RESEARCH PAPER
Introduction to Modelling the Correlation Between Grain Sizes of Feed Material and the Structure and Efficiency of the Process of Co-Rotating Twin-Screw Extrusion of Non-Flammable Composites with a Pla Matrix
 
More details
Hide details
1
Łukasiewicz Research Network, Institute for Engineering Polymer Materials and Dyes, Skłodowskiej-Curie 55, 87-100 , Toruń, Poland
 
2
Faculty of Mechatronics, Kazimierz Wielki University, Mikołaja Kopernika 1, 85-074 , Bydgoszcz, Poland
 
3
Institute of Physics, Kazimierz Wielki University, Powstańców Wielkopolskich 2, 85-090 , Bydgoszcz, Poland
 
4
Institute of Materials Engineering, Kazimierz Wielki University, J. K. Chodkiewicza 30, 85-064 Bydgoszcz, Poland
 
 
Submission date: 2022-06-28
 
 
Acceptance date: 2022-07-31
 
 
Online publication date: 2022-10-14
 
 
Publication date: 2022-12-01
 
 
Acta Mechanica et Automatica 2022;16(4):301-308
 
KEYWORDS
ABSTRACT
Co-rotating twin-screw extrusion is an energy consuming process that is generally not fully optimised to a specific polymer. From the point of view of the efficiency of the extrusion process, the starting material should be characterised by small grain sizes in comparison to the screw channel area, small surface area to volume ratio and small internal friction between the pellets. To develop a model describing the effect of polylactide (PLA) grain size on the extrusion efficiency, a series of experiments with a twin-screw extruder were carried out during which the energy consumption; torque on shafts and temperature of the melt on the extruder die were monitored. As feed material, both the neat PLA with different grain sizes and the PLA with expandable graphite fillers and phosphorous-based flame retardants were used. Morphology and dispersion quality of the composites were examined using scanning electron microscopy (SEM); flammability, smoke production, mass loss and heat release rates were tested using cone calorimetry; and melt flow rate was determine using a plastometer. Moreover, the thermal properties of the obtained composites were determined using differential scanning calorimetry (DSC). The results show that the choice of the starting material affects both the efficiency of the extrusion process and the flame retardancy properties of the composite materials.
REFERENCES (39)
1.
Fiedurek K, Szroeder P, Macko M, Raszkowska-Kaczor A, Puszczykowska N. Influence of the parameters of the extrusion process on the properties of PLA composites with the addition of graphite. IOP Conf Ser: Mater Sci Eng. 2021;1199(1):012057.
 
2.
Stasiek J, Bajer K, Stasiek A, Bogucki M. Co-rotation twin-screw extruders for polymer materials. A method for experimental studying the extrusion process. Przemysl Chemiczny. 2012;91:224–30.
 
3.
Martin C. Twin Screw Extruders as Continuous Mixers for Thermal Processing: a Technical and Historical Perspective. AAPS PharmSci Tech. 2016;17(1):3–19.
 
4.
Lewandowski A, Wilczyński K. Modeling of Twin Screw Extrusion of Polymeric Materials. Polymers. 2022;14(2):274.
 
5.
Flitta I, Sheppard T. Effect of pressure and temperature variations on FEM prediction of deformation during extrusion. Materials Science and Technology. 2005;21(3):339–46.
 
6.
Mechanisms of mixing in single and co-rotating twin screw extruders - Lawal - 1995 - Polymer Engineering & Science - Wiley Online Library [Internet]. [cited 2022 Jun 12]. Available from: https://onlinelibrary.wiley.co....
 
7.
Carneiro O, Covas J, Vergnes B. Experimental and Theoretical Study of Twin-Screw Extrusion of Polypropylene. Journal of Applied Polymer Science. 2000;4:78.
 
8.
Dittrich C, Pecenka R, Løes AK, Cáceres R, Conroy J, Rayns F, et al. Extrusion of Different Plants into Fibre for Peat Replacement in Growing Media: Adjustment of Parameters to Achieve Satisfactory Physical Fibre-Properties. Agronomy. 2021;11.
 
9.
Eitzlmayr A, Khinast J, Hörl G, Koscher G, Reynolds G, Huang Z, et al. Experimental characterization and modeling of twin-screw extruder elements for pharmaceutical hot melt extrusion. AIChE Journal. 2013;59(11):4440–50.
 
10.
Kuo CFJ, Huang CC, Lin YJ, Dong MY. A study of optimum processing parameters and abnormal parameter identification of the twin-screw co-rotating extruder mixing process based on the distribution and dispersion properties for SiO2/low-density polyethylene nano-composites. Textile Research Journal. 2020;90(9–10): 1102–17.
 
11.
Kalyon DM, Malik M. An Integrated Approach for Numerical Analysis of Coupled Flow and Heat Transfer in Co-rotating Twin Screw Extruders. International Polymer Processing. 2007 Jul 1;22(3):293–302.
 
12.
Andersen P. Fundamentals of twin-screw extrusion polymer melting: Common pitfalls and how to avoid them. In Cleveland, Ohio, USA; 2015 [cited 2022 Jun 12]. 020007.
 
13.
Li M. Effects of API particle size on the dissolution rate in molten polymer excipient matrices during hot melt extrusion, conducted in a co-rotating twin-screw extruder. Theses [Internet]. 2013; Available from: https://digitalcommons.njit.ed....
 
14.
Stasiek A, Raszkowska-Kaczor A, Formela K. Badania wpływu nieorganicznych napełniaczy proszkowych na właściwości polipropylenu. Przemysł Chemiczny. 2014;888–92.
 
15.
Zhang B, Zhang Y, Dreisoerner J, Wei Y. The effects of screw configuration on the screw fill degree and special mechanical energy in twin-screw extruder for high-moisture texturised defatted soybean meal. Journal of Food Engineering. 2015;157:77–83.
 
