RESEARCH PAPER
Laboratory Testing and Modelling of Magnetorheological Elastomers in Tension Mode
 
More details
Hide details
1
Faculty of Electrical and Computer Engineering, Department of Automatics and Computer Science, Cracow University of Technology, Warszawska 24, 31-155, Krakow, Poland
 
2
Faculty of Mechanical Engineering and Robotics, Department of Process Control, AGH University of Krakow, Mickiewicza 30 av., 30-059 Krakow, Poland
 
 
Submission date: 2023-06-19
 
 
Acceptance date: 2023-10-18
 
 
Online publication date: 2024-06-26
 
 
Publication date: 2024-06-01
 
 
Acta Mechanica et Automatica 2024;18(2):291-299
 
KEYWORDS
ABSTRACT
The study deals with experimental testing and estimating the modified Dahl model parameters of magnetorheological elastomers (MREs) differing in volumetric concentrations of carbonyl iron particles (CIP). The authors present briefly an overview of scientific reports relating to MREs research. Next, they describe the structure and magnetic properties of two fabricated MREs, which were investigated using a scanning electron microscope, a magnetometer and a gaussmeter. Then, they reveal the structure of a specially engineered test rig for materials sample examination and present a scenario of experiments. Next, the test results of the material’s mechanical properties conducted in the absence and presence of a magnetic field were discussed. Then, they describe a modified Dahl model of the material followed by parameters estimation and validation procedure. Finally, the authors summarise the test results and outline further research steps.
REFERENCES (38)
1.
Brancati R, Di Massa G, Pagano S, Santini S. A magneto-rheological elastomer vibration isolator for lightweight structures. Meccanica 2019;54:333–49. https://doi.org/10.1007/s11012....
 
2.
Yu Y, Li Y, Li J. Parameter identification and sensitivity analysis of an improved LuGre friction model for magnetorheological elastomer base isolator. Meccanica 2015;50:2691–707. https://doi.org/10.1007/s11012....
 
3.
[Gutenko D. State of the art of soft robotic applications based on magneto-rheological materials. MATEC Web Conf 2020;322:01050. https://doi.org/10.1051/matecc....
 
4.
Hu T, Xuan S, Ding L, Gong X. Stretchable and magneto-sensitive strain sensor based on silver nanowire-polyurethane sponge enhanced magnetorheological elastomer. Mater Des 2018;156:528–37. https://doi.org/10.1016/j.matd....
 
5.
Zhang G, Zhang J, Guo X, Zhang M, Liu M, Qiao Y, et al. Effects of graphene oxide on microstructure and mechanical properties of iso-tropic polydimethylsiloxane-based magnetorheological elastomers. Rheol Acta 2022;61:215–28. https://doi.org/10.1007/s00397....
 
6.
Kashima S, Miyasaka F, Hirata K. Novel Soft Actuator Using Magnetorheological Elastomer. IEEE Trans Magn 2012;48:1649–52. https://doi.org/10.1109/TMAG.2....
 
7.
Keip M-A, Rambausek M. Computational and analytical investigations of shape effects in the experimental characterization of magnetorheological elastomers. Int J Solids Struct 2017;121:1–20. https://doi.org/10.1016/j.ijso....
 
8.
Samal S, Blanco I. Investigation of Dispersion, Interfacial Adhesion of Isotropic and Anisotropic Filler in Polymer Composite. Appl Sci 2021;11:8561. https://doi.org/10.3390/app111....
 
9.
Vatandoost H, Rakheja S, Sedaghati R. Effects of iron particles’ volume fraction on compression mode properties of magnetorheological elastomers. J Magn Magn Mater 2021;522:167552. https://doi.org/10.1016/j.jmmm....
 
10.
Winger J, Schümann M, Kupka A, Odenbach S. Influence of the particle size on the magnetorheological effect of magnetorheological elastomers. J Magn Magn Mater 2019;481:176–82. https://doi.org/10.1016/j.jmmm....
 
11.
Kaleta J, Królewicz M, Lewandowski D. Magnetomechanical properties of anisotropic and isotropic magnetorheological composites with thermoplastic elastomer matrices. Smart Mater Struct 2011;20: 085006. https://doi.org/10.1088/0964-1....
 
12.
Schubert G, Harrison P. Magnetic induction measurements and identification of the permeability of Magneto-Rheological Elastomers using finite element simulations. J Magn Magn Mater 2016;404:205–14. https://doi.org/10.1016/j.jmmm....
 
13.
Vatandoost H, Sedaghati R, Rakheja S. A novel methodology for accurate estimation of magnetic permeability of magnetorheological elastomers. J Magn Magn Mater 2022;560:169669. https://doi.org/10.1016/j.jmmm....
 
14.
Lian C, Lee K, An J, Lee C. Effect of stick-slip on magneto-rheological elastomer with a magnetic field. Friction 2017;5:383–91. https://doi.org/10.1007/s40544....
 
15.
Johari MAF, Mazlan SA, Nasef MM, Ubaidillah U, Nordin NA, Aziz SAA, et al. Microstructural behavior of magnetorheological elastomer undergoing durability evaluation by stress relaxation. Sci Rep 2021;11:10936. https://doi.org/10.1038/s41598....
 
