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Abstract: Tool path smoothness is critical for ensuring the dynamic performance of robotic machining systems, as it directly influences
machining efficiency and quality. In recent years, spline-based methods (e.g., Bézier-spline, B-spline, NURB-spline, and PH-spline) have
been widely employed to achieve tool path smoothing. However, most existing studies have focused on achieving only G2 or C2 continuity
of tool paths, leading to discontinuous jerk behavior and resulting in high-order resonance frequencies within the machining system.
Although some attention has been given to the need for C3 continuity in tool paths, synchronization between tool tip position and
orientation remains suboptimal due to the complex, high-dimensional nonlinear kinematics of robotic machining systems. An analytical C3
continuous tool path smoothing method based on Catmull-Rom splines is developed in this study for robotic machining systems. The method
smooths corners between adjacent discrete linear segments by inserting an adjustable Catmull-Rom (ACR) spline, with control points and
adjustment parameters specifically designed to minimize deviation errors between the smoothed and original tool paths.
Subsequently, the tool tip position and orientation are synchronized with the tool tip displacement, maintaining C3 continuity, by replacing
the remaining linear segments with ACR splines. These splines' control points can be directly selected without requiring any iterative
calculations, and synchronization error is guaranteed to be zero. The developed method involves a fully analytical calculation process,
eliminating the need for iterative methods. Numerical simulations demonstrate that the tool paths generated by the developed method
satisfy preset tolerances with smooth, continuous jerks in both workpiece and joint coordinate spaces, and that synchronization errors are

indeed zero.
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1. INTRODUCTION

With advancements in robot technology, both the stiffness and
accuracy of industrial robots have significantly improved. As a re-
sult, industrial robots are increasingly applied in the field of metal
cutting [1, 2], particularly in the flexible machining of large aero-
space components, due to their advantages of low cost, high effi-
ciency, flexibility, and expansive workspace. Traditionally, industrial
robots have been used for tasks such as transporting objects from
one location to another, where only the final positioning accuracy
was of concern. However, for contour motion tasks, such as tool
path planning, it is essential to ensure both deviation error con-
straints and the continuity of the smoothed tool path throughout the
entire trajectory. Consequently, tool path planning in these applica-
tions is far more complex than traditional point-to-point tasks, lead-
ing to growing research interest in recent years [3-5].

Discrete linear motion commands generated by Computer-
Aided Manufacturing (CAM) software are commonly employed in
Computer Numerical Control (CNC) machining [6]. However, these
commands lead to discontinuities in feedrate and theoretically infi-
nite acceleration at the corners due to tangential discontinuities. To
ensure smooth and continuous feed drive motions, it is necessary
to smooth these discrete linear motion commands to achieve high-
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order geometric continuity before they are sent to the robot drives
for machining. Tool path planning methods can be categorized
based on the reference frame in which the tool path command po-
sitions are represented. These methods are generally classified
into joint space and task space methods [7, 8]. In the joint space
method, tool paths are defined within the joint space, and motion
commands are smoothed directly for individual robot joints [9, 10].
This method has the advantage of directly driving the robot joints
using the planned path without the need for kinematic transfor-
mations. However, it does not allow for intuitive collision checking
and faces challenges in constraining the positional deviation errors
of the tool's orientation relative to the workpiece. To address these
limitations, task space methods have been developed, wherein tool
paths are defined in the workpiece coordinate system (WCS) as
tool tip positions and orientations [11, 12]. Moreover, tool path
smoothing methods can be further divided into global and local
smoothing methods, depending on the spline construction method
used. In the global smoothing method, the discrete linear com-
mands are represented by an entire spline [12, 13], which facilitates
smoothness and continuity along the entire tool path. However, this
method faces difficulties in evaluating and constraining the devia-
tion errors between the smoothed and original tool paths. In con-
trast, the local smoothing method introduces micro splines at the
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corners between adjacent discrete segments [14, 15], achieving
smoothness along the tool path while addressing the drawbacks
associated with global smoothing methods.

Several local smoothing methods have been developed for tool
path smoothing in three, four, and five-axis machine tools to
achieve various orders of motion continuity [16-18]. Among these,
five-axis machine tools have garnered significant research interest
due to their complex structures and kinematics. Jin et al. [19] de-
veloped a G2 continuous local smoothing method for five-axis tool
paths using double G2 continuous cubic Bézier splines. Yan et al.
[20] introduced a G2 continuous local smoothing method for five-
axis tool paths based on a pair of double cubic NURBS curves.
Huang et al. [21] developed a real-time G2 continuous local
smoothing method for five-axis tool paths by replacing corners of
the tool position and tool orientation paths with cubic B-splines.
Zhao et al. [22] developed an analytical C2 continuous local
smoothing method for five-axis tool paths using an asymmetric cu-
bic B-spline and a pair of symmetric quartic spherical Bézier
splines. Huang et al. [23] developed a C2 continuous local smooth-
ing method for five-axis tool paths using high-order continuous
arithmetic with peak-constrained jerk. The transition splines devel-
oped in these studies [19-23] are either G2 or C2 continuous, en-
suring continuous acceleration but discontinuous jerk. As demon-
strated by Yuen et al. [24], discontinuous jerk can excite high-order
resonance frequencies in the mechanical system, resulting in in-
creased vibrations and tracking errors. In response to this, Tulsyan
et al. [25] developed an analytical C3 continuous local smoothing
method for five-axis tool paths by introducing quintic and septic mi-
cro-splines to smooth the tool tip and tool orientation paths, respec-
tively. Yang et al. [26] also developed an analytical C3 continuous
local smoothing method for five-axis tool paths using a specially
designed quintic micro-spline. Hu et al. [27] presented a real-time
C3 continuous local smoothing method for five-axis tool paths
based on C3 continuous PH splines. Since the tool orientations of
five-axis machines are influenced by only two rotary axes, the de-
viation error constraint and synchronization problem can be more
easily solved analytically. In contrast, the tool orientation of robotic
machining systems is influenced by all six rotary joints simultane-
ously, resulting in high-dimensional nonlinear orientation kinemat-
ics between the WCS and the robot's coordinate system. This sig-
nificantly complicates tool orientation smoothing and synchroniza-
tion compared to five-axis machine tools. More recently, Yang et al.
[28] developed an analytical C2 continuous an analytical tool path
smoothing algorithm for 6-DOF robots using 5th degree PH-spline.
In this method, the tool tip position and orientation are smoothed
within the WCS and synchronized by replacing the remaining linear
segments with specially constructed PH-splines.

