Faculty of Mechanical Engineering, Department of Mechanics and Applied Computer Science, Bialystok University of Technology, ul. Wiejska 45C, 15-351 Białystok, Poland
This paper describes the method of numerical modeling of the tension and compression behavior of sintered 316L. In order to take into account the shape of the mesostructures of materials in the numerical modeling, X-ray microtomography was used. Based on the micro-CT images, three-dimensional geometrical models mapped shapes of the porosity were generated. To the numerical calculations was used finite element method. Based on the received stress and strain fields was described the mechanism of deformation of the materials until fracture. The influence of material discontinuities at the mesoscopic scale on macromechanical properties of the porous materials was investigated.
REFERENCES(17)
1.
Disegi J. A., Eschbach L. (2000), Stainless steel in bone surgery, Injury, 31,S-D2-6.
Ashby M. F., Evans A. G., Fleck N. A., Gibson L. J., Hutchinson J. W., Wadley H. N. G. (2000), Metal Foams: A Design Guid, Oxford: Butterworth-Heinemann.
Kujime T., Tane M., Hyun S. K., Nakajima H. (2007), Threedimensional image-based modeling of lotus-type porous carbon steel and simulation of its mechanical behaviour by finite element method, Materials Science and Engineering A, 460-461, 220-226.
Maruyama B., Spowart J. E., Hooper D. J., Mullens H. M., Druma A. M., Druma C., Alam M. K. (2006), A new technique for obtaining three-dimensional structures in pitch-based carbon foams. Scripta Materialia, 54, 1709-1713.
Nammi S. K., Myler P., Edwards G. (2010), Finite element analysis of closed-cell aluminium foam under quasi-static loading. Materials and Design, 31, 712-722.
Michailidis N., Stergioudi F., Omar H., Tsipas D. N. (2010), An image-based reconstruction of the 3D geometry of an Al open-cell foam and FEM modeling of the material response, Mechanics of Materials, 42, 142-147.
Veyhl C., Belova I. V., Murch G. E., Fiedler T. (2011), Finite element analysis of the mechanical properties of cellular aluminium based on micro-computed tomography, Materials Science and Engineering A, 528, 4550-4555.
Michailidis N., Stergioudi F., Omar H., Tsipas D. (2010), FEM modeling of the response of porous Al in compression, Computational Materials Science, 48, 282-286.
Michailidis N. (2011) Strain rate dependent compression response of Ni-foam investigated by experimental and FEM simulation methods, Materials Science and Engineering A, 528, 4204-4208.
Derpeński Ł., Seweryn A. (2011), Experimental Research into Fracture of EN-AW 2024 and EW-AW 2007 Aluminum Alloy Specimens with Notches Subjected to Tension, Experimental Mechanics, 51, 1075-1094.
Falkowska A., Seweryn A. (2015), Fatigue of sintered porous materials based on 316l stainless steel under uniaxial loading. Materials Science (in press).
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.