construction) and 
does not change the analytical derivations; it only activates in 
pathological geometric cases (coincident points or zero-length 

segments) which are easily detected at runtime. 

5. NUMERICAL SIMULATION 

In this section, the developed ACR-spline-based C3 continuous 
tool path smoothing method for robotic machining is validated 
through numerical simulation. The test tool path used in the 
simulation is depicted in Fig. 9, consisting of four linear segments 
and three corner transitions, with the corresponding parameters 
listed in Tab. 1. The deviation error tolerances for the tool tip 
position and orientation are set as 𝜀𝑝 = 0.8 mm and 𝜀𝑜 =
0.01rad, respectively. The resulting smoothed tool tip position and 
tool orientation are illustrated in Fig. 10. 

 
Fig. 9. The testing tool path utilized in numerical simulation 

Tab. 1. Parameters of the testing tool path 

No. of  

corners 

No. of  

tool 
path 

Tool tip position 

(𝑥, 𝑦, 𝑧) 

(mm) 

Tool orientation 

(𝛼, 𝛽, 𝛾) (rad) 

1 
1 

 (240, 200, 220) 
 (0.6283, 0.5236, 

0.3142) 

 (230, 240, 250) 
 (1.0472, 0.7854, 

0.3927) 
2 

2 
 (270, 230, 

252.2) 
 (0.3142, 0.1571, 

0.2094) 
3 

3 

 (250, 210, 242) 
 (0.6283, 0.7854, 

0.5236) 

4  (235, 230, 
246.8) 

 (0.3142, 0.3927, 
0.5236) 

 

 
a) Tool tip position 

 
b) Tool orientation 

Fig. 10. The smoothed tool tip position and tool orientation 
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The deviation errors of the tool tip position and orientation in the 
WCS under the preset deviation error tolerances are presented in 
Tab. 2. It can be observed that the maximum deviation errors for 

both the tool tip position 𝜀𝑝and orientation𝜀𝑜 in the WCS do not 

exceed the predefined tolerances. Furthermore, since the tool tip 

position  𝑒𝑝 and orientation𝑒𝑜 are controlled by the adjustment 

parameters  𝜅 , 𝜆 , it can be concluded from Tab. 2 

that𝑒𝑝and𝑒𝑜remain sufficiently small to ensure minimal deviation 

between the smoothed tool path and the original tool path. The 

corresponding 𝜅,𝜆 are provided in parentheses. 

Tab. 2.  Deviation errors of the tool tip and tool orientation with error 

tolerances 𝜀𝑝 = 0.8mm and 𝜀𝑜 = 0.01rad 

No. of corners 1 2 3 

Tool tip 

Position 

error 

𝜀𝑝  

(mm) 
0.8 0.8 0.8 

𝑒𝑝  (mm3) 

(𝜅,𝜆) 

5.4858e-06 

(0.48, -
5.4e-4) 

2.3160e-06 

(0.51, -1.4e-
4) 

3.9818e-05 

(0.47, 5.3e-
4) 

Tool 

orientation 
error 

𝜀𝑜  (rad) 0.01 0.01 0.01 

𝑒𝑜  (rad3) 

(𝜅,𝜆) 

2.2647e-11 

(0.46, -
2.4e-3) 

1.2184e-10 

(0.49, 7.2e-
3) 

2.8408e-11 

(0.47, -
3.0e-3) 

To further assess the efficacy of the developed ACR-spline-
based tool path smoothing method under varying error tolerances, 
the deviation error thresholds for the tool tip position and orientation 
were reset to 𝜀𝑝 = 1.2mm and 𝜀𝑜 = 0.005rad, respectively.  

As indicated in Tab. 3, the maximum deviation errors for both 

the tool tip position 𝜀𝑝and orientation 𝜀𝑜remain below the preset 

tolerances. Moreover, 𝑒𝑝 and 𝑒𝑜 controlled by the adjustment 

parameters 𝜅, 𝜆 are still small enough to ensure that the deviation 

between the smoothed tool path and the original tool path. 