In this study, an analytical C3 continuous tool path smoothing
method based on Catmull-Rom (CR) splines is developed for ro-
botic machining. First, the tool orientation, originally represented by
a rotation matrix, is transformed into three rotary angles to facilitate
smooth interpolation. Second, the tool tip position and orientation
are smoothed separately using the developed adjustable Catmull-
Rom (ACR) spline-based method, wherein deviation errors intro-
duced by local corner smoothing are constrained through control
points. Additionally, the deviation errors caused by ACR smoothing
are optimized using a simple yet efficient method. Third, the tool tip
position and orientation are synchronized with the tool tip displace-
ment while maintaining C3 continuity by replacing the remaining lin-
ear segments with ACR splines. Notably, the control points for this
process do not require additional computations, significantly reduc-
ing computational overhead. The remainder of this study is
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structured as follows: Section 2 presents the mathematical repre-
sentation of tool tip position and orientation. Section 3 introduces
the ACR spline-based corner smoothing method for tool tip position
and orientation, including a brief overview of ACR splines and the
deviation error optimization method. Section 4 details the synchro-
nization method for tool tip position and orientation. Numerical sim-
ulation results verifying the developed method are provided in Sec-
tion 5, followed by conclusions in Section 6.

2. REPRESENTATION OF TOOL TIP POSITION
AND ORIENTATION

For the robotic machining system as shown in Fig. 1, the trans-
fer matrix of tool frame related to workpiece frame can be repre-
sented by a homogeneous transformation matrix:

ro[f 0

whereRandpdenote the rotation matrix and translation offset vec-
tor, respectively.

Y,

Tool frame

Workpiece frame

Fig. 1. Transformation of tool frame related to workpiece frame in ro-
botic machining system

The tool tip position and orientation of industrial robot in the
WCS can be determined by:

1 T2 T3
21 T22 7'23]
31 T3z T33

The tool tip position of the industrial robot can be smoothed di-
rectly in the displacement space of [x, y, Z]T. However, to satisfy
the mathematical constraint of the unit orthogonal transformation of
tool orientation, the rotation matrix R should firstly be transformed
as three rotary angles [a, 8,y]" that rotated around the fixed
global coordinate system as shown in Fig. 2, and then the tool ori-
entation of the industrial robot can be smoothed in the rotation
space of [a, B, y1".

p=I[xyz]" R= (2)
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a) Rotation
around Z-axis

b) Rotation
around Y-axis

Fig. 2. Rotation around fixed global coordinate system

c) Rotation
around X-axis

R = R;(a)Ry(B)Rx(¥) =
Calp —Saly +CaSpSy  SaSy + CaSpCy

SaCs CoCy + 54555, —CuS, +5,54C, (3)
—Sp CpSy CpCy
where S, , S , S, ., Cy , Cp and C, de-
notesin a,sin ,siny,cos a,cos fandcos y, respectively. It is

not difficult to obtain the following relations by combining Eq. (2)
and Eq. (3):

o
k=3 . LT
a=0 if B= 2
y=atan2(ry,, 13,)
T
p==3 . o
a=0 if B= 2

]/=atan2(—7"12, Tzz)
f=atan2 (—r31, Jré + rzzl)

a=atan2 (rz—lrl—l)
Cp Cp

y=atan2 (Tﬂ T3—3)

Cﬁ’Cﬁ

if B#+t> (4)

The flowchart of the developed ACR-spline-based tool path
smoothing method for robotic machining system is shown in Fig. 3.
In the tool path smoothing process, the maximum deviation errors
of both tool tip position and orientation caused by local smoothing
should be constrained. Besides, the tool tip position and orientation
should be synchronized to the tool tip displacement with C3 conti-
nuity by replacing the remaining linear segments with ACR spline.

[ Input: discrete linear commands ]
T
s * R e * R
Adjustment parameters Tool orientation

optimization of ACR \transformatlon (section 2))

L spline (section 3.4) ) ( Adjustment parameters

i optimization of ACR
spline (section3.4) )

~

Tool tip position ) b
smoothing and deviation
error constraints
(section 3.2)

T

(Tool orientation smoothing)
and deviation error
) \__constraints (section 3.3) )
T

-

[ Orientation and position synchronization (section 4) ]

[ Output: smoothed tool path ]

Fig. 3. Flowchart of the proposed tool path smoothing method

792

3. ANALYTICAL C3 CONTINUOUS CORNER SMOOTHING
METHOD

In this section, a novel C3 continuous corner smoothing method
based on ACR spline is developed. The ACR spline used in this
method is derived from the quasi-CR spline function described in
[30]. The developed ACR-spline-based tool path smoothing method
not only achieves C3 continuity but also effectively controls devia-
tion errors while preventing cusps and self-intersections through
the optimization of two introduced adjustment parameters. Further-
more, the inserted splines and their control points are determined
analytically, and the control points of the splines used to replace the
remaining linear segments can be selected directly without requir-
ing additional computations, thereby enhancing computational effi-
ciency.

3.1. ACRspline

In this subsection, a mathematical operation of ACR spline is
described to realize not only C3 continuity of spline, but also control
the deviation error, avoid cusps and self-intersections.

For control points (x;,v;,2;), i = 0,1,..., n, the CR spline in
X € [x;,x;41]can be expressed as:

Ryi(x) = Xjo by (x;_;l) Yitj-1
3 X—Xji . (5)
R,i(x) = Xiob; (E) Ziyj-1 i=12,...,n-2

where Ax = x;,1 —x;,i =0,1,...,n — 1, b;(t)dencte three
basic functions related to the spline in this interval and will be de-
tailed in following.

It should be noted that the use of the symboal x in Eq. (5) does
not imply that the developed ACR spline construction relies on the
Cartesian x-coordinate. Here, x, y and z simply denote the three
components of a chosen orthogonal coordinate system, and the
formulation in Eq. (5) uses x only as a representative example for
clarity of exposition. In practice, the ACR spline is applied inde-
pendently to each scalar component of any orthogonal coordinate
representation, including Cartesian coordinates [x, v, z] (Section
3.2) or rotational parameters such as Euler angles [a, 8, y] (Sec-
tion 3.3). Therefore, the method is not restricted to the x-channel,
and the case x=0 does not constitute a degenerate situation: as
long as the remaining coordinates (e.g., y or z) are available, the
spline can be constructed and evaluated in exactly the same man-
ner. The same basis functions apply to every coordinate compo-
nent, and the choice of which component is illustrated is merely for
notational simplicity, not a structural dependency of the algorithm.

