INTRODUCTION

Nonlinear phenomena occur in various scientific domains, including applied mathematics, physics, and engineering. Nonlinear evolution equations (NLEEs) are being explored in multiple nonlinear areas, such as nonlinear optics, thermal conductivity, fluid mechanics, optical fiber, electromagnetism, quantum theory, and shallow water wave propagation [13]. The research on soliton wave solutions of NLEEs is drawing interest. Because the majority of physical systems are nonlinear, researchers have been encouraged to investigate whether exact solutions exist for NLPDEs, specifically nonlinear evolution equations, or evolution equations (EEs).

Numerous numerical and analytical approaches have been developed to address nonlinear partial differential equations. The researchers prefer analytical approaches over numerical methods because they provide an extensive understanding of physical processes and precise insights into system dynamics. However, analytically solving nonlinear partial differential equations (NLPDEs) can be challenging. For this purpose, in recent decades, much development has been done; many reliable and efficient techniques have been presented to achieve the exact NLEE solutions. Like the exp-function approach [4, 5], (G’/G)-expansion technique [6, 7], F-expansion approach [8, 9], modified extended tanh-function technique [10, 11], the Hirota bilinear technique [12, 13], the extended rational sin-cos and sinh-cosh methods [14], the generalized sine-gordon expansion approach [15], the modified Kudryashov technique [16], Variational Iteration Method [17], Improved (G’/G)-Expansion technique [18, 19], Riccati-Bernoulli Sub ODE approach [20] Generalized Exponential Rational Function approach [21] and so on. These methods have been effectively established and provided to find a precise solution for NLPDEs. Although these approaches have made great progress, but they often fail when used to more complex models, such as a family of 3-D WBBM equations, where more efficient and extended methodologies are needed.

This article uses an efficient and effective strategy to generate different types of periodic and solitary wave solutions for the three-dimensional WBBM equations. The three-dimensional WBBM equation can be stated as follows:

1.1
vx+v2vy+vtvxzt=0,
1.2
vy+v2vx+vtvxyt=0,
1.3
vz+v2vz+vtvxxt=0.

Wazwaz proposed the 3-D Wazwaz-Benjamin-Bona-Mahony (3-D WBBM) equation in 2017 [22]. The 3-D WBBM equation is the modified form of the famous KdV equation, which is used to study the stability and soliton-like properties of fluid waves in various scientific phenomena. The family of Wazwaz-Benjamin-Bona-Mahony (3-D WBBM) equations has attracted much attention because of their mathematical structure and practical applications. This equation is characterized by a scenario that addresses nonlinearity and dispersion, making it valuable for analyzing wave phenomena in a physical setting. In recent years, several successful techniques have been applied to study the WBBM model, such as the first integral method [23], the modified Exp-function approach [24], the Generalized rational exponential function approach for analytical solutions [25], Rational sine-Gordon expansion approach [26], the Sardar-Sub equation approach [27], the Improved Bernoulli Sub-Equation Function technique [28], the extended modified auxiliary equation mapping (EMAEM) approach [29], a new extended direct algebraic technique [30], the ϕ6 expansion approach and modified extended direct algebraic [31], the Khater methods [32], and the expanded tanh approach [33]. In addition to the existing analytical methods, the generalized Jacobi elliptic function expansion method, previously applied to various nonlinear PDEs and FPDEs [3442], has not yet been employed for the 3D WBBM model, offering potential for innovative exact solutions.

In this paper, we integrate the generalized Jacobi elliptic function expansion technique for studying the family of 3-D WBBM equations. The generalized JEFE method is more efficient and generalized than the existing methods for solving the 3-D WBBM equations. The generalized JEFE approach makes good use of Jacobi elliptic functions, allowing for a large number of solutions, such as Jacobian elliptic, trigonometric, and hyperbolic trigonometric functions type of solutions, which improves its application to diverse nonlinear wave equations. Furthermore, it is a noteworthy invention that constitutes notable progress. When solving nonlinear partial differential equations (PDEs), the generalized Jacobi elliptic function expansion technique has several advantages and disadvantages. Its ability to provide periodic and exact solutions is one of its primary features. In order to understand complicated nonlinear dynamics, this capacity is crucial. Equations exhibiting specific symmetries and invariants benefit greatly from this method, as it allows for a more thorough examination of the solutions. Its limited application, however, is one of its main drawbacks. The exact solutions demonstrated that our suggested WBBM equations are perfectly suitable for producing innovative traveling wave structures in a wide range of physical scenarios without any problems, in addition, the article contains details 2-D, contour, and 3-D graphical visualizations of the solutions to demonstrate how well the suggested method solves difficult nonlinear equations and to help readers better understand their physical features, to providing useful information for further research in mathematical physics and shallow water waves.

The following is the order of the work in this paper. Section 2 explains how to solve NLPDEs using generalized JEFE techniques. In Section 3, we describe how this approach can be used to solve the nonlinear 3-D WBBM system. This section is divided into three subsections, each of which presents Periodic wave solutions in terms of Jacobi elliptic function expansion, and solitary and shock wave solutions. Section 4 presents a graphical presentation and discussion. Section 5 presents the conclusion of the study.

 SUMMARY OF THE GENERALIZED JEFE APPROACH

Within this part of the article, we explain the details of the generalized JEFE approach. The following steps will be followed when conducting these types of studies:

  • Step A: Nonlinear partial differential equations (NPDEs) typically take the mathematical expression

    2.1
    N(v,vt,vx,vz,2uxx,2uxt,2uxz,2utt,)=0.

  • Step B: Reformulating Equation (2.1) and utilizing the chain rule, we consider:

    2.2
    v(x,y,z,t)=v(ψ),where ψ=px+qy+rzst

    where p,q,r, and represent constants. We can use equation (2.2) to convert the nonlinear PDEs (2.1) into ordinary differential equations.

2.3
N(v,vψ,2vψ2,)=0.

The primary objective of this extended indirect strategy is to maximize the possibility of addressing the derived ordinary differential equation, more especially the initial kind of Jacobian problem that involves three variables, such as m2, m1, and m0. The goal is to come up with a more comprehensive collection of Jacobi elliptic solutions for the problem that has been presented. It is possible to visually represent the auxiliary equation as follows:

2.4
(N)2(ψ)=m2N4(ψ)+m1N2(ψ)+m0,
where
N=dNdψ,ψ=ψ(x,y,z,t), and ,m2, m1, and m0
are constants.

