RESEARCH PAPER
Minimum Energy Control Of Positive Time-Varying Linear Systems
 
More details
Hide details
1
Faculty of Electrical Engineering, Bialystok University of Technology, Wiejska 45D, 15-351 Bialystok, Poland
 
 
Submission date: 2015-05-22
 
 
Acceptance date: 2015-12-14
 
 
Online publication date: 2015-12-30
 
 
Publication date: 2015-12-01
 
 
Acta Mechanica et Automatica 2015;9(4):225-228
 
KEYWORDS
ABSTRACT
The minimum energy control problem for the positive time-varying linear systems is formulated and solved. Sufficient conditions for the existence of solution to the problem are established. A procedure for solving of the problem is proposed and illustrated by a numerical example.
REFERENCES (26)
1.
Busłowicz M. (2008), Stability of linear continuous time fractional order systems with delays of the retarded type, Bull. Pol. Acad. Sci. Tech., Vol. 56(4), 319-324.
 
2.
Dzieliński A., Sierociuk D. (2008), Stability of discrete fractional order state-space systems, Journal of Vibrations and Control, Vol. 14(9/10), 1543-1556.
 
3.
Dzieliński A., Sierociuk D., Sarwas G. (2009), Ultracapacitor parameters identification based on fractional order model, Proc ECC’09, Budapest.
 
4.
Farina L., Rinaldi S. (2000), Positive Linear Systems; Theory and Applications, J. Wiley, New York.
 
5.
Gantmacher F.R. (1959), The Theory of Matrices, Chelsea, New York.
 
6.
Kaczorek T. (1992), Linear Control Systems, Research Studies Press and J.Wiley, New York.
 
7.
Kaczorek T. (2001a), Externally and internally positive time-varying linear systems, Int. J. Appl. Math. Comput. Sci., Vol. 11(4), 957-964.
 
8.
Kaczorek T. (2001b), Positive 1D and 2D systems, Springer Verlag, London.
 
9.
Kaczorek T. (2008a), Fractional positive continuous-time systems and their Reachability, Int. J. Appl. Math. Comput. Sci., Vol. 18(2), 223-228.
 
10.
Kaczorek T. (2008b), Practical stability of positive fractional discrete-time linear systems, Bull. Pol. Acad. Sci. Tech., Vol. 56(4), 313-317.
 
11.
Kaczorek T. (2008c), Reachability and controllability to zero tests for standard and positive fractional discrete-time systems, Journal Européen des Systèmes Automatisés, JESA, Vol. 42(6-8), 769-787.
 
12.
Kaczorek T. (2009), Asymptotic stability of positive fractional 2D linear systems, Bull. Pol. Acad. Sci. Tech., Vol. 57(3), 289-292.
 
13.
Kaczorek T. (2011a), Checking of the positivity of descriptor linear systems by the use of the shuffle algorithm, Archive of Control Sciences, Vol. 21(3), 287-298.
 
14.
Kaczorek T. (2011b), Controllability and observability of linear electrical circuits, Electrical Review, Vol. 87(9a), 248-254.
 
15.
Kaczorek T. (2011c), Positive linear systems consisting of n subsystems with different fractional orders, IEEE Trans. Circuits and Systems, Vol. 58(6), 1203-1210.
 
16.
Kaczorek T. (2011d), Positivity and reachability of fractional electrical circuits, Acta Mechanica et Automatica, Vol. 5(2), 42-51.
 
17.
Kaczorek T. (2012), Selected Problems of Fractional Systems Theory, Springer-Verlag, Berlin.
 
18.
Kaczorek T. (2014a), Minimum energy control of descriptor positive discrete-time linear systems, COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 33(3), 976-988.
 
19.
Kaczorek T. (2014b), Minimum energy control of fractional positive continuous-time linear systems, International Journal of Applied Mathematics and Computer Science, Vol. 24(2), 335-340.
 
20.
Kaczorek T., Klamka J. (1986), Minimum energy control of 2D linear systems with variable coefficients, Int. J. of Control, Vol. 44(3), 645-650.
 
21.
Klamka J. (1976), Relative controllability and minimum energy control of linear systems with distributed delays in control, IEEE Trans. Autom. Contr., Vol. 21(4), 594-595.
 
22.
Klamka J. (1977), Minimum energy control of discrete systems with delays in control, International Journal of Control, Vol. 26(5), 737-744.
 
23.
Klamka J. (1983), Minimum energy control of 2D systems in Hilbert spaces, System Sciences, Vol. 9(1-2), 33-42.
 
24.
Klamka J. (1991), Controllability of Dynamical Systems, Kluwer Academic Press, Dordrecht.
 
25.
Klamka J. (1993), Controllability of dynamical systems-a survey, Archives of Control Sciences, Vol. 2(3-4), 281-307.
 
26.
Klamka J. (2010), Controllability and minimum energy control problem of fractional discrete-time systems, Chapter in “New Trends in Nanotechology and Fractional Calculus”, Eds. Baleanu D., Guvenc Z.B., Tenreiro Machado J.A., Springer-Verlag, New York, 503-509.
 
eISSN:2300-5319
ISSN:1898-4088
Journals System - logo
Scroll to top