Tab. 3.  Deviation errors of the tool tip and tool orientation with error 

tolerances𝜀𝑝 = 1.2mm and𝜀𝑜 = 0.005rad 

No. of corners 1 2 3 

Tool tip 

Position 

error 

𝜀𝑝 
(mm) 

1.2 1.2 1.2 

𝑒𝑝 

(mm3) 

(𝜅,𝜆) 

1.8557e-05 

(0.48, -8.1e-
4) 

7.8179e-06 

(0.51, -2.2e-4) 

1.3406e-04 

(0.47, 7.9e-4) 

Tool 

orientation 
error 

𝜀𝑜  

(rad) 
0.005 0.005 0.005 

𝑒𝑜 

(rad3) 

(𝜅,𝜆) 

2.8111e-12 

(0.46, -1.2e-
3) 

1.5905e-11 

(0.49, 3.6e-3) 

3.5244e-12 

(0.47, -1.5e-3) 

 
In Section 4, it is deduced that the synchronization errors of the 

tool orientation relative to the tool tip displacement at the junctions 
between curve splines and linear splines are identically zero. To 
verify this conclusion, the 1st-, 2nd- and 3rd-order synchronization 
errors at these junctions are computed, as illustrated in Fig. 11 and 
Fig. 12. For comparison, the synchronization errors of the 
smoothed tool path obtained using the method described in [29] is 
also evaluated on the same test tool path. The results clearly 

indicate that the synchronization errors of the tool path smoothed 
by the developed ACR-spline-based method are zero at all 
examined orders, whereas the method in [29] yields non-zero 
errors. This outcome verifies the C3 continuous synchronization of 
the tool orientation with respect to the tool tip displacement 
achieved by the developed method. 
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Fig. 11. Synchronization errors of the tool orientation with respect to the 

tool tip displacement with 𝜀𝑝 = 0.8mm and 𝜀𝑜 = 0.01rad 
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Fig. 12. Synchronization errors of the tool orientation with respect to the 

tool tip displacement with 𝜀𝑝 = 1.2mm and𝜀𝑜 = 0.005 rad 

Since the developed ACR-spline-based C3 continuous corner 
smoothing method achieves 3rd-order continuity for both the tool 
tip position and tool orientation, it mathematically guarantees 
continuous jerk commands. To validate this performance, a C3 
continuous cubic acceleration profile [31] is employed to interpolate 
the smoothed tool path generated by the developed method under 
the preset error tolerances for tool tip position and orientation. In 
this interpolation, the nominal tangential feedrate, acceleration, and 
jerk were set to 30 mm/s, 3000 mm/s², and 30000 mm/s³, 
respectively. Fig. 13 presents the resulting kinematic profiles—
namely, displacement, velocity, acceleration, and jerk-which are 
smooth and continuous up to the jerk level, as expected.  

 
Fig. 13. Kinematic profile after interpolation 
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Furthermore, Fig. 14 illustrates the kinematic profiles for each 
joint, clearly demonstrating that the motion of every robot joint 
maintains third-order continuity without any abrupt changes in jerk. 
This observation further substantiates the effectiveness and 
practical applicability of the developed tool path smoothing method. 

 
a) Angular of joints 

 
b) Velocity of joints 

 
c) Accelerate of joints 

 
d) Jerk of joints 

Fig. 14. Kinematic profiles of each joint of robot 

6. CONCLUSIONS 

Ensuring high-order smoothness and analytical continuity of 
tool paths is essential for robotic machining systems to achieve 
both computational efficiency and desirable dynamic behaviour. In 
this paper we presented an analytical C³-continuous smoothing 
method based on ACR splines. By inserting ACR segments at cor-
ners between discrete linear tool paths and computing their control 
points analytically, the proposed approach avoids iterative con-
struction and delivers substantial computational savings. Local de-
viation introduced by corner smoothing is explicitly constrained 
through the control-point geometry, while the residual approxima-
tion error from the ACR basis is minimized using a simple yet effec-
tive optimization. The resulting procedure enforces C³ continuity by 
synchronizing tool-tip orientation with tool-tip displacement and by 
replacing the remaining linear segments with analytically deter-
mined ACR arcs. Numerical simulations demonstrate that the 
method meets prescribed maximum-deviation tolerances, pre-
serves third-order synchronization between orientation and dis-
placement, and produces smooth jerk profiles in both workpiece 
and joint spaces—properties that are important for high-precision 
robotic machining. 

