RESEARCH PAPER
Properties of Rubber-Like Materials and their Blends in Wide Range of Temperatures – Experimental and Numerical Study
More details
Hide details
1
Faculty of Mechanical Engineering, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warszawa, Poland
2
Faculty of Mechatronics and Aeronautics, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warszawa, Poland
3
Military Institute of Armament Technology, ul. Wyszyńskiego, 05-220 , Zielonka, Poland
Submission date: 2023-01-19
Acceptance date: 2023-03-13
Online publication date: 2023-06-25
Publication date: 2023-09-01
Acta Mechanica et Automatica 2023;17(3):317-332
KEYWORDS
ABSTRACT
Elastomers are widely used in many industries. Their use requires thorough knowledge of their strength and stiffness parameters over a wide temperature range. However, determination of the parameters of such materials is still a challenge. Therefore, the paper presents research methodology allowing determination of the properties of rubber-like materials in a wide range of stretch and temperatures (from +50°C to −25°C) by using the example of styrene-butadiene rubber (SBR) and natural rubber (NR) elastomers. Additionally, two blends, chloroprene rubber/nitrile-butadiene rubber (CR/NBR) and NR/SBR blends, were also considered. Based on physical premises, a polynomial and Arruda–Boyce hyperelastic constitutive models parameters were determined using two different methods, namely curve-fitting and the successive response surface method.
REFERENCES (49)
1.
Li X, Dong Y, Li Z, Xia Y. Experimental study on the temperature dependence of hyperelastic behavior of tire rubbers under moderate finite deformation. Rubber Chem Technol. 2011 Jun 1;84(2):215–28.
2.
Gordon M. The Physics of Rubber Elasticity (Third Edition). L. R. G. Treloar, Clarendon Press, Oxford. 1975 pp. xii + 370. Br Polym J. 1976 Mar;8(1):39–39.
3.
Bell CLM, Stinson D, Thomas AG. Measurement of Tensile Strength of Natural Rubber Vulcanizates at Elevated Temperature. Rubber Chem Technol. 1982 Mar 1;55(1):66–75.
4.
Stevenson A. The influence of low-temperature crystallization on the tensile elastic modulus of natural rubber. J Polym Sci Polym Phys Ed. 1983 Apr;21(4):553–72.
5.
D20 Committee. Test Method for Brittleness Temperature of Plastics and Elastomers by Impact [Internet]. ASTM International; [cited 2023 May 29].
http://www.astm.org/cgi-bin/re....
6.
Hussein M. Effects of strain rate and temperature on the mechanical behavior of carbon black reinforced elastomers based on butyl rubber and high molecular weight polyethylene. Results Phys. 2018 Jun;9:511–7.
8.
McKeen LW. Elastomers and Rubbers. In: The Effect of UV Light and Weather on Plastics and Elastomers [Internet]. Elsevier; 2019 [cited 2023 May 29]. p. 279–359.
https://linkinghub.elsevier.co....
9.
Ramesan MT, Anil Kumar T. Preparation And Properties Of Different Functional Group Containing Styrene Butadiene Rubber. J Chil Chem Soc [Internet]. 2009 [cited 2023 May 29];54(1).
http://www.scielo.cl/scielo.ph....
10.
Chandrasekaran VC. Rubbers, Chemicals and Compounding for ‘O’ Rings and Seals. In: Rubber Seals for Fluid and Hydraulic Systems [Internet]. Elsevier; 2010 [cited 2023 May 29]. p. 57–69.
https://linkinghub.elsevier.co....
11.
Guo L, Huang G, Zheng J, Li G. Thermal oxidative degradation of styrene-butadiene rubber (SBR) studied by 2D correlation analysis and kinetic analysis. J Therm Anal Calorim. 2014 Jan;115(1):647–57.
12.
Kurian T, Mathew NM. Natural Rubber: Production, Properties and Applications. In: Kalia S, Avérous L, editors. Biopolymers [Internet]. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2011 [cited 2023 May 29]. p. 403–36.
https://onlinelibrary.wiley.co....
13.
Kobayashi S, Müllen K, editors. Encyclopedia of Polymeric Nano-materials [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 2015 [cited 2023 May 29].
http://link.springer.com/10.10....
14.
P M, Te M. Natural Rubber and Reclaimed Rubber Composites–A Systematic Review. Polym Sci [Internet]. 2016 [cited 2023 May 29];2(1).
http://polymerscience.imedpub.....
15.
Chandrasekaran C. Anticorrosive rubber lining: a practical guide for plastics engineers. Oxford: Elsevier; 2017. 266 p. (Plastics design library).
16.
Thomas S, editor. Progress in rubber nanocomposites. Amsterdam: Elsevier; 2017. 574 p. (Woodhead Publishing series in composites science and engineering).
17.
Huang Y, Li Y, Zhao H, Wen H. Research on constitutive models of hydrogenated nitrile butadiene rubber for packer at different temperatures. J Mech Sci Technol. 2020 Jan;34(1):155–64.
18.
Bauccio M, American Society for Metals, editors. ASM metals reference book. 3rd ed. Materials Park, Ohio: ASM International; 1993.
19.
Ismail MN, El-Sabbagh SH, Yehia AA. Fatigue and Mechanical Properties of NR/SBR and NR/NBR Blend Vulcanizates. J Elastomers Plast. 1999 Jul;31(3):255–70.
21.
Copley BC. Tackification Studies of Natural Rubber/Styrene-Butadiene Rubber Blends. Rubber Chem Technol. 1982 May 1;55(2):416–27.
22.