3.1.1. Basis functions of the ACR spline

To achieve C? continuity and adjustability of the constructed CR
spline, the order of its basis functions is set to seven, with two pa-
rameters infroduced to enhance flexibility. Additionally, these basis
functions must satisfy key properties, including unitary, symmetry,
and continuity. By formulating linear equations involving the coeffi-
cients of the basis functions, the required basis functions can be
derived by solving these equations, yielding the following results:
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by (t) = ly(t) + Amy(t)
b, (t) =kl (t) + Amy (t) + n,(t)
by () = —kly(£) + Am, (8) + (1 — n, (1)) (6)
by(t) = —kly (t) — A(my (t) + my (£) + my(¢))

where t € [0,1], k, A € Rare introduced adjustment parameters
and:

lo(t) = —t + 20t* — 45t5 + 36t° — 10t”
I, (t) = 15¢* — 39t5 + 34t° — 10t7
my(t) = t? — 10t* + 20t5 — 15¢° + 4t7
m,(t) = —2t% + 25t* — 54¢5 + 43t° — 12t7
m,(t) = t? — 20t* + 48t5 — 41t° + 12t
n,(t) =1 — 35t* + 84t> — 70t° + 20t’

It is notdifficult torobtain from Eq. (6): X.>_, b;(¢t) = 1and
b;(1 —t) = bs_;(t), which verifies the unitary and symmetry of
the constructed basis functions, respectively; besides, the following
relationship can be obtained, which is of great importance to verify
the interpolate property and continuity of the ACR spline:
by(0) = 0,b,(0) =1,b,(0) =0,b5(0) =0 ®)
by(1) = 0,b;(1) = 0,b,(1) = 1,b3(1) =0
bo(0) = —k,b1(0) = 1,b,(0) = K, b3(0) = 0 )
bo(0) = 21,b,(0) = —4A,b,(0) = 24,b5(0) =0
bo(1) = 0,b; (1) = 24,b5(1) = —4,b;(1) = 21
by (0) = 0,b,(0) = 0,b,(0) = 0,b;(0) =0
b (1) =0,b;(1) = 0,b, (1) = 0,b5(1) =0

(10)

(11)

3.1.2. Properties of ACR spline

Interpolate property: Let the original control-point sequence be
(X0, Y0,20) + (X, ¥n,2,) - If two auxiliary control points
(x_1,¥-1,2_1) and (Xp11, Yn+1,Zn+1) are appendedto Eq. (5),
then synthesizing Eq. (5) and Eq. (8) yields the interpolation prop-
erty at the endpoints:

R, (x) =y;
Ry (Xi41) = Vi1

’ 12
R,i(x;) = z (12)

Rz,i(xi+1) =Ziy1 i=12,...,.n—1

which means that ACR splines always interpolates these given con-
trol points.
Continuity: It can be derived by combining Eq. (5) with Egs. (9)-

(11):
R;/,i(xi+1) = ﬁ YVies = Yie) = R;/,i+1(xi+1)
R;,i(xi+1) = ﬁ (Ziys = Zip1) = R;,i+1(xi+1)

" 22 "
Ry,i(xi+1) = (Vitr = 2Vis2 + Viga) = Ry,i+1(xi+1)

" 22 "
Rz,i(xi+1) = (Zis1 = 2Zj4p + Zi43) = Rz,i+1(xi+1)
R;,.i(xi+1) =0= R;,i+1(xi+1)

R;:i(xi+1) =0= R;:i+1(xi+1)

(13)
which means that ACR spline always satisfies C3 continuity.
Adjustability: Since the basis function shown in Eg. (6) contains

two parametersicand A, the shape of the ACR spline can be
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adjusted by changing the values ofricandAwhile all related control
points remain unchanged.

Local property: As can be seen from Eq. (5), each ACR spline
function R;(x) is only affected by four control points
(i1, Yirjr Zivj), Wherej = 0,1,2,3. Therefore, when the adjust-

ment parameterskcandAare selected, the change of the one control
point will affect the shape of four segments ACR spline related to it.

Avoidance of cusps and self-intersections: The ACR construc-
tion employed in this work incorporates analytical design choices
that intrinsically avoid cusps and self-intersections without requiring
additional iterative procedures. Specifically, the control points used
to anchor an inserted ACR spline at a corner are placed on the in-
cident linear segments and arranged symmetrically with respect to
the corner bisector; the explicit control-point construction is given in
Eq. (14). This symmetric placement ensures geometric balance of
the control polygon and prevents abrupt sign changes of the tan-
gent direction at the corner, which is a principal cause of cusps.

In addition, the portion of each linear segment reserved for
spline insertion is strictly bounded by the segment-span constraints
stated in the paper: the inserted spline occupies no more than one
third of a shared linear segment (see Egs. (16)—<(17)). These ana-
lytic length bounds limit excessive local bending on short segments
and therefore reduce the geometric conditions that can lead to self-
intersection.

Finally, the two adjustment parameters k and A that define the
ACR basis functions control local convexity and curvature concen-
tration. In the present method « and A are chosen by the optimiza-
tion routine described in Section 3.4 so that the ACR shape mini-
mizes the prescribed deviation metrics while remaining within pre-
scribed parameter bounds; this constrained parameter selection
further prevents curvature concentrations that could induce cusps
or self-intersections. The combination of (i) analytic, symmetric con-
trol-point placement (Eq. (14)), (ii) explicit segment-span limits
(Egs. (16)—(17)), and (iii) constrained /A adjustment via the optimi-
zation described in Section 3.4 is the basis upon which the manu-
script guarantees the absence of cusps and self-intersections for
the constructed ACR corner splines.

3.1.3. Advantages of Using the Catmull-Rom Spline
for Corner Smoothing

The CR spline is adopted in this study mainly because it pro-
vides several properties that are particularly suitable for local corner
smoothing in tool-path planning. In addition, the ACR formulation
used here—obtained by introducing two shape parame-
tersicandAinto the basis functions—retains the classic CR ad-
vantages while adding useful degrees of freedom for practical tool-
path control.

— Interpolation of data points. The CR splines are interpolatory
and the curve passes through its control points. This property
ensures that discrete tool tip positions and orientations at
commanded tool tip points and tool orientations are pre-
served and that smoothing does not shift the programmed
trajectory. Compared with B-splines/NURBS, this avoids
solving global interpolation systems and simplifies local cor-
ner treatment.

—  Locality and analytically assignable control points. The CR
splines have strictly local support: manipulation of a single
control point affects only neighboring spline pieces. This lo-
cality enables analytical assignment and local adjustment of
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control points at each corner without affecting distant portions

of the path. The ACR retains this local property, sorcandAcan
be tuned locally to alter curvature and convexity only in the
intended corner region.

— Adjustable shape for cusp/self-intersection avoidance. The
two parameters in ACR directly control higher-order basis co-
efficients and therefore the local curvature and inflection be-
havior of the inserted micro-spline. This extra tunability per-
mits analytic enforcement of convexity constraints and reduc-
tion of local curvature peaks, which helps to avoid cusps and
self-intersections without resorting to global re-fitting. In our
algorithm these parameters are chosen (analytically or via the
local optimization in Section 3.4) to minimize deviation error
while satisfying curvature/clearance constraints.

— High-order smoothness with analytic control. Although a
standard CR produces C' continuity by construction, the ACR
basis (7th-order with parameterization) enables analytic con-
trol of derivatives up to third order at junctions when control
points are assigned according to the scheme in Section 3.2
3.4. Achieving equivalent C? behavior with Bézier, Hermite or
PH splines typically requires higher-degree polynomial
pieces or constrained optimizations; ACR provides a compact
analytic alternative that is straightforward to enforce locally.