The mathematical expressions for Jacobi elliptic functions are given by:

sn(ψ)=sn(ψ,k),cn(ψ)=cn(ψ,k),dn(ψ)=dn(ψ,k)

Here, the k is used to signify the modulus, and k ∈ (0,1).

The solutions of equation (2.4) are presented in Tab.1.

Tab. 1.

The following table summarizes all the potential solutions to equation (2.3) for the specific m2, m1, and m0 values that have been provided

NO.m2m1m0N
1k2–(1 + k2)1sn
2k2–(1 + k2)1cd
3k22k2 – 11 – k2cn
4–12 – k2k2 – 1dn
51–(1 + k2)k2ns
61–(1 + k2)k2dc
71 – k22k2 – 1k2nc
8k2 – 12 – k2–1nd
91 – k22 – k21sc
10k2(1 – k2)2k2 – 11sd
1112 – k21 – k2cs
1212k2 – 1-k2(1 – k2)ds
1314k2+12(1k2)24kcndn
14142k2+1214nscs
151k24k2+121k24ncsc
1614k222k44nsds
17k24k222k24scicn
18k24k222k24sn1k2sncn
19k24k222k24kcnidn
201412k2214sn1cn
21k24k22214sn1dn
22k214k2+12k214dn1ksn
231k24k2+12k2+14cn1sn
24(1k2)24k2+1214sndncn
25k44k22214cn1k2dn

As k → 0 and k → 1, Jacobi elliptic functions, as mentioned in Table. simplify into periodic, trigonometric, and hyperbolic functions. Consequently, soliton solutions and solutions involving trigonometric functions are obtained for the problem. Using the application of the generalized Jacobi elliptic function expansion generalized JEFE technique, v(ψ) is formulated as a finite series of Jacobi elliptic functions

2.5
v(ψ)=i=0naiNi(ψ),i=0,1,2,n.

Where N(ψ) provides the solution to the nonlinear ODE (2.4) with ai being constants that will be determined subsequently.

The integer n can be derived from equation (2.5) by considering the maximum order derivative component:

2.6
O(dαvdψα)=n+α,α=0,1,2,3,
and the nonlinear component with the highest power of the differential equation
2.7
O(vβdαvdψα)=(β+1)n+α,β=1,2,3,
in equation (2.3).

Using equation (2.5) and setting all the coefficients corresponding to powers of N equal to 0, we establish a series of nonlinear algebraic equations corresponding to the coefficient ai of equation (2.5) Utilising Maple, we resolve this system and substitute all the parameters for m2,m1 from equation (2.4) into Table 1. This approach integrates the value of equation (2.5) with the selected auxiliary equation, allowing for the derivation of accurate solutions for equation (2.1).

 MATHEMATICAL FORMULATION OF THE GENEERALIZED JEFE APPROACH

Analysis of the first WBBM equation

Let the first three-dimensional WBBM equation be expressed as:

3.1
tu+xu+yu3xzt3u=0,
where represents partial derivative. Utilizing the wave transformation:
3.2
v(x,y,z,t)=v(ψ),
where
ψ=px+qy+rzst,
and substituting into Eq. (3.2) we obtain:
3.3
(c+p)v+q(v3)+prcv=0.

Integrating Equation (3.3) w.r.t ψ yields:

3.4
(c+p)v+qv3+prcv+C=0.

Here, the C acts as the arbitrary constant arising from integration. For simplicity, setting C = 0, we have:

3.5
(c+p)v+qv3+prcv=0.

Considering the homogeneous balancing of the derivative component of maximum order v″ and the nonlinear component v3 in Eq. (3.5), it is clear that n = 1. Thus, the method suggests the following supplementary solution:

3.6
v(ψ)=b0+b1N(ψ).

Differentiating Eq. (3.6) with respect to ψ, we have:

3.7
v(ψ)=b1N(ψ).

Substituting this into the governing equation, we get:

3.8
v(ψ)=b1(m2N4(ψ)+m1N2(ψ)+m0)12v(ψ)=b1N(ψ)(2m2N2(ψ)+m1).

Substitute Eq. (3.8) and Eq. (3.7) into the equation

3.9
sb0sb1N(ψ)+pb0+pb1N(ψ)+qb03+3qb02b1N(ψ)+3qb0b12N(ψ)2+qb13N(ψ)3+prsb1N(ψ)m0+2prsb1N(ψ)m2=0.

By collecting various powers of Ni(ψ), a subsequent set of algebraic equations is derived:

3.10
sb0+pb0+qb03=0,
3.11
sb1+pb1+3qb02b1+prsb1m1=0,
3.12
3qb0b12=0,
3.13
qb13+2prsb1m2=0.

The system described above of algebraic equations is calculated through MAPLE, and we derive the roots of the coefficients involved in equation (3.6):

3.14
b0=0,
3.15
b1=±2rm2q+qprm1p,
3.16
S=p1prm1.

The following solutions for the 3-D WBBM equation can be obtained by inserting the corresponding values into Eq. (3.6):

3.17
v(x,y,z,t)=±2rm2q+qprm1pN(px+qy+rzp1prm1t).

Analytical periodic solutions in terms of Jacobi elliptic functions (JEF)

Using the data provided in Table 1 and Table 2 and combining the corresponding values as per Eq. (3.6), we may derive the Jacobi elliptic function solutions which are of a periodic nature for Eq. (1.1) as shown below.

