RESEARCH PAPER
Fractional Vector-Order h-Realisation of the Impulse Response Function
 
More details
Hide details
1
Faculty of Mechanical Engineering, Department of Mechatronics Systems and Robotics, Bialystok University of Technology, Wiejska 45c, 15-351 Białystok, Poland
 
 
Submission date: 2020-03-12
 
 
Acceptance date: 2020-07-03
 
 
Online publication date: 2020-07-24
 
 
Publication date: 2020-06-01
 
 
Acta Mechanica et Automatica 2020;14(2):108-113
 
KEYWORDS
ABSTRACT
The problem of realisation of linear control systems with the h–difference of Caputo-, Riemann–Liouville- and Grünwald–Letnikov-type fractional vector-order operators is studied. The problem of existing minimal realisation is discussed.
REFERENCES (22)
1.
Ambroziak L., Lewon D., Pawluszewicz E. (2016), The use of fractional order operators in modeling of RC-electrical systems, Control & Cybernetics, 45(3), 275-288.
 
2.
Bartosiewicz Z., Pawluszewicz E. (2006), Realizations of linear control systems on time scales, Control and Cybernetics, 35(4), 769-786.
 
3.
Bastos, N.R.O., Ferreira, R.A.C., Torres, D.F.M. (2011), Necessary optimality conditions for fractional difference problems of the calculus of variations, Discrete and Continuous Dynamical Systems, Vol.29(2), 417-437.
 
4.
Bettayeb M., Djennoune S., Guermah S., Ghanes M. (2008), Structural properties of linear discrete-time fractional order systems, Proc. of the 17th World Congres The Federation of Automatic Control, Seoul, Korea, 15262—15266.
 
5.
Das S. (2008), Functonal Fractional Calculus for System Identyfication and Controls, Springer.
 
6.
Ferreira, R.A.C., Torres, D.F.M. (2011) Fractional h–difference equations arising from the calculus of variations, Applicable Analysis and Discrete Mathematics, 5(1), 110-121.
 
7.
Gantmacher F.R. (1959), The Theory of Matrices, Chelsea Pub. Comp., London.
 
8.
Kaczorek T. (1998), Vectors and Matrices in Automation and Electrotechnics, WNT Warsaw 1998 (in Polish).
 
9.
Kaczorek T. (2017), Cayley-Hamilton theorem for fractional linear systems, Theory and Applications of Non-integer Order Systems, LNEE 407, 45-55, Springer.
 
10.
Koszewnik A., Nartowicz t., Pawluszewicz E. (2016), Fractional order controller to control pump in FESTO MPS® PA Compact Workstation, Proc. of the Int.Carpathian Control Conference, 364-367.
 
11.
Mozyrska D., Girejko E. (2013), Overview of the fractional h–differences operator, in: Almeida A., Castro L., Speck FO. (eds) Advances in Harmonic Analysis and Operator Theory, Operator Theory: Advances and Applications, 229, Birkhäuser, Basel.
 
12.
Mozyrska D., Girejko E., Wyrwas M. (2013), Comparision of h –difference fractional operatots, Theory and Appication of Non-integer Order systems, LNEE 257, 191-197, Springer.
 
13.
Mozyrska D., Wyrwas M., Pawluszewicz E. (2017), Local observability and controllability of nonlinear discrete-time fractional order systems based on their linearisation, International Journal of Systems Science, 48(4), 788-794.
 
14.
Mozyrska, D., Wyrwas, M. (2015), The Z-Transform Method and Delta Type Fractional Difference Operators, Discrete Dynamics in Nature and Society, Article ID 852734, 12 pages.
 
15.
Oprzędkiewicz K., Gawin E. (2016), A non integer order, state space model for one dimensional heat transfer process, Archives of Control Sciences, 26(2), 261-275.
 
16.
Pawluszewicz E., Koszewnik A. (2019), Markov parameters of the input-output map for discrete-time fractional order systems, Proc. of the 24th Int.Conf. on Methods and Models in Automation and Robotics MMAR’2019, Miedzyzdroje, Poland.
 
17.
Podlubny I. (1999), Fractional differential systems, Academic Press, San Diego.
 
18.
Sierociuk D., Dzieliński A., Sarwas G., Petras I., Podlubny I., Skovranek T. (2013), Modelling heat transfer in heterogenous media using fractional calculus, Phylosophical Transaction of the Royal Society A-Mathematical, Physical and Engineering Sciences, Soc A 371: 20120146, 10 pages.
 
19.
Sontag E. (1998), Mathematical Control Theory, Springer – Verlag.
 
20.
Wu G.Ch., Baleanu D., Zeng S.D., Luo W.H. (2016), Mittag-Leffler function for discrete fractional modelling, Journal of King Saud University - Science, 28, 99—102.
 
21.
Wu, D.Baleanu, Zeng S.D., Deng Z.G. (2015), Discrete fractional diffusion equation, Nonlinear Dynamics, 80, 281–286.
 
22.
Zabczyk J. (2008), Mathematical Control Theory, Birkhaüser.
 
eISSN:2300-5319
ISSN:1898-4088
Journals System - logo
Scroll to top