— Parameterization flexibility and numerical stability. The ACR
supports different parameterizations (e.g. chordal/ centripe-
tal) which reduce oscillations and the risk of unwanted loops
that may appear with uniform parameterization. The combi-

nation of centripetal parameterization and local (x,A) tuning
enhances numerical robustness in corner regions.

— Computational efficiency and practical deployment. The ACR
admits explicit analytic expressions for positions and deriva-
tives and—importantly—permits closed-form selection rules
for many control points. This reduces computational burden
compared to optimization-heavy methods (e.g. global
NURBS fitting or constrained quintic blends), making the
method more suitable for near-real-time tool-path prepro-
cessing on CNC/robotic controllers. For segments where
computation cost must be minimized, the adjustment param-
eters can be set to nominal values and only problematic cor-
ners are tuned.

— Compatibility with arc-length reparameterization and
feedrate/jerk control. Because analytic derivatives are availa-
ble, ACR integrates readily with arc-length reparameteriza-
tion and feedrate scheduling procedures to enforce curvature
and jerk limits—facilitating construction of C3 continuous tra-
jectories that are synchronized in both position and orienta-
tion.

In summary, the ACR spline combines the interpolatory accu-
racy and local control of classical CR splines with additional, ana-
Iytically tunable shape parameters that improve robustness (anti-
self-intersection), enable local curvature shaping, and retain com-
putational simplicity—features that together make ACR particularly
well suited for corner smoothing in robotic machining.
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3.2. Tool tip position corner smoothing method

In this subsection, the tool-tip position corner
2P;_, P,P;,,shown in Fig. 4 is chosen as an example to illustrate
the developed tool tip smoothing method, where P;_;, P;and
P; . ;are three end points of the adjacent linear segments. The ACR
spline described in Section 3.1 is utilized to smooth the tool-tip po-
sition at this transition corner under the positional error tolerance

&p. Here &,is defined in the Cartesian coordinate system and has
units of length.

oPii
Linear segme%Qlo
Q

z
Y
Iy R
X S~ e €
S~ / L
Spline segment Y L/
Linear segmegnt %
My . Q. | NSRS

P, Q Q Q, Q; Ry P, T,

Fig. 4. Corner smoothing of tool tip position

In order to ensure the tangential continuity of the constructed
ACR spline and the original line segment, considering the continuity
and local property of the constructed CR spline, the control points

Qo — Q3and Q; — Qy
are located on the linear segments

P,_,P,and P,P,,,, respectively.

Besides, to realize the geometric symmetry of the inserted ACR
splines with respect to the bisector of the angle formed by adjacent
position segments, and to avoid cusps and self-intersections at the
same time, the following control points are constructed:

Qs=P;+T,,L,

_p _ 2Tpolp

QS B Pl sin(%’)
2Ty L

Q;,=P; + np(lngp)

1 Qg = 1.5Q, — 0.5P; (14)
Ql - 203 PL
Qy=2Q;,—P;

Q].O = Z.SQ7 - 1'5Pl.
Q4=0.9Rp1+0.1Rp2
Q6=0'1Rp1+0'9Rp2
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where
_ PP,
PO P=aPy|
_ PPy
P PPl
_ (Tp1-Tpo)
P [ Tpa=Tpol|

T

p1 ™ 3 3
TpqlL
P+ ple:
Q, sin(T>
sz = 3 + 2 3
L,<¢g,

where 8, =arccos(T o Ty ).

Since each linear segment is shared by two corners (except of
the first and the last linear segments), therefore, one third of the
segment is retained to adjust the synchronization of the tool tip po-
sition and tool orientation, that is, the linear segment used to con-
struct ACR spline should be less than one third of the total length
of the segment:

PPl 1PL||

looP. <

1P,y <l

Substituting Eq. (14) into Eq. (16) and combining with the error
tolerance constraint opr < &p, the final constraints oprcan be
obtained as:

0p op
P._.P, P.P,
A= e R

12| Tpo| 12[[Tpa|

= (16)

3.3. Tool orientation corner smoothing method

In this subsection, the tool orientation corner
2Y;_¥;¥,,showninFig. 5is chosen as an example to illustrate
the developed tool orientation smoothing method, where ¥;_,,
¥,and ¥, ,are three end point orientations of the adjacent linear
segments (expressed in the chosen Euler-angle convention). The
ACR spline described in Section 3.1 is utilized to smooth the tool
orientation at this transition corner under the orientation error toler-
ance&, . Hereg,,is an angular tolerance defined on the Euler-angle
coordinates and has units of radians.

Ly

Linear segment »@;

W:J Cpo D, Dy Dy Ro] v

Fig. 5. Corner smoothing of tool orientation
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Similar to the method of determining control points of tool tip
spline described in last subsection, the control points of the tool
orientation ACR spline can be determined by following equations:

&S =V, +T,,L,

2TooLo
P =¥ G®
2To1Lo
b, =V, + in(ez")

@, = 1.50, — 0.5,
{ &g =150, — 0.5,
D, =20, - P,
D, =20, — ¥,
@, =250, — 159,
@, =250, — 1.5,
@,=0.9R,,+0.1R,,
@,=0.1R,,+0.9R,,

(18)

where
— Yia¥
00 [T S|
_
ol [E
_ (To1-Too)
oM T |ITo1—Tooll
{ (,,,i_llo;_o> (19)
@3 sin(TO)
R, = 3 +2 3
[reset)
@, Sin(70>
R,, = 3 +2 3
L,<¢

where 6,=arccos(T,,T,,).
Besides, one third of the segment should be retained to adjust
the synchronization of the tool tip position and tool orientation:;

@, < E4 -1'I’l||
77 <
(20)

Substituting Eq. (18) into Eq. (20) and combining with the error
tolerance constraint of, the constraints ofL , can be obtained as:

L, = min <€ |#.- 1'1’1”5171( ) ||‘I’z‘1’l+1||sm( ))

12[IToll 7 12Tl
(21)
It must be noted thate,,in Eq. (21) denotes an angular tolerance
in the Euler-angle parameterization (units: radians), whereas posi-
tional tolerance ing, Section 3.2 is defined in the Cartesian coordi-

nate (units: length) system. In practical application, the tool orien-
tation error should be constrained in WCS, as shown in Fig. 6, while

the error tolerance parameter &, utilized in Eq. (21) is constrained
in the Cartesian coordinate system. Therefore, the relationship be-

tweeng,and the tool orientation errorg,,,,,in the WCS should be
established.
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Fig. 6. Tool orientation error in the WCS

The tool orientation 0,, = [0;, 0}, 0, Jin the WCS can be ex-
pressed as:

0,=R-1,
(22)

where the tool orientation matrix R has been obtained in Eq. (3),
1, denotes the tool orientation vector related to the tool coordinate
system and assumed that the tool center line is coincided with the
z direction of the tool coordinate system, ie. 7,, = [0,0,1]".
Hence, the following relationship can be obtained:

0; = S4S, + CuSsC,
0; = —CoS, + SaS5C, (23)
0, = C4C,

The deviation of the tool orientation vector induced by the local
smoothing in the WCS, as shown in Fig. 6, should satisfy the fol-
lowing relationship:

40 < 2sin () (24)

The approximate relationship between the deviation of tool ori-
entation vector and rotary angles can be expressed as:

40 = ] ¢, (25)

which represents the first-order Taylor linearization of the orienta-
tion mapping, where higher-order terms have been omitted. More
precisely, one may write 40 = J,¢&, + r(&,) with [[r(g,)l =
O(llg, l1?). The relations that follow should therefore be inter-
preted as approximate bounds under the small-angle/small-devia-
tion assumption. J ,is the Jacobian matrix of the tool orientation and
can be expressed as the following form by combining Eq. (23) and
Eq. (25):

a0; a0; 20;

o« op oy

60]' 00]' 30]'
Jo=l% o |

90k 30k 90k

da ap ay

CaSy = SaS5C,  CaCsC,  SuCy — CuS5S,

SaSy +CaSgC,  SaCsC, —CoCy— SuSpS, (26)
0 —S4C, —C;S,

Since the tool orientation error A0 is defined as the minimum
deviation between the original tool orientation vector and the con-
structed spline, it can be obtained that:

40 < IJ,(¥; — @) + 0l 11?) (27)
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Substitute Eq. (18) and Eq. (24) into the above equation:

e < Zsin(goTw)

0 WoTomll

Under small-angle assumption, higher-order terms are negligi-

ble, and substitute Eq. (28) into Eq. (21), the final constraints
ofL ,can be obtained as:

_(2sin(22%) &, sin(L2) @@ sin(2R)
LO =m ) )
WoToml 12T oo 12/[To4

+0(lleI?) (28)

(29)
3.4. Constraint of the tool tip and tool orientation error

Smoothing the tool tip position and orientation at transition cor-
ner by using the developed ACR spline will not only result in

smoothing error €, and €,, but also the deviation between the
spline segment and the linear segment e,, and e,due to the local

property of the ACR spline (e.g. the spline between control points
Q, and Q4 is affected by Q,), as shown in Fig. 7. Therefore, it is

necessary to control the deviation error e, and e,, by adjusting
the shape of spling, and an analytical optimization method is devel-
oped to minimizee,ande,,by optimizing the adjustment parame-
ters K and A in this subsection.

aPis;
Linear scgmcm\-.Qm
Q

=P; ¢

£ 66 ‘,Q,Z\i?/i :
/

N
a) corner smoofﬁfng of tool tip  b) corner smooiﬁing of tool
position orientation

Fig. 7. The deviation between spline segment and linear segment

Taking the spline segment and linear segment between control
points Q, = (x,,¥,,2,) and Q5 = (x3,v3,23)as an example,
the error between the spline segment and the original linear seg-
ment can be defined as:

ey, 1) = 22 (Rya(0) = y(0) + (R0 — 20))
(30

where R, , (x)andR, , (x)are ACR spline functions in the inter-
val x € [x,,x3] with control points Q, , Q, , @; and Q,,
y(x) and z(x) are the functions of linear segment be-
tween Q, and Q5, can be expressed as:

(y3—y2)(x—x3)

y&) =y, + =
( ) _ + (z3—23) (x—x3) (31)
z) =z + =

The ACR spline functions R, ,(x) and R,,(x) in the
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intervalx € [x,,x;]can be rewritten as the following form by sub-
stituting Eq. (6) into Eq. (5):

{Ryyz (x) = Ay, (0)Kk + By ,(x)A + C, ,(x)

RZ,Z (X) = AZ,Z (x)K + Bz,2 (X)l + CZ,Z (x) (32)
where

Ay,z(X) =1L,y +L®Oy, = L({®)y; — L),
[By,z x) = mo(t))/1 + ml(ﬂ}’z + mz(t)}’3 - (mo(t) + m1(t) + mz(t))y4
Cya(x) = m Oy, + (1 =m0y

Az,z(X) =10z, + L, (D2, — ()23 — [, (D)2,

Bz,z(x) = mo(t)Zl + ml(t)ZZ + mz(t)Z3 - (mo(t) + m1(t) + mz(t))z4
Crp(x) =y (t)z, + (1 - nl(t))Z3

(33)
where t = M, The following optimization model can be de-
(x3—x2)

rived by substituting Eq. (32) into Eq. (30):

{min e,(, 1) = D1k? 4+ D, A% + D3kA + Dyk + DsA + Dy
s.t. K,AER

(34)
where

D, = fxx; ((Ay,z(x))2 + (Azlz(x))z) dx
D, = [2((By2 @) + (B.x®) ) ax
Ds = [*(Ay2By + Az 2By 2)dx
Dy = [ (A2 (65200 = ¥ () + 4,500 (€20 = 2) ) dx
D5 = [ (By2(0) (€200 = () + B,2(0) (Ca(0) = 2(0)) ) dx
2 2
Do = [2((€5200 — y00) + (2200 — @) ) ax

(35)
Itis not difficult to obtain that e, (x, 1) = 0, thus the minimum
of e, (x, A)can be solved by:

aepa(:,l) -0
aep(x,l) -0 (36)
A

By combining with Eq. (34):

{le + D3/‘l = _D4

D3K + Dz/‘l = _DS (37)

The adjustment parameters k and A corresponding to the min-
imum deviation error e,, can be obtained by solving Eq. (37).

4. SYNCHRONIZATION OF THE TOOL ORIENTATION AND
TOOL TIP POSITION

In order to guarantee the C3 continuity of the smoothed tool
path and joints of robot, the varying rate of the tool orientation
should be synchronized with the speed of the tool tip displacement.
The developed ACR spline is utilized to replace the remaining po-
sition and orientation linear segments after smoothing, as shown in
Fig. 8, where Q;,0Q;,;,Q,; and Q3 are control points of the
smoothed position curves of the ith  corner,
Q7-1,Qgi-1,Qo;—1 and Qo;_, are control points of the
smoothed position curves of the (i — 1)thcorner, the linear seg-
ment between Qy4;_,and Q,; is the remaining position linear

acta mechanica et automatica, vol.19 no.4 (2025)

segment between two corners. Similarly, @,;, @,;, @,;and
&5 ; are control points of the smoothed orientation curves of
theithcorner, @, ;_;,®g;_1, Pg;_qand @4, ;_;are control points
of the smoothed orientation curves of the (i — 1)thcorner, the lin-
ear segment between @, ;_,and @, ;is the remaining orientation
line between two corners.

