RESEARCH PAPER
Real Time Trajectory Correction System Of Optical Head In Laser Welding
 
More details
Hide details
1
Department of Laser Technology, Automation and Organization of Production, Wroclaw University of Technology, Wybrzeże Wyspiańskiego 27 50-370 Wrocław, Poland
 
 
Submission date: 2014-10-01
 
 
Acceptance date: 2015-12-18
 
 
Online publication date: 2015-12-30
 
 
Publication date: 2015-12-01
 
 
Acta Mechanica et Automatica 2015;9(4):265-269
 
KEYWORDS
ABSTRACT
Application of laser welding technology requires that the laser beam is guided through the whole length of the joint with sufficiently high accuracy. This paper describes result of research on development of optomechatronic system that allows for the precise positioning of the laser head’s TCP point on the edge of welded elements during laser processing. The developed system allows for compensation of workpiece’s fixture inaccuracies, precast distortions and workpiece deformations occurring during the process.
REFERENCES (14)
1.
De Graaf M. (2007), Sensor-guided robotic laser welding, University of Twente.
 
2.
De Graaf M., Aarts R., Meijer J., Jonker J.B. (2005), Robot-sensor synchronization for real-time seam tracking in robotic laser welding, Proceeding of the Third International WLT-Conference on Lasers in Manufacturing, Munich.
 
3.
De Graaf M., Aarts R., Jonker J.B., Meijer J. (2010), Real-time seam tracking for robotic laser welding using trajectory-based control, Control Eng. Pract., Vol. 18, No. 8, 944-953.
 
4.
Dorsch F., Pfitzner D., Braun H. (2013), Improved continous tube welding due to unique process sensor system and process control, Phys. Procedia, Vol. 41, 137-139.
 
5.
Fridenfalk M., Bolmsjö G. (2003), Design and validation of a universal 6D seam tracking system in robotic welding based on laser scanning, Industrial Robot: An International Journal, Vol. 30, No. 5, 437-448.
 
6.
Gao X., Zhong X., You D. (2013), Kalman Filtering Compensated by Radial Basis Function Neural Network for Seam Tracking of Laser Welding, IEEE Trans. Control Syst. Technol., Vol. 21, No. 5, 1916-1923.
 
7.
Huang W., Kovacevic R. (2011), A Laser-Based Vision System for Weld Quality Inspection, Sensors, Vol. 11, 506-521.
 
8.
Huang W., Kovacevic R. (2012), Development of a real-time laser-based machine vision system to monitor and control welding processes, The International Journal of Advanced Manufacturing Technology, Vol. 63(1), 235-248.
 
9.
Lee S.K., Na S. J. (2012), A study on automatic seam tracking in pulsed laser edge welding by using a vision sensor without an auxiliary source, Journal of Manufacturing Systems, Vol. 21(4), 302-315.
 
10.
Michalos G., Makris S., Eytan A., Matthaiakis S., Chryssolouris G. (2012), Robot Path Correction Using Stereo Vision System, Procedia CIRP, Vol. 3, 352-357.
 
11.
Rafajłowicz E., Rafajłowicz W., Rusiecki A. (2009), Image processing algorithms and an introduction to working with the OpenCV library (in Polish), Wroclaw University of Technology Press.
 
12.
Regaard B., Kaierle S., Poprawe R. (2009), Seam-tracking for high precision laser welding applications – Methods, restrictions and enhanced concepts, Journal of Laser Applications, Vol. 21 (4), 841–875.
 
13.
Siciliano B., Khatib O. (eds.) (2008), The Handbook of Robotics, Springer, Berlin, Heidelberg.
 
14.
Siemens AG. (2006), SINUMERIK 840D Configuring the NCU.
 
eISSN:2300-5319
ISSN:1898-4088
Journals System - logo
Scroll to top