RESEARCH PAPER
The Finite Element Analysis of Osteoporotic Lumbar Vertebral Body by Influence of Trabecular Bone Apparent Density and Thickness of Cortical Shell
 
More details
Hide details
1
Faculty of Mechanics, Department of Biomechanics, Vilnius Gediminas Technical University, Basanavičiaus 28, 03224 , Vilnius, Lithuania
 
2
Faculty of Mechanics, Institute of mechanical Science, Vilnius Gediminas Technical University, Basanavičiaus 28, 03224 , Vilnius, Lithuania
 
3
Faculty of Medicine, Vilnius University, Čiurlionio 21, 03101 , Vilnius, Lithuania
 
 
Submission date: 2016-05-30
 
 
Acceptance date: 2017-11-27
 
 
Online publication date: 2017-12-30
 
 
Publication date: 2017-12-01
 
 
Acta Mechanica et Automatica 2017;11(4):285-292
 
KEYWORDS
ABSTRACT
Osteoporosis causes the bone mass loss and increased fracture risk. This paper presents the modelling of osteoporotic human lumbar vertebrae L1 by employing finite elements method (FEM). The isolated inhomogeneous vertebral body is composed by cortical out-er shell and cancellous bone. The level of osteoporotic contribution is characterised by reducing the thickness of cortical shell and elasticity modulus of cancellous bone using power-law dependence with apparent density. The strength parameters are evaluated on the basis of von Mises-Hencky yield criterion. Parametric study of osteoporotic degradation contains the static and nonlinear dynamic analysis of stresses that occur due to physiological load. Results of our investigation are presented in terms of nonlinear interdependence between stress and external load.
REFERENCES (30)
1.
Agrawal A., Kalia R. (2014), Osteoporosis: current review, J. Orthop. Traumatol. Rehabil., 7, 101-102.
 
2.
Bono C.M., Einhorn T.A. (2003), Overview of osteoporosis: pathophysiology and determinants of bone strength., Eur. Spine J., 12, 90–96.
 
3.
Bouzakis K.D., Mitsi S., Michailidis N., Mirisidis I., Mesomeris G., Maliaris G., Korlos A., Kapetanos G., Antonarakos P., Anagnognostidos K. (2004), Loading simulation of lumbar spine vertebrae during a compression test using the finite elements method and trabecular bone strength properties, determined by means of nanoindentations, J. Musculoskelet. Neuronal Interact., 4, 152–158.
 
4.
Cooper C., Cole Z.A. Holroyd C.R., et al. (2011), Secular trends in the incidence of hip and other osteoporotic fractures, Osteoporos Int., 22, 1277–1288.
 
5.
Crawford R.P., Cann C.E., Keaveny T.M. (2003), Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography, Bone, 33, 744–750.
 
6.
Cummings S.R., Melton III L.J.. (2002), Epidemiology and outcomes of osteoporotic fractures, Lancet 359, 1761–1767.
 
7.
Doblaré M., García J.M., Gómez M.J. (2004), Modelling bone tissue fracture and healing: a review, Eng. Fract. Mech., 71, 1809–1840.
 
8.
Dreischarf M., Zander T., Shirazi-Adl A., Puttlitz C.M., Adam C.J., Chen C.S., et al. (2014), Comparison of eight published static finite element models of the intact lumbar spine: Predictive power of models improves when combined together, J. Biomech., 47, 1757–1766.
 
9.
El-Rich M., Arnoux P.J., Wagnac E., Brunet C., Aubin C.E. (2009), Finite element investigation of the loading rate effect on the spinal load-sharing changes under impact conditions, J. Biomech., 42, 1252–1262.
 
10.
Garo A., Arnoux P.J., Wagnac E., Aubin C.E. (2011), Calibration of the mechanical properties in a finite element model of a lumbar vertebra under dynamic compression up to failure, Med. Biol. Eng. Comput. 49, 1371–1379.
 
11.
Gohari E., Nikkhoo M., Haghpanahi M., Parnianpour M. (2013), Analysis of different material theories used in a FE model of a lumbar segment motion, Acta Bioeng. Biomech., 15, 33–41.
 
12.
Helgason B., Perilli E., Schileo E., Taddei F., Brynjólfsson S.S., Viceconti M. (2008), Mathematical relationships between bone density and mechanical properties: A literature review, Clin. Biomech., 23, 135–146.
 