3.18
v1,1(x,y,z,t)=±2k2r(pr(k2+1)+q)psn(px+qy+rzpt1+pr(k2+1)),
3.19
v1,2(x,y,z,t)=±2k2r(pr(k2+1)+q)pcd(px+qy+rzpt1+pr(k2+1)),
3.20
v1,3(x,y,z,t)=±2k2r(pr(2k21)+q)pcn(px+qy+rzptpr(2k21)+1),
3.21
v1,4(x,y,z,t)=±2r(pr(1k2)+q)pdn(px+qy+rzptpr(2k2)+1),
3.22
v1,5(x,y,z,t)=±2r(qpr(k2+1))pns(px+qy+rzpt1pr(k2+1)),
3.23
v1,6(x,y,z,t)=±2rq(pr(k2+1)+1)pdc(px+qy+rzptpr(k21)+1),
3.24
v1,7(x,y,z,t)=±2r(k21)q(pr(2k21)1)pnc(px+qy+rzptpr(2k21)+1),
3.25
v1,8(x,y,z,t)=±2r(k21)(prq(2k22)+q)pnd(px+qy+rzptpr(2k2)+1),
3.26
v1,9(x,y,z,t)=±2r(k21)(prq(k22)+q)psc(px+qy+rzptpr(2k2)+1),
3.27
v1,10(x,y,z,t)=±2k2r(k21)(prq(2k21)q)psd(px+qy+rzptpr(2k21)+1),
3.28
v1,11(x,y,z,t)=±2r(q(pr(k22)+1))pcs(px+qy+rzptpr(2k2)+1),
3.29
v1,12(x,y,z,t)=±2r(prq(2k21)q))pds(px+qy+rzptpr(2k21)+1),
3.30
v1,13(x,y,z,t)=±r(q(pr(k2+1)2))p[kcn(px+qy+rzptpr(k2+1)2+1)±dn(px+qy+rzptpr(k2+1)2+1)],
3.31
v1,14(x,y,z,t)=±r(q(pr(12k2)2))p[ns(px+qy+rzpt1pr(12k2)2)±cs(x+qy+rzpt1pr(12k2)2)p],
3.32
v1,15(x,y,z,t)=±r(k21)(q(pr(k2+1)2))·p[nc(px+qy+rzpt(1pr(k2+1)2))±sc(px+qy+rzpt(1pr(k2+1)2))],
3.33
v1,16(x,y,z,t)=±r(prq(k22)2q)p[ns(px+qy+rzpt(1pr(k22)2))±ds(px+qy+rzpt(1pr(k22)2))],
3.34
v1,17(x,y,z,t)=±k2r(q(pr(k22)2))p[sn(px+qy+rzpt(1pr(k22)2))±icn(px+qy+rzpt(1pr(k22)2))],
3.35
v1,18(x,y,z,t)=±k2r(q(pr(k22)2))psn(px+qy+rzpt(1pr(k22)2))(1k2)±cn(px+qy+rzpt(1pr(k22)2)),
3.36
v1,19(x,y,z,t)=±k2r(pqr(2k22)+2q)p[kcn(px+qy+rzpt(1pr(12k2)2))±idn(px+qy+rzpt(1pr(12k2)2))],
3.37
v1,20(x,y,z,t)=±r(prq(12k2)+2q)psn(px+qy+rzpt(1pr(12k2)2))1±cn(px+qy+rzpt(1pr(12k2)2)),
3.38
v1,21(x,y,z,t)=±k2r(pqr(k22)2q)psn(px+qy+rzpt(1pr(k22)2))(1k2)±dn(px+qy+rzpt(1pr(k22)2)),
3.39
v1,22(x,y,z,t)=±r(k21)q(pr(k2+1)2)pdn(px+qy+rzpt(1pr(k2+1)2))1±ksn(px+qy+rzpt(1pr(k2+1)2)),
3.40
v1,23(x,y,z,t)=±(rk2r)(pqr(k2+1)2q)pcn(px+qy+rzpt(1pr(k2+1)2))1±sn(px+qy+rzpt(1pr(k2+1)2)),
3.41
v1,24(x,y,z,t)=±r(k21)2(pqr(k2+1)2q)psn(px+qy+rzpt(1pr(k2+1)2))dn(px+qy+rzpt(1pr(k2+1)2))±cn(px+qy+rzpt(1pr(k2+1)2)),
3.42
v1,25(x,y,z,t)=±k4r(q(pr(k22)2))pcn(px+qy+rzpt(1pr(k22)2))(1k2)±dn(px+qy+rzpt(1pr(k22)2)).

Tab. 2.

The Jacobi elliptic function exhibit specific limiting behaviour as k → 0 and k → 1

No.Functionk → 1k → 0
1sn(v)tanh(v)sin(v)
2cn(v)sech(v)cos(v)
3dn(v)sech(v)1
4cd(v)1cos(v)
5sd(v)sinh(v)sin(v)
6nd(v)cosh(v)1
7dc(v)1sec(v)
8nc(v)cosh(v)sec(v)
9sc(v)sinh(v)tan(v)
10ns(v)coth(v)csc(v)
11ds(v)csch(v)csc(v)
12cs(v)csch(v)ct(v)

Solitary wave solutions

When k → 1, in this category, see in table 2, the solutions v1,7, v1,8, v1,9, v1,10, v1,15, v1,22, v1,23 and v1,24 become zero. The remaining solutions represent solitary wave solutions and can be determined as follows:

3.43
v1,26(x,y,z,t)=±2r(2prq+q)ptanh(px+qy+rzpt2pr+1),
3.44
v1,27(x,y,z,t)=±2r(prqq)psech(px+qy+rzptpr+1),
3.45
v1,28(x,y,z,t)=±2r(prq+q)psech(px+qy+rzptpr+1),
3.46
v1,29(x,y,z,t)=±2r(2prq+q)pcoth(px+qy+rzpt2pr+1),
3.47
v1,30(x,y,z,t)=±2r(prq+q)pcsch(px+qy+rzptpr+1),
3.48
v1,31(x,y,z,t)=±r(prqq)pcsch(px+qy+rzptpr+1),
3.49
v1,32(x,y,z,t)=±r(2prq2q)p[sech(px+qy+rzptpr+1)±sech(px+qy+rzptpr+1)],
3.50
v1,33(x,y,z,t)=±r(prq+2q)p[coth(px+qy+rZpt12pr+1)±csch(px+qy+rzpt12pr+1)],
3.51
v1,34(x,y,z,t)=±r(prq2q)p[coth(px+qy+rzpt1+12pr)±csch(px+qy+rzpt1+12pr)],
3.52
v1,35(x,y,z,t)=±r(prq2q)p[tanh(px+qy+rzpt1+12pr)±isech(px+qy+rzpt1+12pr)],
3.53
v1,36(x,y,z,t)=±r(prq2q)ptanh(px+qy+rzpt1+12pr)sech(px+qy+rzpt1+12pr),
3.54
v1,37(x,y,z,t)=±r(prq+2q)p[sech(px+qy+rzpt1+12pr)±isech(px+qy+rzpt1+12pr)],
3.55
v1,38(x,y,z,t)=±r(prq+2q)ptanh(px+qy+rzpt1+12pr)1±sech(px+qy+rzpt1+12pr),
3.56
v1,39(x,y,z,t)=±r(prq2q)ptanh(px+qy+rzpt1+12pr)1±sech(px+qy+rzpt1+12pr),
3.57
v1,40(x,y,z,t)=±r(prq2q)psech(px+qy+rzpt112pr)sech(px+qy+rzpt112pr).