Curve segment~_

Linear segment Us Qi
U o Qui

segment

&%
. Vog \ Linear
<V

Curve segment U
U segment

i Qs
Uy Qi
Qsit

Q"l"
Fig. 8. Synchronization of the tool tip position and orientation

Due to local property of ACR spline, the curve between control
points Q4 ; and @, ;is just affected by Q ;,Q¢:,Q1,:,Q2; and Qs ;,
which are all located on the original linear segment, thus, this curve
is exactly coincident with the original linear segment. Similarly, the
curves between control points Qg;_;and Qq;_;,®P4 ;and @, ;,
dg;_,and &g ;_,are all coincident with the original linear segment.
Therefore, C3 continuity between the remaining position (orienta-
tion) linear segments and the smoothed curve segment can be re-
alized if the control points of the remaining segment are located on
the original linear segment.

In this study, the developed ACR splines are utilized to replace
the remaining position and orientation linear segments. For the
sake of simplicity, the control points Qg;_1,Q9;—1,Q10,-1, Q.

Qo,1,Q,, Q4 ,;and Q, ; of the two adjacent curve segments are con-

sidered as the control points of the remaining position linear seg-
ments, and rewritten as U,,U;, U, U;,U, and Ug, as shown in

Figure 8.

Similarly, the control points @g; 1, Pg;—1,P19;-1, Po,i,P1
and @, ; of the two adjacent curve segments are considered as the
control points of the remaining orientation linear segments, and re-
written as V;,,V,, V, V3,V and V.

In addition to the abovementioned constraints, to satisfy the C?
continuous synchronization of the tool orientation with respect to
the tool tip position, as shown in Figure 8, the first, second and third
order differentials of the tool orientation R () relative to the tool tip
displacementsshould be equal at the intersection of the junction
between the curve segment and the linear segment.

At the junction point V;shown in Fig. 8, on the curve side, dif-
ferentials of the tool orientation with respect to the tool tip displace-

ment are:
OR;_1(a) _ (9Ri_1(a) 0
ds _ - da ds) _
aA=ag,i—1 a=Qgj-1
92R;_1 () _ %R;_1(a) (60{)2 OR;_,(a) 0%a
ds? _ - da? as da  0s?)
a=ag i1 a=agi-1
O*Ris (@) _(PRia@ (6_a)3 O*Ria(@a0’a  ORiy(a) 0%
ds3 _ dad ds da?  9s ds? da  0s3) _
A=0Ao,ji—1 a=ag,i-1
(37)

On the linear side, differentials of the tool orientation with re-
spect to the tool tip displacement are:
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am_1<a>| AR (@) )
s a=ag i1

a=agi_1 ( da ds

32R;_1(a) _(Bzﬁi_l(a)(ﬁa)z Bﬁi_l(a)i)za)
9s? a=ag;_q da? ds da  0s? a=agi_y

as3 dad s da?  0s 0s? da  0s3

3Ry () _ (337?{-1(01)

(38)

Since the control points related to the ACR spline between con-

trol points @g;_;and @y ;_,,V;and V,are all located on the origi-

nal linear segment. Therefore, in order to realize the synchronous

control of the tool tip position and tool orientation related the tool tip

displacement, it is necessary to insert four additional control points

Uq,Uyand Vg, V-, as shown in Fig. 8, and the following formulas
must be satisfied:

||U0U1|| = ||U1U2|| = ||U2U6”

||U5U4|| = ||U4U3|| = ||U3U7”

||V0V1|| = ||V1V2|| = ||V2V6”

[Vsvall = Vvl = [Vav| (39)

The specific derivation steps of Eq (13) are detailed in Appendix
A, and then the following equations can be obtained:

0Ri_1(a)| _ 61~2i_1(a)|
ds aA=ag,i—1 ds aA=ag,i-1
9%Ri_4(a) _ %R (@ -0

ds2 e ds2 e (40)

a=dg j—1 a=dg j—1
03Ri_1(a) _ 03I~2i_1(a) _ 0
3 - 3 -
ds aA=ag,i—1 ds aA=ag,i—1

For computational efficiency we adopt the nominal choicex =
A = Owhen constructing the ACR basis for the remaining linear
segments; this nominal choice reduces the basis to the standard
CR form while retaining analytic expressions for positions and de-
rivatives. Importantly, choosing k = 1 = 0does not cause a van-
ishing first derivative or a parametric singularity under normal (non-
degenerate) geometric conditions: because the remaining linear
segments have non-zero span and the control points used for the
remaining-segment construction are distinct points lying on the
original linear segment (see Figure 8 and Eq. (39)—(40)), the chord
lengths are positive and the resulting CR basis yields non-zero local
derivatives. In other words, derivative values on these remaining
segments are determined by the control-point geometry (not
byk,Aalone), and therefore C'~C3 matching conditions remain en-
forceable whenk = 4 = 0.

The implementation includes a simple detection-and-fallback
step to handle the geometric degenerate cases that can produce
near-zero parametric derivatives (for example, coincident control
points or zero-length linear segments). Before finalizing the remain-
ing-segment construction the algorithm computes the magnitude of
the first derivative on the remaining segment. If||R'(s)|| <t
(withta small numerical threshold), one of two light-weight reme-
dies is applied: (i) restore small nominal shape perturbation by set-
tiNGK = Kgps OFA = Agps With ke, Aeps € [1076,1073]; or (i)
apply a tiny geometric perturbation to the remaining-segment con-
trol points (move them along the segment by a distanced << Ep)-
Either remedy restores a non-zero derivative while preserving de-
viation bounds. This fallback is algorithmic (post-construction) and
does not change the analytical derivations; it only activates in
pathological geometric cases (coincident points or zero-length
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+
Ba)3 43 92R;_4(a) da 0%a am_l(a)a%)
a=0gj—1

segments) which are easily detected at runtime.
5. NUMERICAL SIMULATION

In this section, the developed ACR-spline-based C3 continuous
tool path smoothing method for robotic machining is validated
through numerical simulation. The test tool path used in the
simulation is depicted in Fig. 9, consisting of four linear segments
and three corner transitions, with the corresponding parameters
listed in Tab. 1. The deviation error tolerances for the tool tip
position and orientation are set as &, =0.8mm and &, =
0.01rad, respectively. The resulting smoothed tool tip position and
tool orientation are illustrated in Fig. 10.

