RESEARCH PAPER
A Study of the Preload Force in Metal-Elastomer Torsion Springs
 
More details
Hide details
1
Faculty of Mechanical Engineering and Robotics, Department of Machine Design and Technology, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
 
2
Faculty of Mechanical Engineering and Robotics, Department of Strength and Fatigue of Materials and Structures, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
 
 
Submission date: 2016-06-10
 
 
Acceptance date: 2016-12-02
 
 
Online publication date: 2016-12-28
 
 
Publication date: 2016-12-01
 
 
Acta Mechanica et Automatica 2016;10(4):300-305
 
KEYWORDS
ABSTRACT
Neidhart type suspension units composed of metal-elastomer torsion springs can be a good alternative to steel helical springs in applications such as vibration absorbers or vehicle suspension systems. Assembling this type of spring requires initial preload of the elastomeric working elements, which determines their operating properties. The results of experimental tests and numerical simulations concerning the preload of elastomeric working elements in Neidhart type suspension units are presented in the paper. The performed research made it possible to propose a new calculation model for determining the preload force value acting on the elastomeric cylindrical elements applied in this type of suspension unit. The results obtained using the proposed model exhibit good convergence with FEM simulation results within the range of the tested geometrical and material properties.
REFERENCES (23)
1.
Arruda E. M., Boyce M. C. (2000), Constitutive models of rubber elasticity: a review, Rubber Chemistry and Technology, 73(3), 504-523.
 
2.
Banić M. S., et al. (2012), Prediction of heat generation in rubber or rubber-metal springs, Thermal Science, 16, Suppl. 2, 527-539.
 
3.
Baranowski P., Bogusz P., Gotowicki P., Małachowski J. (2012), Assessment of mechanical properties of off-road vehicle tire: coupons testing and FE model development, Acta Mechnica et Automatica, 6(2), 17-22.
 
4.
Bower A. F. (2010), Applied mechanics of solids, CRC Press, Boca Raton.
 
5.
Chokanandsombat Y., Sirisinha C. (2013), MgO and ZnO as reinforcing fillers in cured polychloroprene rubber, Journal of Applied Polymer Science, 128(4), 2533-2540.
 
6.
Gent A. N., Suh J. B., Kelly S. G. (2007), Mechanics of rubber shear springs, International Journal of Non-Linear Mechanics, 42(4), 241 – 249.
 
7.
Hassan M. A., Abouel-Kasem A., Mahmoud A. El-Sharief, Yusof F. (2012), Evaluation of the material constants of nitrile butadiene rubbers (NBRs) with different carbon black loading (CB): FE-simulation and experimental, Polymer, 53(17), 3807-3814.
 
8.
ISO 7743 (2011), Rubber, vulcanized or thermoplastic – Determination of compression stress-strain properties.
 
9.
Kim B., Lee S. B., Lee J., Cho S., Park H., Yeom S., Park S. H. (2012), A comparison among Neo-Hookean model, Mooney-Rivlin model and Ogden model for chloroprene rubber, International Journal of Precision Engineering and Manufacturing, 13(5), 759-764.
 
10.
Lee B. S., Rivin E. I. (1996), Finite element analysis of load-deflection and creep characteristics of compressed rubber components for vibration control devices, ASME Journal of Mechanical Design, 118, 328-336.
 
11.
Lu Y.T., Zhu H. X., Richmond S., Middleton J. (2010), A visco-hyperelastic model for skeletal muscle tissue under high strain rates, Journal of Biomechanics, 43(13), 2629-2632.
 
12.
Luo R. K., Mortel W. J., Wu X. P. (2009), Fatigue failure investigation on anti-vibration springs, Engineering Failure Analysis, 16(5), 1366-1378.
 
13.
Mars W. V., Fatemi A. (2002), A literature survey on fatigue analysis approaches for rubber, International Journal of Fatigue, 24(9), 949-961.
 
14.
Mooney M. (1940), A theory of large elastic deformation, Journal of Applied Physics, 11(9), 582-592.
 
15.
Neidhart H. (1951), Elastic joints, US patent 2 712 742.
 
16.
Neidhart R. (1969), Special spring unit, Rubbers Handbook, Morgan-Grampian, London.
 
17.
Paluch M. (2006), Fundamentals of the Theory of Elasticity and Plasticity, Wydawnictwo Politechniki Krakowskiej, Kraków (in Polish).
 
18.
Rivin E. I. (2003), Passive vibration isolation, ASME Press, New York.
 
19.
Rivin E. I., Lee B. S. (1994), Experimental study of load-deflection and creep characteristics of compressed rubber components for vibration control devices, ASME Journal of Mechanical Design, 116, 539-549.
 
20.
Rivlin R. S. (1948), Large elastic deformations of isotropic materials. IV. Further developments of the general theory, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 241(835), 379-397.
 
21.
Samaca Martinez J.R., Le Cam J.-B., Balandraud X., Toussaint E., Caillard J. (2013), Filler effects on the thermomechanical response of stretched rubbers, Polymer Testing, 32(5), 835-841.
 
22.
Wodziński P. (2003), Application of elastic rubber suspensions in vibrating screens and feeders (in Polish), Inżynieria Mineralna, 3, 109-114.
 
eISSN:2300-5319
ISSN:1898-4088
Journals System - logo
Scroll to top