Shock wave solutions

When k → 0, in this category see in table 2, the solutions v1,2, v1,3, v1,10, v1,17, v1,18, v1,21, and v1,25 become Zero. The remaining solutions represent solitary wave solutions and can be determined as follows:

3.58
v1,41(x,y,z,t)=±2r(prq+q)pcsc(px+qy+rzptpr+1),
3.59
v1,42(x,y,z,t)=±2r(prq+q)psec(px+qy+rzptpr+1),
3.60
v1,43(x,y,z,t)=±2r(prq+q)psec(px+qy+rzptnr+1),
3.61
v1,44(x,y,z,t)=±r(2prqq)ptan(px+qy+rzpt2pr+1),
3.62
v1,45(x,y,z,t)=±2r(2prqq)pcot(px+qy+rzpt2pr+1),
3.63
v1,46(x,y,z,t)=±2r(prq+q)pcsc(px+qy+rzptpr+1),
3.64
v1,47(x,y,z,t)=±r(prq2q)p[csc(px+qy+rzpt112pr)±cot(px+qy+rzpt112pr)],
3.65
v1,48(x,y,z,t)=±r(prq2q)p[sec(px+qy+rzpt112pr)±tan(px+qy+rzpt112pr)],
3.66
v1,49(x,y,z,t)=±2r(prq+2q)p[csc(px+qy+rzpt1+pr)±csc(px+qy+rzpt1+pr)],
3.67
v1,50(x,y,z,t)=±r(prq-2q)psin(px+qy+rz-pt1-12pr)1±cos(px+qy+rz-pt1-12pr),
3.68
v1,51(x,y,z,t)=±r(prq2q)pcos(px+qy+rzpt112pr)1±sin(px+qy+rzpt112pr),
3.69
v1,52(x,y,z,t)=±r(prq2q)psin(px+qy+rzpt112pr)1±cos(px+qy+rzpt112pr),

Analysis of the Second WBBM Equation

Using the traveling wave transformation equation (3.2) into equation (1.2), we convert the nonlinear partial differential equation (PDE) to an ordinary differential equation (ODE) of the following form:

3.70
(s+r)v+pv3+pqsv=0.

By the balancing procedure, we find the value of n = 1. Thus, the ansatz solution has the following simplified form:

3.71
v(ψ)=c0+c1N(ψ).

Substituting equation (3.71) combine with equation (2.4) into (3.70), we get:

3.72
sc0sc1N(ψ)+pc0+pc1N(ψ)+qc03+3qc02c1N(ψ)+3qc0c12N(ψ)2+qc13N(ψ)3+prsc1N(ψ)m0+2prsc1N(ψ)m2=0.

By collecting various powers of Ni(ψ), a subsequent system of algebraic equations is derived:

3.73
sc0+pc0+qc0=0,
3.74
sc1+pc1+3qc0c1+prsc1 m1=0,
3.75
3qc0c12=0,
3.76
qc13+2prsc1m2=0.

The system described above of algebraic equations is calculated through MAPLE, and we derive the roots of the coefficients involved in equation (3.71):

3.77
c0=0,
3.78
c1=±2qrm21+pqm1,
3.79
S=r1pqm1.

The following solutions for the first 3-D WBBM equation can be obtained by inserting the corresponding values into Eq. (3.71):

3.80
vx,y,z,t=±2qrm21+pqm1pN(px+qy+rz2qrm21+pqm1).

Analytical periodic solutions in terms of Jacobi elliptic functions (JEF)

Using the data provided in Tables 1 and 2, and combining the corresponding values as per Eq.(3.71), we may derive the Jacobi elliptic function solutions which are periodic for equation (1.3) as shown below.