Zeng X, Li G, Zhu J, Sain M, Jian R. NBR/CR‐Based High‐Damping Rubber Composites Containing Multiscale Structures for Tailoring Sound Insulation. Macromol Mater Eng. 2023 Feb;308(2):2200464.
23.
Tobajas R, Ibartz E, Gracia L.
A comparative study of hyperelastic constitutive models to characterize the behavior of a polymer used in automotive engines. In: Proceedings of 2nd International Electronic Conference on Materials [Internet]. Sciforum.net: MDPI; 2016 [cited 2023 May 29]. p. A002.
http://sciforum.net/conference....
24.
Saha S, Bal S. Detailed study of dynamic mechanical analysis for nanocomposites. Emerg Mater Res. 2019 Sep 1;8(3):408–17.
25.
Jose Chirayil C, Abraham J, Kumar Mishra R, George SC, Thomas S. Instrumental Techniques for the Characterization of Nanoparticles. In: Thermal and Rheological Measurement Techniques for Nano-materials Characterization [Internet]. Elsevier; 2017..
https://linkinghub.elsevier.co....
26.
Gill P, Moghadam TT, Ranjbar B. Differential scanning calorimetry techniques: applications in biology and nanoscience. J Biomol Tech JBT. 2010 Dec;21(4):167–93.
27.
Leyva-Porras C, Cruz-Alcantar P, Espinosa-Solís V, Martínez-Guerra E, Piñón-Balderrama CI, Compean Martínez I, et al. Application of Differential Scanning Calorimetry (DSC) and Modulated Differential Scanning Calorimetry (MDSC) in Food and Drug Industries. Polymers. 2019 Dec 18;12(1):5.
28.
Gallagher P. K., Brown M. E., Kemp R. B. Handbook of Thermal Analysis and Calorimetry. Amsterdam [Netherlands] ; New York: Elsevier; 1998.
29.
Loos K, Aydogdu AB, Lion A, Johlitz M, Calipel J. Strain-induced crystallisation in natural rubber: a thermodynamically consistent model of the material behaviour using a serial connection of phases. Contin Mech Thermodyn. 2021 Jul;33(4):1107–40.
30.
Wood L. A.,, Bekkedahl N. Crystallization of Unvulcanized Rubber at Different Temperatures. Journal of Applied Physics 17. 1946;362–75.
31.
Doherty WOS, Leè KL, Treloar LRG. Non-Gaussian effects in sty-rene-butadiene rubber: Non-Gaussian effects in styrene-butadiene rubber. Br Polym J. 1980 Mar;12(1):19–23.
32.
Schieppati J, Schrittesser B, Wondracek A, Robin S, Holzner A, Pinter G. Temperature impact on the mechanical and fatigue behavior of a non-crystallizing rubber. Int J Fatigue. 2021 Mar;144:106050.
33.
Mooney M. A Theory of Large Elastic Deformation. J Appl Phys. 1940 Sep;11(9):582–92.
34.
Large elastic deformations of isotropic materials IV. further developments of the general theory. Philos Trans R Soc Lond Ser Math Phys Sci. 1948 Oct 5;241(835):379–97.
35.
Peddini SK, Bosnyak CP, Henderson NM, Ellison CJ, Paul DR. Nanocomposites from styrene–butadiene rubber (SBR) and multiwall carbon nanotubes (MWCNT) part 2: Mechanical properties. Polymer. 2015 Jan;56:443–51.
36.
Tzounis L, Debnath S, Rooj S, Fischer D, Mäder E, Das A, et al. High performance natural rubber composites with a hierarchical reinforcement structure of carbon nanotube modified natural fibers. Mater Des. 2014 Jun;58:1–11.
37.
Kondyurin A, Eliseeva A, Svistkov A. Bound (“Glassy”) Rubber as a Free Radical Cross-linked Rubber Layer on a Carbon Black. Materials. 2018 Oct 16;11(10):1992.
38.
Fröhlich J, Niedermeier W, Luginsland HD. The effect of filler–filler and filler–elastomer interaction on rubber reinforcement. Compos Part Appl Sci Manuf. 2005 Apr;36(4):449–60.
40.
Darijani H, Naghdabadi R, Kargarnovin MH. Hyperelastic materials modelling using a strain measure consistent with the strain energy postulates. Proc Inst Mech Eng Part C J Mech Eng Sci. 2010 Mar 1;224(3):591–602.
41.
Yeoh OH. Characterization of Elastic Properties of Carbon-Black-Filled Rubber Vulcanizates. Rubber Chem Technol. 1990 Nov 1;63(5):792–805.
42.
Arruda EM, Boyce MC. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J Mech Phys Solids. 1993 Feb;41(2):389–412.
43.
Treloar LRG. The elasticity of a network of long-chain molecules—II. Trans Faraday Soc. 1943;39(0):241–6.
44.
Zhang MG, Cao YP, Li GY, Feng XQ. Spherical indentation method for determining the constitutive parameters of hyperelastic soft materials. Biomech Model Mechanobiol. 2014 Jan;13(1):1–11.
45.
Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber. Philos Trans R Soc Lond Ser Math Phys Sci. 1951 Apr 24;243(865):251–88.
46.
Hallquist, J.O. Ls-Dyna. Material Manual. 2005;.
47.
Stander N, Craig K.J, Reichert R. Material identification in structural optimization using response surfaces. Struct Multidiscip Optim. 2005 Feb;29(2):93–102.
48.
Snyman JA. The LFOPC leap-frog algorithm for constrained optimization. Comput Math Appl. 2000 Oct;40(8–9):1085–96.
49.
Mullerschön H, Thiele M. Optimization of an Adaptive Restraint System Using LS-OPT and Visual Exploration of the Design Space Using D-SPEX. 2006;.