RESEARCH PAPER
Influence of Extruder Plasticizing Systems on the Selected Properties of PLA/Graphite Composite
 
More details
Hide details
1
Łukasiewicz Research Network Institute for Engineering of Polymer Materials and Dyes, Marii Skłodowskiej-Curie 55, 87-100 , Toruń, Poland
 
2
Faculty of Mechatronics, Kazimierz Wielki University, Kopernika 1, 85-074 Bydgoszcz, Poland
 
3
Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland
 
4
Institute of Physics, Kazimierz Wielki University, Powstańców Wielkopolskich 2, 85-090 , Bydgoszcz, Poland
 
 
Submission date: 2022-06-28
 
 
Acceptance date: 2022-07-24
 
 
Online publication date: 2022-10-14
 
 
Publication date: 2022-12-01
 
 
Acta Mechanica et Automatica 2022;16(4):316-324
 
KEYWORDS
ABSTRACT
Twin-screw extrusion is a crucial method for the direct inserting of carbon micro- and nanomaterials into a polymer matrix using a dry procedure. The study aimed to determine the influence of the parameters of the twin-screw extruder plasticizing system on the dispersion homogeneity and distribution of graphite filler in the polylactide polymer matrix and overall quality of the composite. As a filler, a graphite micropowder with a 5 μm lateral size of platelets was used at concentration of 1 wt.%. Three configurations of screws with different mixing intensity and various types segments were considered in the extrusion experiments. Morphology and chemical structure of the obtained composites were examined using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy – attenuated total reflectance (FTIR-ATR) and Raman spectroscopy. Differential scanning calorimetry (DSC) and melting flow rate measurements (MFR) were used to asses thermal and rheological properties of the composites. Samples of the polylactide/graphite composites were also subjected to mechanical tests. The results show that the selection of the mechanical parameters of twin-screw extruder plasticizing system plays a key role in the preparation of the homogeneous PLA/graphite composites. Incorrect selection of the screw geometry results in poor mixing quality and a significant deterioration of the mechanical and thermal properties of the composites. Optimised mixing and extrusion parameters can be the starting point for the design of efficient twin-screw extruder plasticizing system for fabrication of PLA composites with carbon nanotube and graphene fillers.
REFERENCES (63)
1.
Taib N-AAB, Rahman MR, Huda D, Kuok KK, Hamdan S, Bakri MKB, Julaihi MRMB, Khan A. A review on poly lactic acid (PLA) as a bio-degradable polymer. Polym Bull, 2022.
 
2.
Banerjee R, Ray SS. Sustainability and Life Cycle Assessment of Thermoplastic Polymers for Packaging: A Review on Fundamental Principles and Applications. Macromolecular Materials and Engineering, 2022; 307:2100794.
 
3.
Siracusa V, Blanco I. Bio-Polyethylene (Bio-PE), Bio-Polypropylene (Bio-PP) and Bio-Poly(ethylene terephthalate) (Bio-PET): Recent Developments in Bio-Based Polymers Analogous to Petroleum-Derived Ones for Packaging and Engineering Applications. Polymers, 2020;12:1641.
 
4.
Jenck JF, Agterberg F, Droescher MJ. Products and processes for a sustainable chemical industry: a review of achievements and prospects. Green Chem,2004; 6:544–556.
 
5.
Kaplan DL. Introduction to Biopolymers from Renewable Resources. In: Kaplan DL (ed) Biopolymers from Renewable Resources. Springer, Berlin, Heidelberg, 1998; 1–29.
 
6.
Kümmerer K. Sustainable from the very beginning: rational design of molecules by life cycle engineering as an important approach for green pharmacy and green chemistry. Green Chem, 2007; 9: 899–907.
 
7.
Androsch R, Di Lorenzo ML. Synthesis, Structure and Properties of Poly(lactic acid), 1st ed. 2018.
 
8.
Hu R-H, Ma Z-G, Zheng S, Li Y-N, Yang G-H, Kim H-K, Lim J-K. A fabrication process of high volume fraction of jute fiber/polylactide composites for truck liner. Int J Precis Eng Manuf, 2012;13: 1243–1246.
 
9.
Notta-Cuvier D, Odent J, Delille R, Murariu M, Lauro F, Raquez JM, Bennani B, Dubois P. Tailoring polylactide (PLA) properties for automotive applications: Effect of addition of designed additives on main mechanical properties. Polymer Testing, 2014; 36:1–9.
 
