RESEARCH PAPER
Numerical Investigation of Production-Related Characteristics Regarding their Influence on the Fatigue Strength of Additively Manufactured Components
 
More details
Hide details
1
Faculty of Production Engineering, Bremen Institute for Mechanical Engineering (bime), University of Bremen, Am Biologischen Garten 2, 28359 Bremen, Germany
 
2
Faculty 5, City University of Applied Sciences Bremen, Neustadtswall 30, 28199 Bremen, Germany
 
 
Submission date: 2022-10-10
 
 
Acceptance date: 2023-01-05
 
 
Online publication date: 2023-05-10
 
 
Publication date: 2023-06-01
 
 
Acta Mechanica et Automatica 2023;17(2):288-291
 
KEYWORDS
ABSTRACT
In order to further enhance the application of additive manufacturing (AM) processes, such as the laser powder bed fusion (L-PBF) process, reliable material data are required. However, the resulting specimen properties are significantly influenced by the process parameters and may also vary depending on the material used. Therefore, the prediction of the final properties is difficult. In the following, the effect of residual stresses on the fatigue strength of 316L steel, a commonly used steel in AM, is investigated using a Weibull distribution. The underlying residual stress distributions as a result of the building process are approximated for two building directions using finite element (FE) models. These imply significantly different distributions of tensile and compressive residual stresses within the component. Apart from the residual stresses, the impact of the mean stress sensitivity is discussed as this also influences the predicted fatigue strength values.
REFERENCES (23)
1.
Pelleg J. Additive and Traditionally Manufactured Components: A Comparative Analysis of Mechanical Properties. Amsterdam (NL): Elsevier; 2020.
 
2.
Kruth J-P, Badrossamay M, Yasa E, Deckers J, Thijs L, Van Humbeeck J, Zhao W. Part and material properties in selective laser melting of metals. Proceedings of the 16th International Symposium on Electromachining (ISEM XVI), 2010, 3-14.
 
3.
Radaj D, Vormwald M. Ermüdungsfestigkeit. 3rd ed. Berlin (DE): Springer-Verlag, 2007.
 
4.
Mercelis P, Kruth J‐P. Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp. J. 2006; 12(5): 254-265.
 
5.
Hatami S, Ma T, Vuoristo T, Bertilsson J, Lyckfeldt O. Fatigue Strength of 316 L Stainless Steel Manufactured by Selective Laser Melting. J. of Materi Eng and Perform 2020; 29(5): 3183-3194.
 
6.
Leuders S, Lieneke T, Lammers S, Tröster T, Niendorf T. On the fatigue properties of metals manufactured by selective laser melting – The role of ductility. J. Mater. Res. 2014; 29(17): 1911-1919.
 
7.
Keller N. Verzugsminimierung bei selektiven Laserschmelzverfahren durch Multi-Skalen-Simulation [dissertation]. Bremen: University of Bremen, 2017 [cited 6 July 2017]. Available from: http://nbn-resolving.de/urn:nb....
 
8.
Zhang Y, Jung Y-G, Zhang J. Multiscale Modeling of Additively Manufactured Metals: Application to Laser Powder Bed Fusion Process. Amsterdam (NL): Elsevier; 2020.
 
9.
Zhang B, Li Y, Bai Q. Defect Formation Mechanisms in Selective Laser Melting. Chin. J. Mech. Eng. 2017; 30(3): 515-527.
 
10.
Nadot Y, Nadot-Martin C, Kan WH, Boufadene S, Foley M, Cairney J, Proust G, Ridosz L. Predicting the fatigue life of an AlSi10Mg alloy manufactured via laser powder bed fusion by using data from computed tomography. Addit. Manuf. 2020; 32(3): 100899.
 
11.
Mertens A, Reginster S, Paydas H, Contrepois Q, Dormal T, Lemaire O, Lecomte-Beckers J. Mechanical properties of alloy Ti–6Al–4V and of stainless steel 316L processed by selective laser melting: Influence of out-of-equilibrium microstructures. Powder Metall. 2014; 57(3): 184-189.
 
12.
Wang D, Liu Y, Yang Y, Xiao D. Theoretical and experimental study on surface roughness of 316L stainless steel metal parts obtained through selective laser melting. Rapid Prototyp. J. 2016; 22(4): 706-716.
 
13.
Vrancken B. Study of Residual Stresses in Selective Laser Melting [dissertation]. Leuven (BE): KU Leuven, 2016 [cited 10 May 2017]. Available from: https://lirias.kuleuven.be/194....
 
14.
Weibull W. A statistical theory of the strength of materials. Ingeniörsvetenskapsakademiens handlingar 151. Stockholm (SE): Generalstabens Litografiska Anstalts Förlag, 1939.
 
15.
Weibull W. A Statistical Distribution Function of Wide Applicability. J. Appl. Mech. 1951; 18(3): 293-297.
 
16.
Bomas H, Mayr P, Schleicher M. Calculation method for the fatigue limit of parts of case hardened steels. Materials Science and Engineering: A 1997; 234: 393-396.
 
17.
Macherauch E, Kloos K-H. Bewertung von Eigenspannungen. Härterei-Technische Mitteilungen, Beiheft Eigenspannungen und Lastspannungen, Moderne Ermittlung – Ergebnisse – Bewertung 1982; 175-194.
 
18.
Jablonski F. Rechnerische Ermittlung von Dauerfestigkeitskennwerten an einsatzgehärteten Proben aus 16 MnCrS 5 unter Berücksichtigung von Mittel- und Eigenspannungen [dissertation]. University of Bremen. Aachen (DE): Shaker Verlag, 2001.
 
19.
FKM Forschungskuratorium Maschinenbau e.V. FKM-Richtlinie; Rechnerischer Festigkeitsnachweis für Maschinenbauteile. 6th ed. Frankfurt am Main (DE): VDMA-Verlag, 2012.
 
20.
Gläßner C, Blinn B, Burkhart M, Klein M, Beck T, Aurich JC. Comparison of 316L test specimens manufactured by Selective Laser Melting, Laser Deposition Welding and Continuous Casting. In: Schmitt RH, Schuh G, editors. 7. WGP-Jahreskongress. 2017 5-6 Oct; Aachen, Germany. Aachen (DE): Apprimus Verlag, 2017; 45-52.
 
21.
Abaqus Welding Interface 2017, User Manual, AWI Version AWI_2017-5. Dassault Systems Simulia Corp., 2018.
 
22.
Abaqus/CAE 2017. Dassault Systemes Simulia Corp., 2016.
 
23.
Zeißig M, Jablonski F. Comparison of different approaches to model fatigue for additively manufactured specimens considering production related characteristics. Procedia Struct. Integr. 2022; 38(5): 60-69.
 
eISSN:2300-5319
ISSN:1898-4088
Journals System - logo
Scroll to top