13.
Jaramillo H.E., Gomez L., Garcia J.J. (2015), A finite element model of the L4-L5-S1 human spine segment including the heterogeneity and anisotropy of the discs, Acta Bioeng. Biomeechanics., 17, 15–24.
 
14.
Johnell O., Kanis J.A., Odén A., Sernbo I., Redlund-Johnell I., Petterson C., et al. (2004), Mortality after osteoporotic fractures, Osteoporos. Int., 15, 38–42.
 
15.
Jones A.C., Wilcox R.K., (2008), Finite element analysis of the spine: Towards a framework of verification, validation and sensitivity analysis, Med. Eng. Phys., 30, 1287–1304.
 
16.
Lin J.T., Lane J.M. (2004), Osteoporosis: a review., Clin. Orthop. Relat. Res., 425, 126–34.
 
17.
Linthorne N. P. (2010), Analysis of standing vertical jumps using a force platform, The Journal of Sports Science and Medicine, 9, 282-287.
 
18.
Kim Y.H., Wu M., Kim K. (2013), Stress analysis of osteoporotic lumbar vertebra using finite element model with microscaled beam-shell trabecular-cortical structure, Journal of Applied Mathematics, 2013, 146-152.
 
19.
Łodygowski T., Kakol W., Wierszycki M., Ogurkowska B.M. (2005), Three-dimensional nonlinear finite element model of the human lumbar spine segment, Acta Bioeng. Biomech., 7, 17–28.
 
20.
McDonald K., Little J., Pearcy M., Adam C. (2010), Development of a multi-scale finite element model of the osteoporotic lumbar vertebral body for the investigation of apparent level vertebra mechanics and micro-level trabecular mechanics, Med. Eng. Phys., 32, 653–661.
 
21.
Maquer G., Schwiedrzik J., Huber G., Morlock M.M., Zysset P.K. (2015), Compressive strength of elderly vertebrae is reduced by disc degeneration and additional flexion, J. Mech. Behav. Biomed. Mater. 42, 54–66.
 
22.
Melton III L.J., Achenbach S. J. Atkinson E.J., Therneau T.M., Amin S. (2013), Long-term mortality following fractures at different skeletai sites: a population-based cohort study, Osteoporos Int., 24, 1689–1696.
 
23.
Nazarian A., von Stechow D., Zurakowski D., Muller R., Snyder B.D. (2008), Bone Volume Fraction Explains the Variation in Strength and Stiffness of Cancellous Bone Affected by Metastatic Cancer and Osteoporosis, Calcified Tissue International, 83, 368-379.
 
24.
Okamoto Y., Murakami H., Demura S., Kato S., Yoshioka K., Hayashi H., et al. (2014), The effect of kyphotic deformity because of vertebral fracture: a finite element analysis of a 10° and 20° wedge-shaped vertebral fracture model, Spine J., 15, 713–720.
 
25.
Provatidis C., Vossou C., Koukoulis I., Balanika A., Baltas C., Lyritis G. (2010), A pilot finite element study of an osteoporotic L1-vertebra compared to one with normal T-score., Comput. Methods Biomech. Biomed. Engin., 13, 185–95.
 
26.
Su J., Cao L., Li Z., Yu B., Zhang C., Li M. (2009), Three-dimensional finite element analysis of lumbar vertebra loaded by static stress and its biomechanical significance, Chinese J. Traumatol., 12, 153–156.
 
27.
Svedbom A., Hernlund E., Ivergård M., Compston J., Cooper C., Stenmark J., McCloskey E.V, Jönsson B., Kanis J.A. (2013), The EU review panel of the IOF. Osteoporosis in the European Union: a compendium of country-specific reports, Arch. Osteoporos., 8, 137-138.
 
28.
Watanabe I., Furusu K., Kato C., Miki K., Hasegawa J. (2001), Development of practical and simplified human whole body FEM model, JSAE Rev., 22, 189–194.
 
29.
Wierszycki M., Szajek K., Łodygowski T., Nowak M. (2014), A two-scale approach for trabecular bone microstructure modeling based on computational homogenization procedure, Comput. Mech., 54, 287–298.
 
30.
Wolfram U., Gross T., Pahr D.H., Schwiedrzik J., Wilke H.J., Zysset P.K. (2012), Fabric-based Tsai-Wu yield criteria for vertebral trabecular bone in stress and strain space, J. Mech. Behav. Biomed. Mater., 15, 218–228.
 
eISSN:2300-5319
ISSN:1898-4088
Journals System - logo
Scroll to top