We note that orientation-parameterization issues commonly 
encountered in CAM/CNC workflows—most notably gimbal lock, 
the non-uniqueness of Euler-angle representations, and disconti-
nuities introduced by angle wrapping—arise at the implementation 
level within post-processing and controller-interface stages. The 
present paper focuses on positional smoothing and feedrate plan-
ning within the CNC motion-planning layer; in our formulation, any 
required orientation synchronization is expressed only as a con-
straint, while the machine-specific representation and final conver-
sion of orientations are assumed to be handled by the CAM post-
processor and/or the controller interface (i.e., the software modules 
that consume the smoothed tool path and generate machine-ready 
commands). To make this assumption explicit, Appendix B pro-
vides recommended implementation-level strategies—including 
the use of singularity-free representations such as unit quaternions 
or rotation matrices, SLERP interpolation, 𝑆𝑂(3) exponential/log-
map updates, and safe conversion procedures to machine-specific 
Euler conventions. These recommendations support robust 
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integration of the proposed positional-smoothing method into prac-
tical CAM/CNC pipelines without altering the theoretical framework 
or the numerical results presented in this work. 

Future work will pursue several complementary directions. We 
plan to incorporate real-time adaptive adjustments driven by pro-
cess dynamics and force feedback to further improve robustness 
under varying cutting conditions. Experimental validation on an in-
dustrial robot platform will assess the method’s performance in real 
machining tasks. We will also investigate automatic parameter tun-
ing—potentially leveraging machine-learning techniques—to in-
crease efficiency and generality across a wider range of workpieces 
and machine systems. As part of these extensions, the orientation-
handling measures described in Appendix B will be integrated into 
a complete post-processing pipeline and their impact on controller 
tracking and overall process quality will be evaluated. 

Appendix A. Derivation of the equal–chord–length 
synchronization conditions 

This section derives the synchronization conditions for the tool 
position and orientation, ensuring both are smoothly synchronized 
at the junctions of adjacent spline segments. The derivation utilizes 
Eq. (13), which defines the C³ continuity for the ACR spline, and is 
expressed in a simplified format consistent with the notation in the 
manuscript. 

Step 1: Review of ACR Spline Properties 
The ACR spline is used to smooth the tool path, and it has the 

following properties: 
Interpolation: The spline passes through the given control 

points. 
C³ Continuity: The spline ensures that position, velocity, accel-

eration, and jerk (third derivative) are continuous at junctions. 
Locality: Each spline segment is influenced by four control 

points. 
Adjustability: The shape of the spline can be controlled via two 

parameters, which help in shaping the curvature to avoid cusps and 
ensure smooth transitions. 

Step 2: Review of Eq. (13) — C³ Continuity 
Eq. (13) guarantees C³ continuity for the ACR spline, ensuring 

that at the junction of two adjacent segments, the position, velocity, 
acceleration, and jerk are continuous. Specifically, it ensures that 
for any junction𝑡𝑖, the following continuity conditions hold: 

𝑑𝑘[𝒑(𝑡)]

𝑑𝑡𝑘
|𝑡 = 𝑡𝑖 = 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠,

𝑑𝑘[𝑹(𝑡)]

𝑑𝑡𝑘
|𝑡 = 𝑡𝑖 =

𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠  

which ensure that both the tool position 𝑝(𝑡) and orientation 
𝑅(𝑡)are smooth at the junctions, where 𝑘=0,1,2,3. 

Step 3: Synchronization of Position and Orientation 
To ensure synchronization between the tool position 𝑝(𝑡)and 

tool orientation 𝑅(𝑡), the derivatives of both the position and ori-
entation must match at the junctions. Specifically, we need to en-
sure that: 

𝑑𝑘[𝒑(𝑡)]

𝑑𝑡𝑘
=

𝑑𝑘[𝑹(𝑡)]

𝑑𝑡𝑘
  

which ensures that not only the position but also the velocity, accel-
eration, and jerk of the tool's position and orientation are synchro-
nized at each junction. 

Step 4: Equal-Chord-Length Condition for Synchronization 
To achieve synchronization, we need to ensure that the param-

eterization of the tool path is consistent across segments. The 

equal-chord-length condition ensures that the parameter intervals 
between adjacent control points are equal, which helps maintain 
the synchronization of the derivatives. 

The equal-chord-length condition can be written as: 

𝛥𝑡1 = 𝛥𝑡2 = ⋯ = 𝛥𝑡𝑛  

where𝛥𝑡𝑖 is the parameter interval for each spline segment. This 

condition guarantees uniformity in the parameterization, aiding in 
the synchronization of both position and orientation. 