3.81
v2,1(x,y,z,t)=±2qrk21pq(k2+1)psn(px+qy+rzr1+pq(k2+1)t),
3.82
v2,2(x,y,z,t)=±|2qrk21pq(k2+1)pcd(px+qy+rzr1+pq(k2+1)t),
3.83
v2,3(x,y,z,t)=±2k2qr(pq(2k21)1)pcn(px+qy+rzr(1pq(2k21))t),
3.84
v2,4(x,y,z,t)=±2qr(pq(2k2)1)pdn(px+qy+rzr(1pq(2k2))t),
3.85
v2,5(x,y,z,t)=±2qr(pq(k2+1)1)pns(px+qy+rzr(1+pq(k2+1))t),
3.86
v2,6(x,y,z,t)=±2qr(pq(k2+1)1)pdc(px+qy+rzr(1+pq(k2+1))t),
3.87
v2,7(x,y,z,t)=±2qr(k21)(pq(2k21)1)pnc(px+qy+rzrt(1pq(2k21))),
3.88
v2,8(x,y,z,t)=±2qr(k21)(pq(k22)+1)pnd(px+qy+rzr(1pq(2k2))t),
3.89
v2,9(x,y,z,t)=±2qr(k21)(pq(k22)+1)psc(px+qy+rzr(1pq(2k2))t),
3.90
v2,10(x,y,z,t)=±2qr(k21)(pq(2k21)1)psd(px+qy+rzr(1pq(2k21))t),
3.91
v2,11(x,y,z,t)=±2qr(pq(2k2)1)pcs(px+qy+rzr(1pq(2k2))t),
3.92
v2,12(x,y,z,t)=±2qr(pq(2k21)1)pds(px+qy+rzr(1pq(2k21))t),
3.93
v2,13(x,y,z,t)=±qr(pq(k2+1)2)p[kcn(px+qy+)rzr(1pq(k2+1)2)t±dn(px+qy+rzr(1pq(k2+1)2)t)],
3.94
v2,14(x,y,z,t)=±qr(pq(2k2+1)2)p[ns(px+qy+rzr(1pq(2k2+1)2)t)±cs(px+qy+rzr(1pq(2k2+1)2)t)],
3.95
v2,15(x,y,z,t)=±(qr(k21))(pq(k2+1)2)p[nc(px+qy+rzr(1pq(k2+1)2)t)±sc(px+qy+rzr(1pq(k2+1)2t)t)],
3.96
v2,16(x,y,z,t)=±qr(pq(k22)2)p[ns(px+qy+rzr(1pq(k22)2)t)±ds(px+qy+rzr(1pq(k22)2)t)],
3.97
v2,17(x,y,z,t)=±k2qr(pq(k22)2)p[sn(px+qy+rzr(1pq(k22)2)t)±icn(px+qy+rzr(1pq(k22)2)t)],
3.98
v2,18(x,y,z,t)=±k2qr(pq(k22)2)psn(px+qy+rzpt(1pq(k22)2))((1k2)±cn(px+qy+rzpt(1pq(k22)2)),
3.99
v2,19(x,y,z,t)=±qr(pq(2k21)+2)p[kcn(px+qy+rzr(1pq(12k2)2)t)±idn(px+qy+rzr(1pq(12k2)2t)t),
3.100
v2,20(x,y,z,t)=±qr(pq(2k21)+2)psn(px+qy+rzpt(1pq(12k2)2))1±cn(px+qy+rzpt(1pq(12k2)2)),
3.101
v2,21(x,y,z,t)=±k2qr(pq(k22)2)psn(px+qy+rzpt(1pq(k22)2))1±dn(px+qy+rzpt(1pq(k22)2)),
3.102
v2,22(x,y,z,t)=±qr(k22)(pq(k2+1)2)pdn(px+qy+rzpt(1pq(k2+1)2))1±ksn(px+qy+rzpt(1pq(k2+1)2)),
3.103
v2,23(x,y,z,t)=±qr(k22)(pq(k2+1)2)pcn(px+qy+rzpt(1pq(k2+1)2))1±sn(px+qy+rzpt(1pq(k2+1)2)),
3.104
v2,24(x,y,z,t)=±qr(k22)2(pq(k2+1)2)psn(px+qy+rzpt(1pq(k2+1)2))dn(px+qy+rzpt(1pq(k2+1)2))±cn(px+qy+rzpt(1pq(k2+1)2)),
3.105
v2,25(x,y,z,t)=±k4qr(pq(k22)2)pcn(px+qy+rzpt(1pq(k22)2))((1k2)±dn(px+qy+rzpt(1pq(k22)2)),

Solitary wave type solutions

When k → 1, in this category see in table 2, the solution v2,7, v2,8, v2,9, v2,10, v2,15, v2,22, v2,23 and v2,24 become zero. The remaining solutions represent solitary wave solutions and can be determined as follows:

3.106
v2,26(x,y,z,t)=±2qr12pqptanh(px+qy+rzr1+2pqt),
3.107
v2,27(x,y,z,t)=±2qrpq1psech(px+qy+rzr1pqt),
3.108
v2,28(x,y,z,t)=±2qrpq1psech(px+qy+rzr1pqt),
3.109
v2,29(x,y,z,t)=±2qr2pq1pcoth(px+qy+rzr1+2pqt),
3.110
v2,30(x,y,z,t)=±2qrpq+1pcsch(px+qy+rzr1+pqt),
3.111
v2,31(x,y,z,t)=±2qrpq1pcsch(px+qy+rzr1+pqt),
3.112
v2,32(x,y,z,t)=±2qr2pq2p[sech(px+qy+rzr1pqt)±sech(px+qy+rzr1pqt)],
3.113
v2,33(x,y,z,t)=±qrpq2p[coth(px+qy+rzr1+12pqt)±csch(px+qy+rzr1+12pqt)],
3.114
v2,34(x,y,z,t)=±qrpq2p[coth(px+qy+rz+r112pqt)±csch(px+qy+rz+r112pqt)],
3.115
v2,35(x,y,z,t)=±qrpq2p[tanh(px+qy+rz+r112pqt)±csch(px+qy+rz+r112pqt)],
3.116
v2,36(x, y, z, t) =±qrpq2ptanh(px+qy+rz+r112pqt)sech(px+qy+rz+r112pqt),
3.117
v2,37(x,y,z,t)=±qrpq+2p[sech(px+qy+rz+r112pqt)±isech(px+qy+rz+r112pqt)],
3.118
v2,38(x,y,z,t)=±qrpq+2ptanh(px+qy+rz+r112pqt)1±sech(px+qy+rz+r112pqt),
3.119
v2,39(x,y,z,t)=±qrpq2ptanh(px+qy+rz+r112pqt)1±sech(px+qy+rz+r112pqt),
3.120
v2,40(x,y,z,t)=±qrpq2psech(px+qy+rz+r112pqt)sech(px+qy+rz+r112pqt),

Shock wave solutions

When k → 0, in this category see in table 2, the solutions v2,1, v2,2, v2,3, v2,10, v2,17, v2,18, v2,21 and v2,25 become zero. The remaining solutions represent solitary wave solutions and can be determined as follows:

3.121
v2,41(x,y,z,t)=±2qrpq1pcsc(px+qy+rzr1+2pqt),
3.122
v2,42(x,y,z,t)=±2qrpq1psec(px+qy+rzr1+2pqt),
3.123
v2,43(x,y,z,t)=±2qr(k21)pq1psec(px+qy+rzr1+2pqt),
3.124
v2,44(x,y,z,t)=±2qr2pq+1ptan(px+qy+rzr12pqt),
3.125
v2,45(x,y,z,t)=±2qr2pq+1pcot(px+qy+rzr12pqt),
3.126
v2,46(x,y,z,t)=±2qrpq1pcsc(px+qy+rzr1+2pqt),
3.127
v2,47(x,y,z,t)=±qrpq2p[csc(px+qy+rz+r112pqt)±cot(px+qy+rz+r112pqt)],
3.128
v2,48(x,y,z,t)=±qrpq2p[sec(px+qy+rz+r112pqt)±tan(px+qy+rz+r112pqt)],
3.129
v2,49(x,y,z,t)=±qr2pq2p[csc(px+qy+rz+r1+pqt)±(cscpx+qy+rz+r1+pqt)],
3.130
v2,50(x,y,z,t)=±qrpq+2psin(px+qy+rzr112pqt)1±cos(px+qy+rzr112pqt),
3.131
v2,51(x,y,z,t)=±qrpq2pcos(px+qy+rzr112pqt)1±sin(px+qy+rzr112pqt),
1.132
v2,52(x,y,z,t)=±qrpq2psin(px+qy+rzr112pqt)cos(px+qy+rzr112pqt),

Analysis of the Second WBBM Equation

Using the traveling wave transformation Equation (3.2) into Equation (1.2), we convert the nonlinear partial differential equation (PDE) to an ordinary differential equation (ODE) of the following form:

3.133
(s+r)v+pv3+pqsv=0.