10.
Sevostyanov MA, Kaplan MA, Nasakina EO. Development of a Biodegradable Polymer Based on High-Molecular-Weight Polylactide for Medicine and Agriculture: Mechanical Properties and Biocompatibility. Dokl Chem, 2020; 490:36–39.
 
11.
Tertyshnaya Y, Jobelius H, Olkhov A, Shibryaeva L, Ivanitskikh A. Polylactide Fiber Materials and their Application in Agriculture. Key Engineering Materials. 2022; 910:617–622.
 
12.
Peres C, Matos AI, Conniot J, Sainz V, Zupančič E, Silva JM, Graça L, Sá Gaspar R, Préat V, Florindo HF. Poly(lactic acid)-based particulate systems are promising tools for immune modulation. Acta Biomaterialia, 2017; 48:41–57.
 
13.
Sullivan MP, McHale KJ, Parvizi J, Mehta S. Nanotechnology. The Bone & Joint Journal, 2014; 96-B:569–573.
 
14.
Zhou J, Yu J, Bai D, Lu J, Liu H, Li Y, Li L. AgNW/stereocomplex-type polylactide biodegradable conducting film and its application in flexible electronics. J Mater Sci: Mater Electron, 2021;32:6080–6093.
 
15.
Al-Attar H, Alwattar AA, Haddad A, Abdullah BA, Quayle P, Yeates SG. Polylactide-perylene derivative for blue biodegradable organic light-emitting diodes. Polymer International, 2021; 70:51–58.
 
16.
Ahmed J, Mulla M, Jacob H, Luciano G, T.b. B, Almusallam A. Polylactide/poly(ε-caprolactone)/zinc oxide/clove essential oil composite antimicrobial films for scrambled egg packaging. Food Packaging and Shelf Life, 2019; 21:100355.
 
17.
Ahmed J, Mulla MZ, Al-Zuwayed SA, Joseph A, Auras R. Morphological, barrier, thermal, and rheological properties of high-pressure treated co-extruded polylactide films and the suitability for food packaging. Food Packaging and Shelf Life, 2022; 32:100812.
 
18.
Raquez J-M, Habibi Y, Murariu M, Dubois P. Polylactide (PLA)-based nanocomposites. Progress in Polymer Science, 2013; 38:1504–1542.
 
19.
Malinowski R, Raszkowska-Kaczor A, Moraczewski K, Głuszewski W, Krasinskyi V, Wedderburn L. The Structure and Mechanical Properties of Hemp Fibers-Reinforced Poly(ε-Caprolactone) Composites Modified by Electron Beam Irradiation. Applied Sciences, 2021; 11:5317.
 
20.
Thakur KAM, Kean RT, Zupfer JM, Buehler NU, Doscotch MA, Munson EJ. Solid State 13C CP-MAS NMR Studies of the Crystallinity and Morphology of Poly(l-lactide). Macromolecules, 1996; 29:8844–8851.
 
21.
Sinha Ray S, Yamada K, Okamoto M, Ueda K. New polylactide-layered silicate nanocomposites. 2. Concurrent improvements of material properties, biodegradability and melt rheology. Polymer, 2003; 44:857–866.
 
22.
Fiedurek K, Szroeder P, Macko M, Raszkowska-Kaczor A, Puszczykowska N. Influence of the parameters of the extrusion process on the properties of PLA composites with the addition of graphite. IOP Conf Ser: Mater Sci Eng, 2021 1199:012057.
 
23.
Gonçalves C, Gonçalves IC, Magalhães FD, Pinto AM. Poly(lactic acid) Composites Containing Carbon-Based Nanomaterials: A Review. Polymers,2017; 9:269.
 
24.
Lim L-T, Auras R, Rubino M. Processing technologies for poly(lactic acid). Progress in Polymer Science,2008; 33:820–852.
 
25.
Perepelkin KE. Polylactide Fibres: Fabrication, Properties, Use, Prospects. A Review. Fibre Chemistry, 2002; 34:85–100.
 
26.
Harris AM, Lee EC. Improving mechanical performance of injection molded PLA by controlling crystallinity. Journal of Applied Polymer Science, 2018; 107:2246–2255.
 
27.
Tümer EH, Erbil HY. Extrusion-Based 3D Printing Applications of PLA Composites: A Review. Coatings, 2021; 11:390.
 
28.
Cicala G, Giordano D, Tosto C, Filippone G, Recca A, Blanco I. Polylactide (PLA) Filaments a Biobased Solution for Additive Manufacturing: Correlating Rheology and Thermomechanical Properties with Printing Quality. Materials, 2018; 11:1191.
 
