RESEARCH PAPER
Standard and Fractional Discrete-Time Linear Systems with Zero Transfer Matrices
 
More details
Hide details
1
Faculty of Electrical Engineering, Bialystok University of Technology, ul. Wiejska 45D, 15-351 Białystok, Poland
 
 
Submission date: 2022-11-08
 
 
Acceptance date: 2022-12-28
 
 
Online publication date: 2023-03-19
 
 
Publication date: 2023-06-01
 
 
Acta Mechanica et Automatica 2023;17(2):188-191
 
KEYWORDS
ABSTRACT
The transfer matrix of the standard and fractional linear discrete-time linear systems is investigated. Necessary and sufficient conditions for zeroing of the transfer matrix of the linear discrete-time systems are established. The considerations are illustrated by examples of the standard and fractional linear discrete-time systems.
REFERENCES (28)
1.
Abu-Saris R, Al-Mdallal Q. On the asymptotic stability of linear system of fractional-order difference equations. Fract. Calc. Appl. Anal. 2013; 16: 613-629.
 
2.
Antsaklis E, Michel A. Linear Systems. Birkhauser, Boston, 2006.
 
3.
Cermak J, Gyori I, Nechvatal L. On explicit stability conditions for a linear fractional difference system. Fract. Calc. Appl. Anal. 2015; 18: 651-672.
 
4.
Dörfler F, Coulson J, Markovsky I. Bridging direct & indirect data-driven control formulations via regularizations and relaxations. Trans. Automat. Contr., 2023.
 
5.
Farina L, Rinaldi S. Positive Linear Systems: Theory and Applications. J. Wiley & Sons, New York, 2000.
 
6.
Goodrich C, Peterson A. Discrete Fractional Calculus. Springer, Cham, 2015.
 
7.
Kaczorek T. Positivity and reachability of fractional electrical circuits. Acta Mechanica et Automatica. 2011; 5(2): 42-51.
 
8.
Kaczorek T. Positive linear systems consisting of n subsystems with different fractional orders. IEEE Trans. Circuits and Systems. 2011; 58(6): 1203-1210.
 
9.
Kaczorek T. Selected Problems of Fractional Systems Theory. Berlin, Germany: Springer-Verlag, 2011.
 
10.
Kaczorek T. Normal positive electrical circuits. IET Control Theory Appl. 2015; 9(5): 691–699.
 
11.
Kaczorek T, Rogowski K. Fractional Linear Systems and Electrical Circuits. Studies in Systems, Decision and Control, Vol. 13, Springer, 2015.
 
12.
Kailath T. Linear systems. Prentice Hall, Englewood Cliffs, New York, 1980.
 
13.
Kalman R. Mathematical description of linear systems. SIAM J. Control. 1963; 1(2): 152-192.
 
14.
Kalman R. On the general theory of control systems. Proc. First Intern. Congress on Automatic Control. London, UK: Butterworth, 1960; 481-493.
 
15.
Klamka J. Controllability of Dynamical Systems. Kluwer, Dordrecht, Netherlands, 1981.
 
16.
Markovsky I, Dörfler F. Behavioral systems theory in data-driven analysis, signal processing, and control. Annual Reviews in Control. 2021; 52: 42–64.
 
17.
Mozyrska D, Wyrwas M. The Z-transform method and delta type fractional difference operators. Discrete Dyn. Nat. Soc. 2015; (2-3): 1-12.
 
18.
Oldham K, Spanier J. The fractional calculus: integrations and differentiations of arbitrary order. New York, USA: Academic Press, 1974.
 
19.
Ostalczyk P. Discrete Fractional Calculus: Applications in Control and Image Processing; Series in Computer Vision, World Scientific Publishing, Hackensack, New York, 2016.
 
20.
Podlubny I. Fractional differential equations. San Diego, USA: Academic Press, 1999.
 
21.
Poldermann JW, Willems J.C. Introduction to Mathematical Systems Theory. Texts in Applied Mathematics, vol. 26. Springer, New York, NY, 1998.
 
22.
Rosenbrock H. State-space and multivariable theory. New York, USA: J. Wiley, 1970.
 
23.
Ruszewski A. Stability of discrete-time fractional linear systems with delays, Archives of Control Sciences. 2019; 29(3): 549-567.
 
24.
Sabatier J, Agrawal OP, Machado JAT. Advances in Fractional Calculus, Theoretical Developments and Applications in Physics and Engineering. Springer, London, 2007.
 
25.
Sajewski Ł. Stabilization of positive descriptor fractional discrete-time linear systems with two different fractional orders by decentralized controller. Bull. Pol. Acad. Sci. Techn. 2017; 65(5): 709-714.
 
26.
Song TT, Wu GC, Wei JL. Hadamard fractional calculus on time scales, Fractals. 2022; 30(7), 2250145.
 
27.
Sun HG, Zhang Y, Baleanu D, Chen W, Chen YQ. A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 2018; 64: 213-231.
 
28.
Wu GC, Abdeljawad T, Liu J, Baleanu D, Wu KT. Mittag-Leffler stability analysis of fractional discrete-time neural networks via fixed point technique. Nonlinear Analysis: Model. Contr. 2019; 24: 919-936.
 
eISSN:2300-5319
ISSN:1898-4088
Journals System - logo
Scroll to top