250 I

240

/

Z (mm)

w

230

220

250

240
230 270
= 260
220 -~
250

210 240
Y, (mm) 200 230 X (mm)

Fig. 9. The testing tool path utilized in numerical simulation

Tab. 1. Parameters of the testing tool path

No. of Nto. Tf TO(EI tip p05|;|on Tool orientation
00| xX,V,Z
comers | o th ( n?:n ) (a, B,y) (rad)
(0.6283, 0.5236,
1 (240, 200, 220) 0.3142)
1
(1.0472, 0.7854,
(230, 240, 250) 0.3927)
2
2 (270, 230, (0.3142, 0.1571,
252.2) 0.2094)
3
(0.6283, 0.7854,
; (250, 210, 242) 0.5236)
4 (235, 230, (0.3142, 0.3927,
246.8) 0.5236)

Z{mm)

280 o 1
260 0.4 08
0.6

240 2
Y(mm) 200 220 K Hrad) e )

a) Tool tip position b) Tool orientation
Fig. 10. The smoothed tool tip position and tool orientation
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The deviation errors of the tool tip position and orientation in the
WCS under the preset deviation error tolerances are presented in
Tab. 2. It can be observed that the maximum deviation errors for

both the tool tip position €,and orientationg,in the WCS do not
exceed the predefined tolerances. Furthermore, since the tool tip
position e, and orientation e, are controlled by the adjustment
parameters Kk , A , it can be concluded from Tab. 2
thate,,ande , remain sufficiently small to ensure minimal deviation
between the smoothed tool path and the original tool path. The
corresponding #,A are provided in parentheses.

Tab. 2. Deviation errors of the tool tip and tool orientation with error
tolerances &, = 0.8mm and &, = 0.01rad

No. of corners 1 2 3
&
Tool tip o) 0.8 0.8 0.8
Posiion | (mme) | 5:48586-06 | 23160606 | 3.9818e-05
error P 1 (0.48, - (0.51,-1.4e- | (0.47,5.3e-
) 5.4e-4) 4) 4)
Tool &, (rad) 0.01 0.01 0.01
orientation | ¢, (raqy | 22847e-M1 | 12184e-10 | 2.8408e-11
error o) (0.46, - (0.49, 7.26- (047, -
K 2.4e-3) 3) 3.0e-3)

To further assess the efficacy of the developed ACR-spline-
based tool path smoothing method under varying error tolerances,
the deviation error thresholds for the tool tip position and orientation
were reset to £, = 1.2mm and &, = 0.005rad, respectively.

As indicated in Tab. 3, the maximum deviation errors for both
the tool tip position £;,and orientation &, remain below the preset
tolerances. Moreover, e, and e, controlled by the adjustment

parameters «, A are still small enough to ensure that the deviation
between the smoothed tool path and the original tool path.

Tab. 3. Deviation errors of the tool tip and tool orientation with error
tolerancese;, = 1.2mm ande, = 0.005rad

No. of corners 1 2 3
& 12 12 12
Tooltp | (mm)
Position e
error (mrz3) 3’?2575'2)5 7.8179-06 1.3406e-04
0. e & | (051,-2.264) | (047,7.9e-4)
(k,A)
€o 0.005 0.005 0.005
Tool (rad)
OF'ZTEPO" 603 281112 | 5905611 3.52446-12
(rad?) (0'46'3'1 26| (049, 36e-3) | (047,-158:3)
(e, 2) )

In Section 4, it is deduced that the synchronization errors of the
tool orientation relative to the tool tip displacement at the junctions
between curve splines and linear splines are identically zero. To
verify this conclusion, the 1st-, 2nd- and 3rd-order synchronization
errors at these junctions are computed, as illustrated in Fig. 11 and
Fig. 12. For comparison, the synchronization errors of the
smoothed tool path obtained using the method described in [29] is
also evaluated on the same test tool path. The results clearly

acta mechanica et automatica, vol.19 no.4 (2025)

indicate that the synchronization errors of the tool path smoothed
by the developed ACR-spline-based method are zero at all
examined orders, whereas the method in [29] yields non-zero
errors. This outcome verifies the C3 continuous synchronization of
the tool orientation with respect to the tool tip displacement
achieved by the developed method.

o— ACR spline based method

The st order synchronization error  ——Referenced method

25 3 35 4 4.5 5
Serial nummber of junction points

Fig. 11. Synchronization errors of the tool orientation with respect to the
tool tip displacement with £, = 0.8mmand &, = 0.01rad

—e—ACR spline based method

The Ist order synchronization error | ——Referenced method

The 2nd order synchronization error

1.5 2 2.5 3 35 4 4.5 5 5.5 6

1.5 2 25 3 3.5 4 4.5 B! 5.5 6

Serial nummber of junction points

Fig. 12. Synchronization errors of the tool orientation with respect to the
tool tip displacement with &, = 1.2mm ande,, = 0.005 rad

Since the developed ACR-spline-based C3 continuous corner
smoothing method achieves 3rd-order continuity for both the tool
tip position and tool orientation, it mathematically guarantees
continuous jerk commands. To validate this performance, a C3
continuous cubic acceleration profile [31] is employed to interpolate
the smoothed tool path generated by the developed method under
the preset error tolerances for tool tip position and orientation. In
this interpolation, the nominal tangential feedrate, acceleration, and
jerk were set to 30 mm/s, 3000 mm/s?, and 30000 mm/s?,
respectively. Fig. 13 presents the resulting kinematic profiles—
namely, displacement, velocity, acceleration, and jerk-which are
smooth and continuous up to the jerk level, as expected.

—Tool tip position
Tool ori :

Displament

(mr

|
|

|
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|
|
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(rad)
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(mm/s)
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(rad/s

Vel

(rad/s”)

Accelerate

TS
)

Jerk

(mm/s’)

[} 0.5 1 L5 2 25 3 35 4 45
Time(s)

Fig. 13. Kinematic profile after interpolation
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Furthermore, Fig. 14 illustrates the kinematic profiles for each
joint, clearly demonstrating that the motion of every robot joint
maintains third-order continuity without any abrupt changes in jerk.
This observation further substantiates the effectiveness and
practical applicability of the developed tool path smoothing method.
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Fig. 14. Kinematic profiles of each joint of robot
6. CONCLUSIONS

Ensuring high-order smoothness and analytical continuity of
tool paths is essential for robotic machining systems to achieve
both computational efficiency and desirable dynamic behaviour. In
this paper we presented an analytical C*-continuous smoothing
method based on ACR splines. By inserting ACR segments at cor-
ners between discrete linear tool paths and computing their control
points analytically, the proposed approach avoids iterative con-
struction and delivers substantial computational savings. Local de-
viation introduced by corner smoothing is explicitly constrained
through the control-point geometry, while the residual approxima-
tion error from the ACR basis is minimized using a simple yet effec-
tive optimization. The resulting procedure enforces C® continuity by
synchronizing tool-tip orientation with tool-tip displacement and by
replacing the remaining linear segments with analytically deter-
mined ACR arcs. Numerical simulations demonstrate that the
method meets prescribed maximum-deviation tolerances, pre-
serves third-order synchronization between orientation and dis-
placement, and produces smooth jerk profiles in both workpiece
and joint spaces—properties that are important for high-precision
robotic machining.