By the balancing procedure, we find the value of n = 1. Thus, the ansatz solution has the following simplified form:

3.134
v(ψ)=d0+d1N(ψ).

Substituting Eq. (2.4) in Eq.(3.134), we get

1.135
sd0sd1N(ψ)+pd0+pd1N(ψ)+qd03+3qd02d1N(ψ)+3qd0c12N(ψ)2+qd13N(ψ)3+prsd1N(ψ)m0+2prsd1N(ψ)m2=0.

By collecting various powers of Ni(ψ), a subsequent system of algebraic equations is derived:

3.136
sd0+pd0+qd03=0,
3.137
sd1+pd1+3qd02d1+prsd1m1=0,
3.138
3qd0d12=0,
3.139
qd13+2prsd1m2=0.

The system described above of algebraic equations is calculated through MAPLE, and we derive the roots of the coefficients involved in equation (3.134):

3.140
d0=0,
3.141
d1=±qm2r+rp2m1p,
3.142
s=q1+p2m1.

The following solutions for the first 3-D WBBM equation can be obtained by inserting the corres- ponding values into Eq. (3.134):

3.143
v(x,y,z,t)=±qm2r+rp2m1pN(px+qy+rz+qp2m11t).

Analytical periodic solutions in terms of Jacobi elliptic functions (JEF)

Using the data provided in tables 1 and 2, and combining the corresponding values as per Eq.(3.6), we may derive the Jacobi elliptic function solutions which are in a periodic nature for Eq (3.6) as shown below.

3.144
v3,1(x,y,z,t)=±k2q(p2r(k2+1)+r)psn(px+qy+rz+qp2(k2+1)1t),
3.145
v3,2(x,y,z,t)=±k2q(p2r(k2+1)+r)pcd(px+qy+rz+qp2(k2+1)1t),
3.146
v3,3(x,y,z,t)=±k2q(p2r(2k21)r)pcn(px+qy+rz+qp2(2k21)1t),
3.147
v3,4(x,y,z,t)=±q(p2r(2k2)r)pdn(px+qy+rz+qv2(2k2)1t),
3.148
v3,5(x,y,z,t)=±q(p2r(k2+1)+r)pns(px+qy+rz+qp2(k2+1)1t),
3.149
v3,6(x,y,z,t)=±q(p2r(k2+1)+r)pdc(px+qy+rz+qp2(k2+1)1t),
3.150
v3,7(x,y,z,t)=±q(k21)(p2r(2k21)r)pnc(px+qy+rz+qp2(2k21)1t),
3.151
v3,8(x,y,z,t)=±q(k21)(p2r(2k21)+r)pnd(px+qy+rz+qtp2(2k2)1),
3.152
v3,9(x,y,z,t)=±q(k21)(p2r(2k21)+r)psc(px+qy+rz+qp2(2k2)1t),
3.153
v3,10(x,y,z,t)=±k2q(k21)(p2r(2k21)r)psd(px+qy+rz+qp2(2k21)1t),
3.154
v3,11(x,y,z,t)=±q(p2(k2r2r)+r)pcs(px+qy+rz+qp2(2k2)1t),
3.155
v3,12(x,y,z,t)=±q(p2r(2k21)r)pds(px+qy+rz+qp2(2k21)1t),
3.156
v3,13(x,y,z,t)=±q(p2r(k2+1)2r)p[kcn(px+qy+rz+qp2(k2+1)21t)±dn(px+qy+rz+qp2(k2+1)21t)],
3.157
v3,14(x,y,z,t)=±12q(p2r(2k2+1)2r)p[ns(px+qy+rz+qp2(2k2+1)21t)±cs(px+qy+rz+qp2(2k2+1)21t)],
3.158
v3,15(x,y,z,t)=±12q(1k2)(p2r(k2+1)2r)p[nc(px+qy+rz+qp2(k2+1)2t1)±sc(px+qy+rz+qp2(k2+1)21t)],
3.159
v3,16(x,y,z,t)=±12q(p2r(k22)2r)p[ns(px+qy+rz+qp2(k22)21t)±ds(px+qy+rz+qp2(k22)21t)],
3.160
v3,17(x,y,z,t)=±12k2q(p2r(k22)2r)p[sn(px+qy+rz+qp2(k22)21t)±icn(px+qy+rz+qp2(k22)21t)],
3.161
v3,18(x,y,z,t)=±12k2q(p2r(k22)2r)p.[sn(px+qy+rz+qp2(k22)21t)1k2±cn(px+qy+rz+qp2(k22)21t)],
3.162
v3,19(x,y,z,t)=±12q(p2r(12k2)2r)p[kcn(pxqy+rz+qp2(2k21)21t)±idn(px+qy+rz+qp2(2k21)21t)],
3.163
v3,20(x,y,z,t)=±12q(p2r(12k2)2r)p[sn(px+qy+rz+qp2(2k21)2t)1±cn(px+qy+rz+qp2(k21)21t)],
3.164
v3,21(x,y,z,t)=±12k2q(p2r(k22)2r)p[sn(px+qy+rz+qp2(k22)21t)1±dn(px+qy+rz+qp2(k22)2t)],
3.165
v3,22(x,y,z,t)=±12q(k21)r(p2(k2+1)2)p[dn(px+qy+rz+qp2(k22)21t)1±ksn(px+qy+rz+qp2(k22)21t)],
3.166
v3,23(x,y,z,t)=±q(1k2)2r(p2(k2+1)1)p[cn(px+qy+rz+qp2(k22)2t1)1±sn(px+qy+rz+qp2(k22)2t)t],
3.167
v3,24(x,y,z,t)=±q(1k2)2(p2r(k2+1)2r)·psn(px+qy+rzqt(p2(k2+1)21))dn(px+qy+rzqt(pq(k2+1)21))±cn(px+qy+rzqt(p2(k2+1)21)),
3.168
v3,25(x,y,z,t)=±12k4q(p2r(k22)2r)p[cn(px+qy+rz+qp2(k22)21t)k2±dn(px+qy+rz+qp2(k22)21t)],