29.
Ghasem N, Al-Marzouqi M, Abdul Rahim N. Effect of polymer extrusion temperature on poly(vinylidene fluoride) hollow fiber membranes: Properties and performance used as gas–liquid membrane contactor for CO2 absorption. Separation and Purification Technology, 2012; 99:91–103.
 
30.
Schweighuber A, Felgel-Farnholz A, Bögl T, Fischer J, Buchberger W. Investigations on the influence of multiple extrusion on the degradation of polyolefins. Polymer Degradation and Stability, 2021; 192:109689.
 
31.
Kosmalska D, Janczak K, Raszkowska-Kaczor A, Stasiek A, Ligor T. Polylactide as a Substitute for Conventional Polymers—Biopolymer Processing under Varying Extrusion Conditions. Environments, 2022; 9:57.
 
32.
Michael FM, Khalid M, Walvekar R, Ratnam CT, Ramarad S, Siddiqui H, Hoque ME. Effect of nanofillers on the physico-mechanical properties of load bearing bone implants. Materials Science and Engineering, 2016; C 67:792–806.
 
33.
Pan J, Bian L. A physics investigation for influence of carbon nano-tube agglomeration on thermal properties of composites. Materials Chemistry and Physics, 2019; 236:121777.
 
34.
Tamayo-Vegas S, Muhsan A, Liu C, Tarfaoui M, Lafdi K. The Effect of Agglomeration on the Electrical and Mechanical Properties of Polymer Matrix Nanocomposites Reinforced with Carbon Nanotubes. Polymers, 2022; 14:1842.
 
35.
Canevarolo SV, Babetto AC. Effect of screw element type in degradation of polypropylene upon multiple extrusions. Advances in Polymer Technology, 2002; 21:243–249.
 
36.
Zou D, Zheng X, Ye Y, Yan D, Xu H, Si S, Li X. Effect of different amounts of bamboo charcoal on properties of biodegradable bamboo charcoal/polylactic acid composites. International Journal of Biological Macromolecules, 2022; 216:456–464.
 
37.
Aversa C, Barletta M, Gisario A, Pizzi E, Prati R, Vesco S. Corotating twin-screw extrusion of poly(lactic acid) PLA/poly(butylene succinate) PBS/ micro-lamellar talc blends for extrusion blow molding of biobased bottles for alcoholic beverages. Journal of Applied Polymer Science, 2021 138:51294.
 
38.
Kaczor D, Fiedurek K, Bajer K, Raszkowska-Kaczor A, Domek G, Macko M, Madajski P, Szroeder P. Impact of the Graphite Fillers on the Thermal Processing of Graphite/Poly(lactic acid) Composites. Materials, 2021; 14:5346.
 
39.
Kaczor D, Bajer K, Domek G, Raszkowska-Kaczor A, Szroeder P. The method of obtaining polymer masterbatches based on polylac-tide with carbon filler. IOP Conf Ser: Mater Sci Eng, 2021; 1199:012058.
 
40.
PN-EN ISO 11357-(1-3):2009 Tworzywa sztuczne - Różnicowa kalorymetria skaningowa (DSC) - Część 1: Zasady ogólne; Część 2: Wyznaczanie temperatury zeszklenia i stopnia przejścia w stan szklisty; Część 3: Oznaczanie temperatury oraz entalpii topnienia i krystalizacji.
 
41.
Silva M, Gomes C, Pinho I, Gonçalves H, Vale AC, Covas JA, Alves NM, Paiva MC. Poly(Lactic Acid)/Graphite Nanoplatelet Nanocomposite Filaments for Ligament Scaffolds. Nanomaterials, 2021; 11:2796.
 
42.
Batakliev T, Georgiev V, Kalupgian C, Muñoz PAR, Ribeiro H, Fechine GJM, Andrade RJE, Ivanov E, Kotsilkova R. Physicochemical Characterization of PLA-based Composites Holding Carbon Nanofillers. Appl Compos Mater, 2021; 28:1175–1192.
 
43.
PN-EN ISO 1133-1:2011 Tworzywa sztuczne - Oznaczanie masowego wskaźnika szybkości płynięcia (MFR) i objętościowego wskaźnika szybkości płynięcia (MVR) tworzyw termoplastycznych - Część 1: Metoda standardowa.
 
44.
PN-EN ISO 294-1:2017-07 Tworzywa sztuczne - Wtryskiwanie kształtek do badań z tworzyw termoplastycznych - Część 1: Zasady ogólne, formowanie uniwersalnych kształtek do badań i kształtek w postaci beleczek.
 