16.
Li Y, Li J, Li W, Du H. A state-of-the-art review on magnetorheological elastomer devices. Smart Mater Struct 2014;23:123001. https://doi.org/10.1088/0964-1....
 
17.
Bastola AK, Hossain M. A review on magneto-mechanical characterizations of magnetorheological elastomers. Compos Part B Eng 2020;200:108348.https://doi.org/10.1016/j.comp....
 
18.
Nguyen XB, Komatsuzaki T, Truong HT. Adaptive parameter identification of Bouc-wen hysteresis model for a vibration system using magnetorheological elastomer. Int J Mech Sci 2022;213:106848. https://doi.org/10.1016/j.ijme....
 
19.
Wang P, Yang S, Liu Y, Zhao Y. Experimental Study and Fractional Derivative Model Prediction for Dynamic Viscoelasticity of Magnetorheological Elastomers. J Vib Eng Technol 2022;10:1865–81. https://doi.org/10.1007/s42417....
 
20.
Nguyen XB, Komatsuzaki T, Zhang N. A nonlinear magnetorheological elastomer model based on fractional viscoelasticity, magnetic dipole interactions, and adaptive smooth Coulomb friction. Mech Syst Signal Process 2020;141:106438. https://doi.org/10.1016/j.ymss....
 
21.
Nedjar A, Aguib S, Djedid T, Nour A, Settet A, Tourab M. Analysis of the Dynamic Behavior of Magnetorheological Elastomer Composite: Elaboration and Identification of Rheological Properties. Silicon 2019;11:1287–93. https://doi.org/10.1007/s12633....
 
22.
Wang B, Bustamante R, Kari L, Pang H, Gong X. Modelling the influence of magnetic fields to the viscoelastic behaviour of soft magnetorheological elastomers under finite strains. Int J Plast 2023;164:103578. https://doi.org/10.1016/j.ijpl....
 
23.
Metsch P, Kalina KA, Spieler C, Kästner M. A numerical study on magnetostrictive phenomena in magnetorheological elastomers. Comput Mater Sci 2016;124:364–74. https://doi.org/10.1016/j.comm....
 
24.
Kukla M, Górecki J, Malujda I, Talaśka K, Tarkowski P. The Determination of Mechanical Properties of Magnetorheological Elastomers (MREs). Procedia Eng 2017;177:324–30. https://doi.org/10.1016/j.proe....
 
25.
Janbaz M, Saeidi Googarchin H. Experimental and numerical analysis on magneto-hyper-viscoelastic constitutive responses of magnetorheological elastomers: A characterization procedure. Mech Mater 2021;154:103712. https://doi.org/10.1016/j.mech....
 
26.
Asadi Khanouki M, Sedaghati R, Hemmatian M. Adaptive dynamic moduli of magnetorheological elastomers: From experimental identification to microstructure-based modeling. Mater Sci Eng B Solid-State Mater Adv Technol 2021;267. https://doi.org/10.1016/j.mseb....
 
27.
Yu Y, Li J, Li Y, Li S, Li H, Wang W. Comparative Investigation of Phenomenological Modeling for Hysteresis Responses of Magnetorheological Elastomer Devices. Int J Mol Sci 2019;20:3216. https://doi.org/10.3390/ijms20....
 
28.
Yu Y, Hoshyar AN, Li H, Zhang G, Wang W. Nonlinear characterization of magnetorheological elastomer-based smart device for structural seismic mitigation. Int J Smart Nano Mater 2021;12:390–428. https://doi.org/10.1080/194754....
 
29.
Li W, Zhou Y, Tian T, Alici G. Creep and recovery behaviors of magnetorheological elastomers. Front Mech Eng China 2010;5:341–6. https://doi.org/10.1007/s11465....
 
30.
Versa 3D scanning electron microscope, Technical documentation 2023. https://www.microscop.ru/uploa... (accessed April 17, 2023).
 
31.
Magnetometer LakeShore 7400 series, Technical documentation 2023. https://www.lakeshore.com/prod... (accessed April 17, 2023).
 
32.
FEMM 4.2, Technical documentation. 2023. https://www.femm.info/wiki/Doc... (accessed April 17, 2023).
 
33.
Gaussmeter GM2, Technical documentation 2023. https://www.alphalabinc.com/pr... (accessed April 17, 2023).
 
34.
Linear actuator, LA30-43-000A, Technical documentation 2023. https://www.sensata.com/sites/... (accessed April 17, 2023).
 
35.
9063 CompactRIO Controller, Technical documentation 2023. https://www.ni.com/pl-pl/suppo... (accessed April 17, 2023).
 
36.
Linear encoder with sinus/cosinus output, LIKA SMS12, Technical documentation 2023. http://www.lika.pl/pliki_do_po... (accessed April 17, 2023).
 
37.
Snamina J, Orkisz P. Active vibration reduction system with mass damper tuned using the sliding mode control algorithm. J Low Freq Noise Vib Act Control 2021;40:540–54. https://doi.org/10.1177/146134....
 
38.
Wang DH, Liao WH. Magnetorheological fluid dampers: a review of parametric modelling. Smart Mater Struct 2011;20:023001. https://doi.org/10.1088/0964-1....
 
eISSN:2300-5319
ISSN:1898-4088
Journals System - logo
Scroll to top