Step 5: Control Points and Synchronization 
Since the control points of the ACR spline between the adjacent 

segments are located on the original linear segment, we can derive 
that to synchronize the tool tip position and tool orientation, four 
additional control points must be inserted. These control points, de-
noted 𝑈6,𝑈7,𝑉6,and 𝑉7, ensure that both position and orientation 
are synchronized at the junction, as shown in the figure. 

The synchronization condition between position and orientation 
is then expressed as: 

‖𝑼0𝑼1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ = ‖𝑼1𝑼2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ = ‖𝑼2𝑼6⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗⃗  ⃗‖  

‖𝑼5𝑼4⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗⃗  ⃗‖ = ‖𝑼4𝑼3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗⃗  ⃗‖ = ‖𝑼3𝑼7⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗⃗  ⃗‖  

‖𝑽0𝑽1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗⃗  ‖ = ‖𝑽1𝑽2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗⃗  ‖ = ‖𝑽2𝑽6⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖   

‖𝑽5𝑽4⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ = ‖𝑽4𝑽3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ = ‖𝑽3𝑽7⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖  

This ensures that the control points for both the position and 
orientation are distributed evenly across the spline segments, 
providing synchronization between the two. 

Thus, Eq. (39) ensures synchronization of both the tool position 
and orientation, guaranteeing that the motion is continuous up to 
the third derivative. By introducing the equal-chord-length condition 
and the additional control points, we can achieve the necessary 
synchronization for high-precision robotic machining. 

Appendix B. Notes on orientation handling and recommended 
CNC post-processing 

Since the core contribution of this paper is a positional C³ 
smoothing algorithm and its deviation guarantees, the main text fo-
cuses on tool-centerline smoothing and feedrate planning. For 
practitioners who integrate the proposed positional smoothing into 
a CAM/CNC workflow, the following practical measures are recom-
mended to avoid orientation singularities in the post-processing 
stage: 

Use a singularity-free internal representation. Represent orien-
tations internally as unit quaternions (𝑞 ∈ 𝑆³) or rotation matrices 
(𝑅 ∈ 𝑆𝑂(3)). Do not perform interpolation or gradient-based opti-
mization directly on Euler angles. 

Interpolation and composition. For interpolation between key 
orientations use spherical linear interpolation (SLERP). For small 
optimization increments, use the 𝑆𝑂(3) exponential and logarithm 
maps: represent local updates as 3-vector elements of 𝑆𝑂(3) and 
apply them by exponentiation to the current rotation. 

Quaternion sign consistency. Because 𝑞 and−𝑞 represent the 
same physical rotation, enforce sign consistency before interpola-
tion or comparison: if dot(𝑞1, 𝑞2) < 0 then replace  𝑞2by−𝑞2 . 
This guarantees interpolation along the shortest arc on S³ and 
avoids spurious 180° flips. 

Optimization parameterization. When orientation increments 
are required in optimization loops, use a minimal local parameteri-
zation 𝑆𝑂(3)rotation vector via the log map) around the current 
orientation rather than global Euler parameters. This avoids 



Xu-Lin Cai, Wen-An Yang, You-Peng You                                                                                                                                                                 DOI 10.2478/ama-2025-0088 
A Catmull-Rom Spline Based Analytical C3 Continuous Tool Path Smoothing Method for Robotic Machining 

802 

singular linearizations and improves convergence properties. 
Final conversion and continuity enforcement. Convert quater-

nion/matrix results to the machine's required Euler convention only 
at the final output stage. During conversion, perform angle unwrap-
ping and branch selection to maintain temporal continuity and to 
minimize angular jumps. If a resulting Euler angle is close to a 
known gimbal configuration (e.g., pitch ≈ ±90°), consider switching 
to an alternate representation for that interval or slightly perturbing 
the sampling to avoid controller singularity crossing. 

Controller interface and verification. If the target NC controller 
supports quaternion or matrix inputs, prefer those interfaces. Oth-
erwise, include a verification pass in the post-processor that checks 
for excessive angular velocity or acceleration after conversion to 
controller angles and adjusts the timeline or re-parameterizes ori-
entations if machine limits would be violated. 

These measures are standard practice in robotics and ad-
vanced CAM implementations and can be implemented without 
changing the ACR-based positional smoothing algorithm presented 
in this study. 
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