45.
PN-EN ISO 527-1:2020-01 Tworzywa sztuczne - Oznaczanie właściwości mechanicznych przy statycznym rozciąganiu - Część 1: Zasady ogólne.
 
46.
PN-EN ISO 179-2:2020-12 Tworzywa sztuczne - Oznaczanie udarności metodą Charpy’ego - Część 2: Instrumentalne badanie udarności.
 
47.
Yuniarto K, Purwanto YA, Purwanto S, Welt BA, Purwadaria HK, Sunarti TC. Infrared and Raman studies on polylactide acid and polyethylene glycol-400 blend. AIP Conference Proceedings, 2016; 1725:020101.
 
48.
Kister G, Cassanas G, Vert M. Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s. Polymer, 1998; 39:267–273.
 
49.
Amorin NSQS, Rosa G, Alves JF, Gonçalves SPC, Franchetti SMM, Fechine GJM. Study of thermodegradation and thermostabilization of poly(lactide acid) using subsequent extrusion cycles. Journal of Applied Polymer Science, 2014 131, 40023.
 
50.
Qin D, Kean RT. Crystallinity Determination of Polylactide by FT-Raman Spectrometry. Appl Spectrosc, 1998; 52:488–495.
 
51.
Signori F, Coltelli M-B, Bronco S. Thermal degradation of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) and their blends upon melt processing. Polymer Degradation and Stability, 2009; 94:74–82.
 
52.
Cock F, Cuadri AA, García-Morales M, Partal P. Thermal, rheological and microstructural characterisation of commercial biodegradable polyesters. Polymer Testing, 2013; 32:716–723.
 
53.
Carrasco F, Pagès P, Gámez-Pérez J, Santana OO, Maspoch ML. Processing of poly(lactic acid): Characterization of chemical structure, thermal stability and mechanical properties. Polymer Degradation and Stability, 2010; 95:116–125.
 
54.
Mainil-Varlet P, Hauke C, Maquet V, Printzen G, Arens S, Schaffner T, Jérôme R, Perren S, Schlegel U. Polylactide implants and bacterial contamination: An animal study. Journal of Biomedical Materials Research, 2001; 54:335–343.
 
55.
Usachev SV, Lomakin SM, Koverzanova EV, Shilkina NG, Levina II, Prut EV, Rogovina SZ, Berlin AA. Thermal degradation of various types of polylactides research. The effect of reduced graphite oxide on the composition of the PLA4042D pyrolysis products. Thermochimica Acta, 2022; 712:179227.
 
56.
Mngomezulu ME, Luyt AS, John MJ. Morphology, thermal and dynamic mechanical properties of poly(lactic acid)/expandable graphite (PLA/EG) flame retardant composites. Journal of Thermoplastic Composite Materials, 2019; 32:89–107.
 
57.
Harmandaris VA, Daoulas KCh, Mavrantzas VG. Molecular Dynamics Simulation of a Polymer Melt/Solid Interface:  Local Dynamics and Chain Mobility in a Thin Film of Polyethylene Melt Adsorbed on Graphite. Macromolecules, 2005; 38:5796–5809.
 
58.
Mysiukiewicz O, Barczewski M, Skórczewska K, Matykiewicz D. Correlation between Processing Parameters and Degradation of Different Polylactide Grades during Twin-Screw Extrusion. Polymers, 2020; 12:1333.
 
59.
Przekop RE, Kujawa M, Pawlak W, Dobrosielska M, Sztorch B, Wieleba W. Graphite Modified Polylactide (PLA) for 3D Printed (FDM/FFF) Sliding Elements. Polymers, 2020; 12:1250.
 
60.
Murariu M, Dechief AL, Bonnaud L, Paint Y, Gallos A, Fontaine G, Bourbigot S, Dubois P. The production and properties of polylactide composites filled with expanded graphite. Polymer Degradation and Stability, 2010; 95:889–900.
 
61.
Żenkiewicz M, Richert J, Rytlewski P, Richert A. Comparative analysis of shungite and graphite effects on some properties of polylactide composites. Polymer Testing, 2011; 30:429–435.
 
62.
Kim I-H, Jeong YG. Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity. Journal of Polymer Science Part B: Polymer Physics, 2010; 48:850–858.
 
63.
Żenkiewicz M, Richert J, Rytlewski P, Moraczewski K, Stepczyńska M, Karasiewicz T. Characterisation of multi-extruded poly(lactic acid). Polymer Testing, 2009; 28:412–418.
 
eISSN:2300-5319
ISSN:1898-4088
Journals System - logo
Scroll to top