RESEARCH PAPER
POSITIVE MINIMAL REALIZATION OF CONTINUOUS-DISCRETE LINEAR SYSTEMS WITH ALL-POLE AND ALL-ZERO TRANSFER FUNCTION
 
More details
Hide details
1
Faculty of Electrical Engineering, Białystok University of Technology, ul. Wiejska 45D, 15-351 Białystok
 
 
Online publication date: 2014-01-22
 
 
Publication date: 2013-03-01
 
 
Acta Mechanica et Automatica 2013;7(1):42-47
 
KEYWORDS
ABSTRACT
The positive and minimal realization problem for continuous-discrete linear single-input and single-outputs (SISO) systems is formulated. Two special case of the continuous-discrete systems are given. Method based on the state variable diagram for finding a positive and minimal realization of a given proper transfer function is proposed. Sufficient conditions for the existence of a positive minimal realization of a given proper transfer function of all-pole and all-zero systems are established. Two procedures for computation of a positive minimal realization are proposed and illustrated by a numerical examples.
REFERENCES (22)
1.
Antoniou G. E. (2002), Minimal state space realization for all-pole and all-zero lattice discrete 2D filters, International Journalof Systems Science, Vol. 33, No. 10, 799-803.
 
2.
Benvenuti L., Farina L. (2004), A tutorial on the positive realization problem, IEEE Trans. on Autom. Control, Vol. 49, No. 5, 651-664.
 
3.
Dymkov M., Gaishun I., Rogers E., Gałkowski K., Owens D. H. (2004), Control theory for a class of 2D continuous-discrete linear systems, Int. J. Control Vol. 77, No. 9, 847-860.
 
4.
Farina L., Rinaldi S. (2000), Positive Linear Systems; Theory andApplications, J. Wiley, New York.
 
5.
Kaczorek T. (1992), Linear control systems, Vol. 1, Research Studies Press J. Wiley, New York.
 
6.
Kaczorek T. (2002), Positive 1D and 2D Systems, Springer-Verlag, London.
 
7.
Kaczorek T. (2004), Realization problem for positive discrete-time systems with delay, System Science, Vol. 30, No. 4, 117-130.
 
8.
Kaczorek T. (2005), Positive minimal realizations for singular discrete-time systems with delays in state and delays in control, Bull.Pol. Acad. Sci. Tech., Vol. 53, No. 3, 293-298.
 
9.
Kaczorek T. (2006a), A realization problem for positive continuoustime linear systems with reduced numbers of delay, Int. J. Appl.Math. Comp. Sci., Vol. 16, No. 3, 325-331.
 
10.
Kaczorek T. (2006b), Realization problem for positive multivariable discrete-time linear systems with delays in the state vector and inputs, Int. J. Appl. Math. Comp. Sci., Vol. 16, No. 2, 101-106.
 
11.
Kaczorek T. (2007), Positive 2D hybrid linear systems, Bull. Pol.Acad. Sci. Tech., Vol. 55, No. 4,351-358.
 
12.
Kaczorek T. (2008a), Positive fractional 2D hybrid linear systems, Bull. Pol. Acad. Tech., Vol. 56, No. 3, 273-277.
 
13.
Kaczorek T. (2008b), Realization problem for positive 2D hybrid systems, COMPEL, Vol. 27, No. 3, 613-623.
 
14.
Kaczorek T., Busłowicz M. (2004), Minimal realization problem for positive multivariable linear systems with delay, Int. J. Appl. Math.Comput. Sci., Vol. 14, No. 2, 181-187.
 
15.
Kaczorek T., Marchenko V., Sajewski Ł. (2008), Solvability of 2D hybrid linear systems - comparison of the different methods, ActaMechanica et Automatica, Vol. 2, No. 2, 59-66.
 
16.
Kurek J. (1985), The general state-space model for a twodimensional linear digital system, IEEE Trans. on Austom. Contr., AC-30, 600-602.
 
17.
Roesser R. B. (1975), A discrete state-space model for linear image processing, IEEE Trans. on Autom. Contr., AC-20, 1-10.
 
18.
Sajewski Ł. (2009), Solution of 2D singular hybrid linear systems, Kybernetes, Vol. 38, No. 7/8, 2009, 1079-1092.
 
19.
Sajewski Ł., Kaczorek T. (2009), Computation of positive realizations of singular SISO hybrid linear systems, JAMRIS, Vol. 3, No. 4, 8-14.
 
20.
Sajewski Ł., Kaczorek T. (2010), Computation of positive realizations of MIMO hybrid linear systems in the form of second Fornasini-Marchesini model, Archives of Control Sciences, Vol. 20, No. 3, 253-271.
 
21.
Sun-Yuan Kung, Levy B.C., Morf M., Kailath T. (1977), New Results in 2-D Systems Theory, Part II: 2-D State-Space Models- Realization and the Notions of Controllability, Observability and Minimality, Proc. of the IEEE, Vol. 65, No. 6, 945-961.
 
22.
Varoufakis S. J., Paraskevopoulos P.N., Antoniou G. E. (1987), On the minimal state-space realizations of all-pole and all-zero 2-D systems, IEEE Trans. on Circ. and Sys., Vol. 34, No. 3, 289-292.
 
eISSN:2300-5319
ISSN:1898-4088
Journals System - logo
Scroll to top