We note that orientation-parameterization issues commonly
encountered in CAM/CNC workflows—most notably gimbal lock,
the non-uniqueness of Euler-angle representations, and disconti-
nuities introduced by angle wrapping—arise at the implementation
level within post-processing and controller-interface stages. The
present paper focuses on positional smoothing and feedrate plan-
ning within the CNC motion-planning layer; in our formulation, any
required orientation synchronization is expressed only as a con-
straint, while the machine-specific representation and final conver-
sion of orientations are assumed to be handled by the CAM post-
processor and/or the controller interface (i.e., the software modules
that consume the smoothed tool path and generate machine-ready
commands). To make this assumption explicit, Appendix B pro-
vides recommended implementation-level strategies—including
the use of singularity-free representations such as unit quaternions
or rotation matrices, SLERP interpolation, SO(3) exponential/log-
map updates, and safe conversion procedures to machine-specific
Euler conventions. These recommendations support robust
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integration of the proposed positional-smoothing method into prac-
tical CAM/CNC pipelines without altering the theoretical framework
or the numerical results presented in this work.

Future work will pursue several complementary directions. We
plan to incorporate real-time adaptive adjustments driven by pro-
cess dynamics and force feedback to further improve robustness
under varying cutting conditions. Experimental validation on an in-
dustrial robot platform will assess the method’s performance in real
machining tasks. We will also investigate automatic parameter tun-
ing—potentially leveraging machine-learning techniques—to in-
crease efficiency and generality across a wider range of workpieces
and machine systems. As part of these extensions, the orientation-
handling measures described in Appendix B will be integrated into
a complete post-processing pipeline and their impact on controller
tracking and overall process quality will be evaluated.

Appendix A. Derivation of the equal-chord-length
synchronization conditions

This section derives the synchronization conditions for the tool
position and orientation, ensuring both are smoothly synchronized
at the junctions of adjacent spline segments. The derivation utilizes
Eq. (13), which defines the C* continuity for the ACR spline, and is
expressed in a simplified format consistent with the notation in the
manuscript.

Step 1: Review of ACR Spline Properties

The ACR spline is used to smooth the tool path, and it has the
following properties:

Interpolation: The spline passes through the given control
points.

C? Continuity: The spline ensures that position, velocity, accel-
eration, and jerk (third derivative) are continuous at junctions.

Locality: Each spline segment is influenced by four control
points.

Adjustability: The shape of the spline can be controlled via two
parameters, which help in shaping the curvature to avoid cusps and
ensure smooth transitions.

Step 2: Review of Eq. (13) — C? Continuity

Eq. (13) guarantees C? continuity for the ACR spline, ensuring
that at the junction of two adjacent segments, the position, velocity,
acceleration, and jerk are continuous. Specifically, it ensures that
for any junctiont;, the following continuity conditions hold:

ak , d¥[R

@ t=t = contmuous,# t=t =
dt dt

continuous

which ensure that both the tool position p(t)and orientation
R (t)are smooth at the junctions, where k=0,1,2,3.

Step 3: Synchronization of Position and Orientation

To ensure synchronization between the tool position p(¢)and
tool orientation R(t), the derivatives of both the position and ori-
entation must match at the junctions. Specifically, we need to en-
sure that:

d*lp®)] _ a*[Rr(®)]

dtk dtk

which ensures that not only the position but also the velocity, accel-
eration, and jerk of the tool's position and orientation are synchro-
nized at each junction.

Step 4: Equal-Chord-Length Condition for Synchronization

To achieve synchronization, we need to ensure that the param-
eterization of the tool path is consistent across segments. The
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equal-chord-length condition ensures that the parameter intervals
between adjacent control points are equal, which helps maintain
the synchronization of the derivatives.

The equal-chord-length condition can be written as:

Aty = Aty = - = At,,

whereAt;is the parameter interval for each spline segment. This
condition guarantees uniformity in the parameterization, aiding in
the synchronization of both position and orientation.

Step 5: Control Points and Synchronization

Since the control points of the ACR spline between the adjacent
segments are located on the original linear segment, we can derive
that to synchronize the tool tip position and tool orientation, four
additional control points must be inserted. These control points, de-
noted U, U ,Vs,and V., ensure that both position and orientation
are synchronized at the junction, as shown in the figure.

The synchronization condition between position and orientation
is then expressed as:

||U0U1|| = ||U1U2|| = ||U2U6||
||U5U4|| = ||U4U3|| = ||U3U7||
||V0V1|| = ||V1V2|| = ||V2V6||
||V5V4|| = ||V4V3|| = ||V3V7||

This ensures that the control points for both the position and
orientation are distributed evenly across the spline segments,
providing synchronization between the two.

Thus, Eq. (39) ensures synchronization of both the tool position
and orientation, guaranteeing that the motion is continuous up to
the third derivative. By introducing the equal-chord-length condition
and the additional control points, we can achieve the necessary
synchronization for high-precision robotic machining.

Appendix B. Notes on orientation handling and recommended
CNC post-processing

Since the core contribution of this paper is a positional C?
smoothing algorithm and its deviation guarantees, the main text fo-
cuses on tool-centerline smoothing and feedrate planning. For
practitioners who integrate the proposed positional smoothing into
a CAM/CNC workflow, the following practical measures are recom-
mended to avoid orientation singularities in the post-processing
stage:

Use a singularity-free internal representation. Represent orien-
tations internally as unit quaternions (q € S*) or rotation matrices
(R € SO(3)). Do not perform interpolation or gradient-based opti-
mization directly on Euler angles.

Interpolation and composition. For interpolation between key
orientations use spherical linear interpolation (SLERP). For small
optimization increments, use the SO (3) exponential and logarithm
maps: represent local updates as 3-vector elements of SO(3) and
apply them by exponentiation to the current rotation.

Quaternion sign consistency. Because q and—q represent the
same physical rotation, enforce sign consistency before interpola-
tion or comparison: if dot(q,,q,) < Othen replace q,by—q,.
This guarantees interpolation along the shortest arc on S* and
avoids spurious 180° flips.

Optimization parameterization. When orientation increments
are required in optimization loops, use a minimal local parameteri-
zation SO (3)rotation vector via the log map) around the current
orientation rather than global Euler parameters. This avoids
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singular linearizations and improves convergence properties.

Final conversion and continuity enforcement. Convert quater-
nion/matrix results to the machine's required Euler convention only
at the final output stage. During conversion, perform angle unwrap-
ping and branch selection to maintain temporal continuity and to
minimize angular jumps. If a resulting Euler angle is close to a
known gimbal configuration (e.g., pitch = £90°), consider switching
to an alternate representation for that interval or slightly perturbing
the sampling to avoid controller singularity crossing.

Controller interface and verification. If the target NC controller
supports quaternion or matrix inputs, prefer those interfaces. Oth-
erwise, include a verification pass in the post-processor that checks
for excessive angular velocity or acceleration after conversion to
controller angles and adjusts the timeline or re-parameterizes ori-
entations if machine limits would be violated.

These measures are standard practice in robotics and ad-
vanced CAM implementations and can be implemented without
changing the ACR-based positional smoothing algorithm presented
in this study.
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