16.
Akdogan H. Pressure, torque, and energy responses of a twin screw extruder at high moisture contents. Food Research International. 1996;29(5):423–9.
 
17.
Andrzej Stasiek. Badania procesu współbieżnego dwuślimakowego wytłaczania modyfikowanego polipropylenu przy zmiennej geometrii ślimaków [PhD Thesis]. [Bydgoszcz]: Uniwersytet Technologiczno-Przyrodniczy; 2015.
 
18.
Zbigniew Polański. Współczesne metody badań doświadczalnych, Warszawa: Wiedza Powszechna; 1978:215.
 
19.
Kazimierz Mańczak. Technika planowania eksperymentu Warszawa: WNT; 1976:277.
 
20.
Mieczysław Korzyński. Metodyka eksperymentu.Planowanie, realizacja i statystyczne opracowanie wyników eksperymentów technologicznych [Internet]. 2006th ed. Warszawa: WNT; 2006;278.
 
21.
Murariu M, Dubois P. PLA composites: From production to properties. Advanced Drug Delivery Reviews. 2016;107:17–46.
 
22.
Puszczykowska N, Rytlewski P, Macko M, Fiedurek K, Janczak K. Riboflavin as a Biodegradable Functional Additive for Thermoplastic Polymers. Environments. 2022;9(5):56.
 
23.
Kosmalska D, Janczak K, Raszkowska-Kaczor A, Stasiek A, Ligor T. Polylactide as a Substitute for Conventional Polymers—Biopolymer Processing under Varying Extrusion Conditions. Environments. 2022;9(5):57.
 
24.
Kaczor D, Fiedurek K, Bajer K, Raszkowska-Kaczor A, Domek G, Macko M, et al. Impact of the Graphite Fillers on the Thermal Processing of Graphite/Poly(lactic acid) Composites. Materials. 2021;14(18):5346.
 
25.
Pang Q, Kang F, Deng J, Lei L, Lu J, Shao S. Flame retardancy effects between expandable graphite and halloysite nanotubes in silicone rubber foam. RSC Adv. 2021;11(23):13821–31.
 
26.
Modesti M, Lorenzetti A, Simioni F, Camino G. Expandable graphite as an intumescent flame retardant in polyisocyanurate–polyurethane foams. Polymer Degradation and Stability. 2002;77(2):195–202.
 
27.
Tomiak F, Rathberger K, Schöffel A, Drummer D. Expandable Graphite for Flame Retardant PA6 Applications. Polymers. 2021;13(16):2733.
 
28.
Grover T, Khandual A, Chatterjee kalesh nath, Jamdagni R. Flame retardants: An overview. 2014;61:29–36.
 
29.
Yan L, Xu Z, Wang X, Deng N, Chu Z. Synergistic effects of aluminum hydroxide on improving the flame retardancy and smoke suppression properties of transparent intumescent fire-retardant coatings. J Coat Technol Res. 2018;15(6):1357–69.
 
30.
Wikoff DS, Birnbaum L. Human Health Effects of Brominated Flame Retardants. In: Eljarrat E, Barceló D, editors. Brominated Flame Retardants [Internet]. Berlin, Heidelberg: Springer; 2011;19–53. (The Handbook of Environmental Chemistry).
 
31.
Morel C, Schroeder H, Emond C, Turner JD, Lichtfouse E, Grova N. Brominated flame retardants, a cornelian dilemma. Environ Chem Lett [Internet]. 2022 Jan 23 [cited 2022 Jul 29]; Available from: https://doi.org/10.1007/s10311....
 
32.
Ding D, Liu Y, Lu Y, Chen Y, Liao Y, Zhang G, et al. A Formalde-hyde-free P-N Synergistic Flame Retardant Containing Phosphonate and Ammonium Phosphate for Cotton Fabrics. Journal of Natural Fibers. 2022;0(0):1–11.
 
33.
Li S, Zhong L, Huang S, Wang D, Zhang F, Zhang G. A novel flame retardant with reactive ammonium phosphate groups and polymerizing ability for preparing durable flame retardant and stiff cotton fabric. Polymer Degradation and Stability. 2019;164:145–56.
 
34.
Shukor F, Hassan A, Islam MS, Mokhtar M, Hasan M. Effect of ammonium polyphosphate on flame retardancy, thermal stability and mechanical properties of alkali treated kenaf fiber filled PLA biocomposites. 2014;.
 
35.
Chow W, Teoh E, Karger-Kocsis J. Flame retarded poly(lactic acid): A review. Express Polymer Letters. 2018;12:396–417.
 
36.
Noor Zuhaira AA, Rahmah M. Effects of Calcium Carbonate on Melt Flow and Mechanical Properties of Rice Husk/HDPE and Kenaf/HDPE Hybrid Composites. Advanced Materials Research. 2013; 795:286–9.
 
37.
Gallagher LW, McDonald AG. The effect of micron sized wood fibers in wood plastic composites. Maderas Ciencia y tecnología. 2013; 15(3):357–74.
 
38.
Ahmed J, Mulla MZ, Vahora A, Bher A, Auras R. Polylac-tide/graphene nanoplatelets composite films: Impact of high-pressure on topography, barrier, thermal, and mechanical properties. Polymer Composites. 2021;42(6):2898–909.
 
39.
Bartczak Z, Galeski A, Kowalczuk M, Sobota M, Malinowski R. Tough blends of poly(lactide) and amorphous poly([R,S]-3-hydroxy butyrate) – morphology and properties. European Polymer Journal. 2013;49(11):3630–41.
 
eISSN:2300-5319
ISSN:1898-4088
Journals System - logo
Scroll to top