Solitary wave type solutions

When k → 1, in this category see in table 2, the solution v3,7, v3,8, v3,9, v3,10, v3,15, v3,22, v3,23 and v3,24 become zero. The remaining solutions represent solitary wave solutions and can be determined as follows:

3.169
v3,26(x,y,z,t)=±q(2p2r+r)ptanh(px+qy+rz+q2p21t),
3.170
v3,27(x,y,z,t)=±q(2p2r+r)psech(px+qy+rz+q2p21t),
3.171
v3,28(x,y,z,t)=±q(p2rr)psech(px+qy+rz+qp21t),
3.172
v3,29(x,y,z,t)=±q2p2r+rpcoth(px+qy+rz+qp21t),
3.173
v3,30(x,y,z,t)=±q(p2r+r)pcsch(px+qy+rz+qp21t),
3.174
v3,31(x,y,z,t)=±q(2p2r2r)p[sech(px+qy+rz+qp21t)±sech(px+qy+rz+qp21t)],
3.175
v3,32(x,y,z,t)=±12q(p2r2r)p[coth(px+qy+rz+qp221t)±csch(px+qy+rz+qp221t)],
3.176
v3,33(x,y,z,t)=±12q(p2r2r)p[coth(px+qy+rz+rp221t)±csch(px+qy+rz+qp221t)],
3.177
v3,34(x,y,z,t)=±12q(p2r2r)p[tanh(px+qy+rz+rp221t)±isech(px+qy+rz+qp221t)],
3.178
v3,35(x,y,z,t)=±q(12p2rr)p[sn(px+qy+rz+qp221t)±cn(px+qy+rz+qp221t)],
3.179
v3,36(x,y,z,t)=±12q(p2r2r)p[sech(px+qy+rz+qp221t)±isech(px+qy+rz+qp221t)],
3.180
v3,37(x,y,z,t)=±12q(p2r2r)p[tanh(px+qy+rz+qp221t)1±sech(px+qy+rz+qp221t)],
3.181
v3,38(x,y,z,t)=±12q(p2r2r)p[tanh(px+qy+rz+qp221t)1±sech(px+qy+rz+qp221t)],
3.182
v3,39(x,y,z,t)=±12qr(p22)p[sech(px+qy+rz+2qp22t)sech(px+qy+rz+2qp22t)]

Shock wave solution

When k → 0, in this category see in table 2, the solutions v3,1, v3,2, v3,3, v3,4, v3,10, v3,17, v3,18, v3,21 and v3,25 become zero. The remaining solutions represent solitary wave solutions and can be determined as follows:

3.183
v3,40(x,y,z,t)=±q(p2r+r)pcsc(px+qy+rz+qp21t),
3.184
v3,41(x,y,z,t)=±q(p2r+r)psec(px+qy+rz+qp21t),
3.185
v3,42(x,y,z,t)=±q(p2rr)psec(px+qy+rz+qn21t),
3.186
v3,43(x,y,z,t)=±q(2p2r+r)ptan(px+qy+rz+q2n21t),
3.187
v3,44(x,y,z,t)=±q(2p2r+r)pcot(px+qy+rz+q2p21t),
3.188
v3,45(x,y,z,t)=±q(p2rr)pcsc(px+qy+rz+qp21t),
3.189
v3,46(x,y,z,t)=±12q(p2r2r)p[csc(px+qy+rz+qp221t)±cot(px+qy+rz+qp221t)],
3.190
v3,47(x,y,z,t)=±12q(p2r2r)p[sec(px+qy+rz+qp221t)±tan(px+qy+rz+qp221t)],
3.191
v3,48(x,y,z,t)=±12q(2p2r2r)p[csc(px+qy+rz+qp21t)±csc(px+qy+rz+qp21t)],
3.192
v3,49(x,y,z,t)=±12q(p2r2r)p[sin(px+qy+rz+qp221t)1±cos(px+qy+rz+qp221t)],
3.193
v3,50(x,y,z,t)=±q(2p2r2r)p[cos(px+qy+rz+qp21t)1±sin(px+qy+rz+qp21t)],
3.194
v3,51(x,y,z,t)=±q(p2r2r)psin(px+qy+rzqt(p222))1±cos(px+qy+rzqt(p221)).

 GRAPHICAL RESULTS AND DISCUSSION

In this section, we present several solution figures in 2-D, 3-D, and contour plots. All of the figures were created using Mathematica. The generalized JEFE technique yields novel solutions to the nonlin ear three-dimensional Wazwaz-Benjamin-Bona-Mahony (3D WBBM) equations, and its periodicity is proved. We illustrated many sorts of soliton structures, including steep kink, kink, peakon, rogue, and periodic soliton. The 2D plots show simplified cross-sections of the wave solutions, focusing on specific directions to highlight their oscillatory and (quasi-)periodic patterns. These views make it easier to observe changes in amplitude, phase, and frequency over time, helping us understand how the waves behave and evolve.

Fig. 1.

The 3-D visualization, contour plot, and 2-D graphical representation of V1,1(x, y, z) are presented for the parameter values k = 0.5, r = 1, p = 2, q = –2, and y = z = 1

https://www.amajournal.com/f/fulltexts/213272/j_ama-2025-0048_fig_001_min.jpg
Fig. 2.

The 3-D visualization, contour plot, and 2-D graphical representation of v1,3(x, y, z) are presented for the parameter values k = 0.5, r = 0.5, p = 2, q = 2, and y = z = 1

https://www.amajournal.com/f/fulltexts/213272/j_ama-2025-0048_fig_002_min.jpg
Fig. 3.

The 3-D visualization, contour plot, and 2-D graphical representation of V1,4(x, y, z) are presen-ted for the parameter valuesk = 0.5, r = 0.5, p = 2, q = –2, and y = z = 1

https://www.amajournal.com/f/fulltexts/213272/j_ama-2025-0048_fig_003_min.jpg

The 3D surface plots clearly display how the wave’s height, frequency, and shape vary with different parameters, offering insights that are hard to see just from equations. Contour plots, which map the wave levels onto a flat surface, reveal the internal structure of the solutions, showing areas with steady values or sharp transitions. Together, these 2D, 3D, and contour plots give a fuller picture of the wave behaviors described by the 3D WBBM equations. Sub-sequently, the generalized JEFE process leads to more consistent results when addressing the WBBM equation, making it an effective tool for generating exact periodic and solitary wave-type soliton solutions.

