RESEARCH PAPER
Antiplane Deformation Of A Bimaterial Containing An Interfacial Crack With The Account Of Friction 2. Repeating And Cyclic Loading
 
More details
Hide details
1
Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45C,, 15-351 Bialystok, Poland
 
2
Ukrainian Academy of Printing, Pidgolosko Str. 19, 79020 L’viv, Ukraine
 
3
Lutsk National Technical University, Lvivska Str. 75, 43018 Lutsk, Ukraine
 
 
Submission date: 2015-03-03
 
 
Acceptance date: 2015-10-28
 
 
Online publication date: 2015-11-07
 
 
Publication date: 2015-09-01
 
 
Acta Mechanica et Automatica 2015;9(3):178-184
 
KEYWORDS
ABSTRACT
The paper presents the exact solution of the antiplane problem for an inhomogeneous bimaterial with the interface crack exposed to the normal load and cyclic loading by a concentrated force in the longitudinal direction. Using discontinuity function method the problem is reduced to the solution of singular integral equations for the displacement and stress discontinuities at the domains with sliding friction. The paper provides the analysis of the effect of friction and loading parameters on the size of these zones. Hysteretic behaviour of the stress and displacement discontinuities in these domains is observed.
REFERENCES (19)
1.
Bogdanovich P. N., Tkachuk D. V. (2009), Thermal and thermo-mechanical effects in sliding contact (in russian), Treniye i iznos, 30, No 3, 214-229.
 
2.
Bozhydarnyk V. V, Sulym H. (1999), Elements of the theory of plasticity and strength (in ukrainian), L'viv, Svit.
 
3.
Cherepanov G.P. (1966), On the development of cracks in compressed bodies (in russian), Prikladnaya matematika i mehanika, 30, No 1, 82–93.
 
4.
Comninou M. (1977), The interface crack, J. Appl. Mech., 44, 631–636.
 
5.
Datsyshyn O. P., Kadyra V. M. (2006), A fracture mechanics approach to prediction of pitting under fretting fatigue conditions, Int. J. of Fatigue, 28, No 4, 375–385.
 
6.
Evtushenko A. A., Kutsei M. (2010), Effect of pressure evolution during braking on temperature of a pad-disk tribosystem, J.Friction and Wear, 31(5), 317–325.
 
7.
Goryacheva I.G. (2001), Mechanics of frictional interaction (in russian), Moskva, Nauka.
 
8.
Goryacheva I. G., Rajeev P. T., Farris T. N. (2001), Wear in partial slip contact, J. Tribology, 123, 848–856.
 
9.
Hills D. A, Nowell D., Sackfield A. (1993), Mechanics of elastic contact, Butterworth-Heinemann, Oxford.
 
10.
Johnson K. L. (1985), Contact mechanics, Cambridge University press.
 
11.
Ostryk V. I., Ulitko A. F. (2006), Wiener-Hopf method to contact problems of theory of elasticity (in russian), Kiev, Naukova dumka.
 
12.
Panasyuk V. V. et al. (1976), Distribution tense neighborhood of cracks in the plates and shells (in russian), Kiev, Naukova dumka.
 
13.
Pasternak Ya. M., Sulym H. T., Piskozub L. G. (2010), Models of thin inclusion with the account of imperfect contact with the medium (in russian), Proc. of VI International symposium on Tribo-Fatigue MSTF 2010 in 2 parts, part 2., Minsk, BGU, 399–404.
 
14.
Piskozub J. Z., Sulim G. T. (2008), Thermoelastic equilibrium of piecewise homogeneous solids with thin inclusions, Journal of Engineering Mathematics, Special Issue Thermomechanics, 61, 315–337.
 
15.
Pyriev S. Yu. et al. (2012), Thermomechanical wear during quasi-stationary frictional heating (in russian), Treniye i iznos, 33, No 5, 435–443.
 
16.
Sosnovskiy L. A. (2005), Tribo-Fatigue. Wear-fatigue damage and its prediction (Foundations of engineering mechanics), Series: Foundations of Engineering Mechanics, Springer.
 
17.
Sulym H. T., Piskozub L. G., Piskozub Y. Z., Pasternak Ya. M. (2015), Antiplane deformation of a bimaterial containing an interfacial crack with the account of friction. I. Single loading, Acta Mechanica et Automatica, vol.9, No 2, 115-121.
 
18.
Sulym H. T. (2007), Fundamentals of the mathematical theory of thermoelastic equilibrium of deformable bodies with thin inclusions (in ukrainian), Lviv, Doslidno-vydavnychyy tsentr NTSh.
 
19.
Sulym H. T., Piskozub Y.Z. (2004), Conditions of contact interaction (review) (in ukrainian), Mat. metody i fiz.-meh. polya, 47, No 3, 110–125.
 
eISSN:2300-5319
ISSN:1898-4088
Journals System - logo
Scroll to top