Additionally, the Φ6-expansion and modified extended direct algebraic methods [31], and Khater method [32] to compute trigonometric, hyperbolic, Jacobi elliptic, and rational functions. The expanded tanh approach [33] was also applied to the bright, dark, periodic, and single soliton solutions. To differentiate this from the previous efforts. All our founded solutions are depending on the Jacobi elliptic functions and their corresponding hyperbolic and trigonometric functions. Jacobi elliptic function is a more generalized form of the hyperbolic and trigonometric functions.

This work is important for our research because it shows how effective the generalized Jacobi elliptic function expansion method is in analyzing and resolving intricate nonlinear systems. The tech-nique advances our knowledge of the dynamics at play in nonlinear systems by producing precise and physically meaningful solutions as well as making complex wave phenomena like solitons easier to visualize. The Jacobi elliptic function expansion approach is a strong and flexible tool for studying nonlinear wave dynamics.

Fig. 4.

The 3-D visualization, contour plot, and 2-D graphical representation of V1,5(x, y, z) are presen-ted for the parameter values k = 0.5, r = 1, p = 2, q = 2, and y = z = 1

https://www.amajournal.com/f/fulltexts/213272/j_ama-2025-0048_fig_004_min.jpg
Fig. 5.

The 3-D visualization, contour plot, and 2-D graphical representation of V1,11(x, y, z) are presen-ted for the parameter values k = 0.5, r = 1.5, p = –2, q = –2, and y = z = 1

https://www.amajournal.com/f/fulltexts/213272/j_ama-2025-0048_fig_005_min.jpg
Fig. 6.

The 3-D visualization, contour plot, and 2-D graphical representation of V1,26(x, y, z) are presented for the parameter values r = 2.5, p = 2, q = 𠀓2, and y = z = 1

https://www.amajournal.com/f/fulltexts/213272/j_ama-2025-0048_fig_006_min.jpg
Fig. 7.

The 3-D visualization, contour plot, and 2-D graphical representation of V1,27(x, y, z) are pre-sented for the parameter values r = 3, p = 1.5, q = –2, and y = z = 1

https://www.amajournal.com/f/fulltexts/213272/j_ama-2025-0048_fig_007_min.jpg
Fig. 8.

The 3-D visualization, contour plot, and 2-D graphical representation of V1,29(x, y, z) are presen-ted for the parameter values r = 1.8, p = 1.5, q = –2, and y = z = 1

https://www.amajournal.com/f/fulltexts/213272/j_ama-2025-0048_fig_008_min.jpg
Fig. 9.

The 3-D visualization, contour plot, and 2-D graphical representation of V1,40(x, y, z) are presented for the parameter values r = 1.8, p = 1.5, q = –2, and y = z = 1

https://www.amajournal.com/f/fulltexts/213272/j_ama-2025-0048_fig_009_min.jpg
Fig. 10.

The 3-D visualization, contour plot, and 2-D graphical representation of V1,41(x, y, z) are pre-sented for the parameter values r = 1.8, p = 1.5, q = –2, and y = z = 1

https://www.amajournal.com/f/fulltexts/213272/j_ama-2025-0048_fig_010_min.jpg
Fig. 11.

The 3-D visualization, contour plot, and 2-D graphical representation of V1,43(x, y, z) are pre-sented for the parameter values r = 1.8, p = 1.5, q = 2, and y = z = 1

https://www.amajournal.com/f/fulltexts/213272/j_ama-2025-0048_fig_011_min.jpg
Fig. 12.

The 3-D visualization, contour plot, and 2-D gra-phical representation of V2,1(x, y, z) are presented for the parameter values k = 0.5, r = –1, p = 2, q = 2, y = 1, and z = 1

https://www.amajournal.com/f/fulltexts/213272/j_ama-2025-0048_fig_012_min.jpg
Fig. 13.

The 3-D visualization, contour plot, and 2-D graphical representation of V2,3(x, y, z) are pre-sented for the parameter values k = 0.5, r = –1, p = 2, q = 1.5, y = 1, and z = 1

https://www.amajournal.com/f/fulltexts/213272/j_ama-2025-0048_fig_013_min.jpg
Fig. 14.

The 3-D visualization, contour plot, and 2-D graphical representation of V3,1(x, y, z) are pre-sented for the parameter values k = 0.5, r = 1, p = 2, q = –2, y = 1, and z = 1

https://www.amajournal.com/f/fulltexts/213272/j_ama-2025-0048_fig_014_min.jpg
Fig. 15.

The 3-D visualization, contour plot and 2-D graphical representation of V3,3(x, y, z) are presented for the parameter values k = 0.6, r = 0.5, p = 2, q = 2, and y = z = 1

https://www.amajournal.com/f/fulltexts/213272/j_ama-2025-0048_fig_015_min.jpg

 CONCLUSION

The family of 3-D WBBM equations is efficiently solved in this work through the application of the generalized Jacobi elliptic function expansion technique. Through this method, the new periodic solutions are determined, which incorporates both solitary wave and shock wave solutions that have not been documented previously in the literature. These results give a greater understanding of the rich dynamic phenomena regulated by the family of 3-D WBBM equations, improving their applicability in fluid dynamics, nonlinear optics, plasma physics, and engineering. The obtained results have not been found in previous literature using this approach. To improve the physical description of the solutions several typical wave profiles are offered to provide a comprehensive analysis of the wave characteristics in 2-D, 3-D, and contour visualizations were generated using accurate parameters value with the help of Mathematica. Such graphical visualizations aid in our ability to more clearly understand and comprehend the system’s inherent features. The objective of this approach is quite applicative and powerful to analyze various soliton solutions, therefore it may be additionally applicable to many other nonlinear evaluation equations. Future research direction should focus to apply these approaches to additional complicated nonlinear systems to determine their broader application. Furthermore, investigating the stability and interactions of the generated solutions under different initial conditions and parameter changes might provide additional information. Furthermore, incorporating physics-informed neural networks represents a promising avenue for validating these solutions in practical applications, with the potential to bridge the gap between theoretical mathematics and real-world implementations in fields such as fluid dynamics, plasma physics, and engineering systems.